Водные составы, их получение и их применение для очищения твердых поверхностей

Иллюстрации

Показать все

Настоящее изобретение направлено на водные составы и применение водных составов. Описаны водные составы, содержащие (A) по меньшей мере один алкоксилированный полипропиленимин, который выбирается из полипропилениминов с алкиленоксидными звеньямии и атомами N в молярном соотношении в интервале от 1:1 до 100:1, и (B) по меньшей мере одно неионное поверхностно-активное вещество, выбираемое из (B1) алкилполигликозидов и (B2) алкоксилированных спиртов Гербе, содержащих от 8 до 14 атомов углерода. Технический результат – разработка составов с улучшенными чистящими свойствами для твердых поверхностей, в частности для очистки столовой посуды. 6 н. и 10 з.п. ф-лы, 3 табл.

Реферат

Настоящее изобретение направлено на водные составы, содержащие

(A) по меньшей мере один алкоксилированный полипропиленимин, и

(B) по меньшей мере одно неионное поверхностно-активное вещество, выбираемое из

(B1) алкилполигликозидов и

(B2) алкоксилированных спиртов Гербе, содержащих от 8 до 14 атомов углерода.

Кроме того, настоящее изобретение направлено на применение водных составов согласно изобретению для очищения твердых поверхностей, как например применение для ручной очистки столовой посуды. Кроме того, настоящее изобретение направлено на способ получения составов согласно изобретению.

Кроме того, настоящее изобретение направлено на алкоксилированный полипропиленимин с линейным полипропилениминным скелетом, который не имеет в своей структуре гидроксильные группы. Кроме того, настоящее изобретение направлено на способ получения алкоксилированного полипропиленимина с линейным полипропилениминным скелетом, который не имеет в своей структуре гидроксильные группы.

Составы для очистки твердых поверхностей все еще являются областью научно-производственной и исследовательской работы. Все еще представляет интерес улучшение эффективности существующих композиций, так как или большее количество белья можно выстирать таким же количеством композиции, или необходимо применять менее активное вещество, или большее количество загрязнений можно удалить, и окружающую среду можно уберечь от сточных вод с более высоким количеством поверхностно-активного вещества.

В различных документах раскрыто применение высоко разветвленного алкоксилированного полиэтиленимина в качестве ингредиента для чистящих составов, таких как EP 2014755, US 2007/0275868 и US 2011/0036374. Однако эффективность, в частности для обезжиривающих использований раскрытых композиций все еще оставляет место для улучшения.

Следовательно, цель заключалась в предоставлении составов с улучшенными чистящими свойствами для твердых поверхностей, в частности с улучшенными свойствами ручной очистки столовой посуды. Дополнительно цель заключалась в предоставлении способа получения составов с улучшенными чистящими свойствами для твердых поверхностей, в частности с улучшенными свойствами ручной очистки столовой посуды.

Соответственно обнаружены водные составы, определенные в начале, далее в данном документе также кратко упоминаются как составы согласно изобретению. Составы согласно изобретению содержат

(A) по меньшей мере один алкоксилированный полипропиленимин, далее в данном документе также упоминаемый как алкоксилированный полипропиленимин (A) или алкоксилат (A), и

(B) по меньшей мере одно неионное поверхностно-активное вещество, выбираемое из

(B1) алкилполигликозидов, далее в данном документе упоминаемых как поверхностно-активное вещество (B1), и

(B2) алкоксилированных спиртов Гербе, содержащих от 8 до 14 атомов углерода, далее в данном документе упоминаемых как поверхностно-активное вещество (B2).

Алкоксилированный полипропиленимин (A), поверхностно-активное вещество (B1) и поверхностно-активное вещество (B2) будут описаны более подробно ниже.

Алкоксилированный полипропиленимин (A) содержит боковые алкоксигруппы и полипропилениминный скелет. Полипропилениминный скелет может быть линейным, преимущественно линейным или разветвленным, предпочтительно преимущественно линейным и более предпочтительно линейным. Структура полипропилениминного скелета зависит от типа синтеза соответствующего полипропиленимина. В контексте настоящего изобретения указанный полипропиленимин может также упоминаться как "скелет", как "скелет алкоксилата (A)" или как "скелет алкоксилированного полипропиленимина (A)".

Полипропиленимины, как определено в контексте в связи с настоящим изобретением, могут также рассматриваться как полипропиленполиамины. Они имеют в своей структуре по меньшей мере 6 атомов N на молекулу в форме аминогрупп, например, в виде NH2-групп, в виде вторичных аминогрупп или в виде третичных аминогрупп.

Термин "полипропиленимин", как определено в контексте в связи с настоящим изобретением, относится не только к гомополимерам полипропиленимина, а также к полиалкилениминам, содержащим структурные элементы NH-CH2-CH2-CH2-NH или структурные элементы NH-CH2-CH(CH3)-NH вместе с другими алкилендиаминными структурными элементами, например, структурные элементы NH-CH2-CH2-NH, структурные элементы NH-(CH2)4-NH, структурные элементы NH-(CH2)6-NH или структурные элементы (NH-(CH2)8-NH, причем структурные элементы NH-CH2-CH2-CH2-NH или структурные элементы NH-CH2-СН(CH3)-NH находятся в большинстве по отношению к молярной доле. Предпочтительные полипропиленимины содержат структурные элементы NH-CH2-CH2-CH2-NH, находящиеся в большинстве по отношению к молярной доле, например, составляя до 60 мол.% или более, более предпочтительно составляя по меньшей мерее 70 мол.%, относительно всех алкилениминных структурных элементов. В конкретном варианте выполнения полипропиленимин относится к таким полиалкилениминам, которые имеют в своей структуре один или ноль алкилениминный структурный элемент на молекулу, который отличается от NH-CH2-CH2-CH2-NH.

Ветви могут являться алкиленаминогруппами, такими как, но не ограничиваясь ими, группы -CH2-CH2-NH2 или группы (CH2)3-NH2-. Более длинными ветвями могут являться, например, группы -(CH2)3-N(CH2CH2CH2NH2)2. Высоко разветвленные полипропиленимины представляют собой, например, дендримеры полипропилена или родственные молекулы со степенью разветвленности в интервале от 0,25 до 0,95, предпочтительно в интервале от 0,30 до 0,80 и особенно предпочтительно по меньшей мере 0,5. Степень разветвленности можно определить, например, 13C-ЯМР или 15N-ЯМР спектроскопией, предпочтительно в D2O, и определяют следующим образом:

DB=D+T/D+T+L

причем D (дендримерный) соответствует фракции третичных аминогрупп, L (линейный) соответствует фракции вторичных аминогрупп, и T (концевой) соответствует фракции первичных аминогрупп.

В контексте настоящего изобретения высоко разветвленные полипропиленимины представляют собой полипропиленимины с DB в интервале от 0,25 до 0,95, особенно предпочтительно в интервале от 0,30 до 0,90 и очень особенно предпочтительно по меньшей мере 0,5.

В контексте настоящего изобретения CH3-группы не рассматриваются как ветви.

Предпочтительные полипропилениминные скелеты представляют собой такие, которые проявляют немного разветвленности или совсем не проявляют разветвленности, таким образом преимущественно линейные или линейные полипропилениминные скелеты.

В определенных вариантах выполнения настоящего изобретения полипропилениминный скелет алкоксилированного полипропиленимина (A) можно получить каталитической поликонденсацией пропаноламина и необязательно по меньшей мере одного дополнительного аминоспирта, каталитической полисоконденсацией пропандиола с пропандиамином и необязательно по меньшей мере одним дополнительным диолом и/или одним дополнительным диамином, и предпочтительно каталитической поликонденсацией пропандиамина и необязательно по меньшей мере одного дополнительного диамина, причем последняя поликонденсация также упоминается как политрансаминирование. Указанный дополнительный аминоспирт, указанный дополнительный диамин и указанный дополнительный диол выбирают соответственно из алифатических аминоспиртов, алифатических диолов и алифатических диаминов.

Примерами аминопропанолов являются 3-аминопропан-1-ол и 2-аминопропан-1-ол и их смеси, причем предпочтительным является 3-аминопропан-1-ол.

Необязательно вплоть до 40 мол.% аминопропанола можно заменить одним или более аминоспиртом, отличающимся от аминопропанола и имеющим в своей структуре по меньшей мере одну первичную или вторичную аминогруппу и по меньшей мере одну OH группу, в частности вплоть до 30 мол.%.

Примерами дополнительных аминоспиртов являются линейные, разветвленные или циклические алканоламины, такие как моноэтаноламин, N,N-диэтаноламин, аминобутанол, например, 4-аминобутан-1-ол, 2-аминобутан-1-ол или 3-аминобутан-1-ол, аминопентанол, например, 5-аминопентан-1-ол или 1-аминопентан-2-ол, аминодиметилпентанол, например, 5-амино-2,2-диметилпентанол, аминогексанол, например, 2-аминогексан-1-ол или 6-аминогексан-1-ол, аминогептанол, например, 2-аминогептан-1-ол или 7-аминогептан-1-ол, аминооктанол, например, 2-аминооктан-1-ол или 8-аминооктан-1-ол, аминононанол, например, 2-аминононан-1-ол или 9-аминононан-1-ол, аминодеканол, например, 2-аминодекан-1-ол или 10-аминодекан-1-ол, аминоундеканол, например, 2-аминоундекан-1-ол или 11-аминоундекан-1-ол, аминододеканол, например, 2-аминододекан-1-ол или 12-аминододекан-1-ол, аминотридеканол, например, 2-аминотридекан-1-ол, где соответствующие ω-амино-α-спирты предпочтительнее их 1,2-изомеров, 2-(2-аминоэтокси)этанол, алкилалканоламины, например, N-н-бутилэтаноламин, N-н-пропилэтаноламин, N-этилэтаноламин и N-метилэтаноламин. Предпочтение отдается моноэтаноламину.

В частном варианте выполнения скелет алкоксилированного полипропиленимина (A) можно получить каталитической поликонденсацией 3-аминопропан-1-ола без какого-либо дополнительного аминоспирта, отличающегося от 3-аминопропан-1-ола.

Примеры пропандиаминов и пропандиолов для полисоконденсации для получения полипропилениминного скелета, описаны ниже. В контексте настоящего изобретения термины пропандиамин и пропилендиамин применяются взаимозаменяемо. Примерами пропандиаминов являются пропан-1,2-диамин и пропан-1,3-диамин и их смеси, причем предпочтительнее пропан-1,3-диамин. Примерами соответствующих пропандиолов являются 1,2-пропиленгликоль и 1,3-пропиленгликоль и их смеси, причем предпочтительнее 1,3-пропиленгликоль. Особенно предпочтительны полисоконденсации 1,3-пропиленгликоля с пропан-1,3-диамином.

Необязательно вплоть до 40 мол.% суммы пропандиаминов и пропандиолов можно заменить одним или более алифатическими диолами, отличающихся от пропандиола, и/или одним или более алифатическим диамином, отличающимся от пропандиамина, в частности вплоть до 30 мол.%.

Примерами дополнительных алифатических диолов являются линейные, разветвленные или циклические алифатические диолы. Конкретными примерами алифатических диолов являются этиленгликоль, 2-метил-1,3-пропандиол, бутандиолы, например, 1,4-бутиленгликоль или бутан-2,3-диол или 1,2-бутиленгликоль, пентандиолы, например, неопентилгликоль или 1,5-пентандиол или 1,2-пентандиол, гександиолы, например, 1,6-гександиол или 1,2-гександиол, гептандиолы, например, 1,7-гептандиол или 1,2-гептандиол, октандиолы, например, 1,8-октандиол или 1,2-октандиол, нонандиолы, например, 1,9-нонандиол или 1,2-нонандиол, декандиолы, например, 1,10-декандиол или 1,2-декандиол, ундекандиолы, например, 1,11-ундекандиол или 1,2-ундекандиол, додекандиолы, например, 1,12-додекандиол, 1,2-додекандиол, тридекандиолы, например, 1,13-тридекандиол или 1,2-тридекандиол, тетрадекандиолы, например, 1,14-тетрадекандиол или 1,2-тетрадекандиол, пентадекандиолы, например, 1,15-пентадекандиол или 1,2-пентадекандиол, гексадекандиолы, например, 1,16-гексадекандиол или 1,2-гексадекандиол, гептадекандиолы, например, 1,17-гептадекандиол или 1,2-гептадекандиол, октадекандиолы, например, 1,18-октадекандиол или 1,2-октадекандиол, где соответствующие α,ω-диолы предпочтительнее их 1,2-изомеров, 3,4-диметил-2,5-гександиол, поли-THF, диэтаноламины, например, бутилдиэтаноламин или метилдиэтаноламин, амины двухосновных спиртов и амины трехосновных спиртов. Предпочтение отдается этиленгликолю.

Примерами дополнительных алифатических диаминов являются линейные разветвленные или циклические диамины. Специальными примерами являются этилендиамин, бутилендиамин, например, 1,4-бутилендиамин или 1,2-бутилендиамин, диаминопентан, например, 1,5-диаминопентан или 1,2-диаминопентан, диаминогексан, например, 1,6- диаминогексан или 1,5-диамино-2-метилпентан или 1,2-диаминогексан, диаминогептан, например, 1,7-диаминогептан или 1,2-диаминогептан, диаминооктан, например, 1,8-диаминооктан или 1,2-диаминооктан, диаминононан, например, 1,9-диаминононан или 1,2-диаминононан, диаминодекан, например, 1,10-диаминодекан или 1,2-диаминодекан, диаминоундекан, например, 1,11-диаминоундекан или 1,2-диаминоундекан, диаминододекан, например, 1,12-диаминододекан или 1,2-диаминододекан, где соответствующие α,ω-диамины предпочтительнее их 1,2-изомеров, 2,2-диметилпропан-1,3-диамин, 4,7,10-триоксатридекан-1,13-диамин, 4,9-диоксадодекан-1,12-диамин, амины простых полиэфиров и 3-(метиламино)пропиламин. Предпочтение отдается 1,2-этилендиамину и 1,4-бутандиамину.

В контексте настоящего изобретения соединения с двумя NH2-группами и одной третичной аминогруппой, такие как, но не ограничиваются ими, N,N-бис(3-аминопропил)метиламин, также рассматриваются в качестве диаминов.

В одном частном варианте выполнения скелет алкоксилированного полипропиленимина (A) можно получить каталитической полисоконденсацией 1,3-пропиленгликоля с пропан-1,3-диамином без какого-либо дополнительного диола или диамина, отличающегося от 1,3-пропиленгликоля и пропан-1,3диамина соответственно.

Типы поликонденсации или полисоконденсации, описанные выше, можно осуществлять в присутствии водорода, например, при давлении водорода от 1 до 10 МПа.

Типы поликонденсации или полисоконденсации, описанные выше, можно осуществить при температуре в интервале от 20 до 250°C. Предпочтительно температура составляет по меньшей мере 100°C и предпочтительно не более чем 200°C.

В ходе поликонденсации или полисоконденсации, описанной выше, образованную воду можно удалять, например, отгонкой.

Катализаторы, подходящие для поликонденсации или полисоконденсации, описанные выше, могут предпочтительно быть гомогенными. Предпочтительными примерами гомогенных катализаторов для поликонденсации или полисоконденсации, описанных выше, являются комплексы переходных металлов, которые содержат один или более различных переходных металлов, предпочтительно по меньшей мере один элемент из групп 8, 9 и 10 Периодической таблицы элементов, особенно предпочтительно рутений или иридий. Упомянутые переходные металлы присутствуют в форме комплексных соединений переходных металлов. Походящими лигандами, присутствующими в комплексных соединениях переходных металлов, подходящих в качестве катализаторов, являются, например, фосфины, замещенные алкилом или арилом, полидентатфосфины, замещенные алкилом или арилом, которые соединены мостиковой связью через ариленовые или алкиленовые группы, гетероциклические азотные карбены, циклопентандиенил и пентаметилциклопентадиенил, арил, олефиновые лиганды, гидрид, галогенид, карбоксилат, алкоксилат, карбонил, гидроксид, триалкиламин, диалкиламин, моноалкиламин, азотные ароматические соединения, такие как пиридин или пирролидин, и полидентатамины. Комплексные соединения переходных металлов могут содержать один или более различных лигандов, указанных выше.

Особенно подходящими лигандами монодентатфосфина являются трифенилфосфин, тритолилфосфин, три-н-бутилфосфин, три-н-октилфосфин, триметилфосфин и триэтилфосфин, а также ди(1-адамантил)-н-бутилфосфин, ди(1-адамантил)бензилфосфин, 2-(дициклогексилфосфино)-1-фенил-1H-пиррол, 2-(дициклогексилфосфино)-1-(2,4,6-триметилфенил)-1H-имидазол, 2-(дициклогексилфосфино)-1-фенилиндол, 2-(ди-трет-бутилфосфино)-1-фенилиндол, 2-(дициклогексилфосфино)-1-(2метоксифенил)-1H-пиррол, 2-(ди-трет-бутилфосфино)-1-(2-метоксифенил)-1H-пиррол и 2-(ди-трет-бутилфосфино)-1-фенил-1H-пиррол. Очень особенное предпочтение отдается трифенилфосфину, тритолилфосфину, три-н-бутилфосфину, три-н-октилфосфину, триметилфосфину и триэтилфосфину, а также ди(1-адамантил)-н-бутилфосфину, 2-(дициклогексилфосфино)-1-фенил-1H-пирролу и 2-(ди-трет-бутилфосфино)-1-фенил-1H-пирролу.

Особенно подходящими лигандами полидентатфосфина являются бис(дифенилфосфино)метан, 1,2-бис(дифенилфосфино)этан, 1,2-диметил-1,2-бис(дифенилфосфино)этан, 1,2-бис(дициклогексилфосфино)этан, 1,2-бис(диэтилфосфино)этан, 1,3-бис(дифенилфосфино)пропан, 1,4-бис(дифенилфосфино)бутан, 2,3-бис(дифенилфосфино)бутан, 1,3-бис(дифенилфосфино)пропан, 1,1,1-трис(дифенилфосфинометил)этан, 1,1'-бис(дифенилфосфанил)ферроцен и 4,5-бис(дифенилфосфино)-9,9-диметилксантен.

Кроме того, можно предпочтительно упомянуть азотсодержащие гетероциклические карбены в качестве особенно подходящих лигандов для поликонденсации и полисоконденсации, описанных выше. В этой связи очень предпочтительны такие лиганды, которые образуют растворимые в воде комплексы с рутением. Особенное предпочтение отдается 1-бутил-3-метилимидазолин-2-илидену, 1-этил-3-метилимидазолин-2-илидену, 1-метилимидазолин-2-илидену и дипропилимидазолин-2-илидену.

Особенно подходящими лигандами для катализатора в поликонденсации или полисоконденсации, описанных выше, которые можно упомянуть, являются также циклопентадиенил и его производные, моно- до пентазамещенные алкилом, арилом и/или гидрокси, такие как, например, метилциклопентадиенил, пентаметилциклопентадиенил, тетрафенилгидроксициклопентадиенил и пентафенилциклопентадиенил. Дополнительными особенно подходящими лигандами являются инденил и его производные, замещенные как описано для циклопентадиенила.

Подобным образом, особенно подходящими лигандами для катализатора в поликонденсации или полисоконденсации, описанных выше, являются хлорид, гидрид и карбонил.

Катализатор на основе комплекса переходных металлов в поликонденсации или полисоконденсации, описанных выше, может содержать два или более различных или одинаковых лигандов, описанных выше.

Гомогенные катализаторы можно применять или непосредственно в их активной форме или полученных, исходя из обычных стандартных комплексов, таких как, например, Ru(п-цимен)Cl2]2, [Ru(бензол)Cl2]y, [Ru(CO)2Cl2]y, где y в каждом случае находится в интервале от 1 до 1000, [Ru(CO)3Cl2]2, [RU(COD)(аллил)], RuCl3⋅H2O, [Ru(ацетилацетонат)3], [Ru(DMSO)4Cl2], [Ru(Cp)(CO)2Cl], [Ru(Cp)(CO)2H], [Ru(Cp)(CO)2]2, [Ru(Cp)(CO)2Cl], [Ru(Cp*)(CO)2H], [Ru(Cp*)(CO)2]2, [Ru(инденил)(CO)2Cl], [Ru(инденил)(СО)2Н], [Ru(инденил)(СО)2]2, рутеноцен, [Ru(COD)Cl2]2, [Ru(Cp*)(COD)Cl], [Ru3(CO)12], [Ru(PPh3)4(H)2], [Ru(PPh3)3(Cl)2], [Ru(PPh3)3(CO)(Cl)2], [Ru(PPh3)3(CO)(Cl)(H)], [Ru(PPh3)3(CO)(H)2] и [Ru(Cp)(метилаллил)2], [Ru(бипиридин)2Cl2⋅2H2O], [Ru(COD)Cl2]2, [Ru(Cp*)(COD)Cl], [Ru3(CO)12], [Ru(тетрафенилгидроксициклопентадиенил)(СО)2Н], [Ru(PMe3)4(H)2], [Ru(PEt3)4(H)2], [Ru(P(H-Pr)3)4(H)2], [Ru(P(н-Bu)3)4(H)2], [Ru(Pn-Октил3)4(H)2], [IrCl3⋅H2O], KIrCl4, K3IrCl6, [Ir(COD)Cl]2, [Ir(циклооктен)2Cl]2, [Ir(этен)2Cl]2, [Ir(Cp)Cl2]2, [Ir(Cp*)Cl2]2, [Ir(Cp)(CO)2], [Ir(Cp*)(CO)2], [Ir(PPh3)2(CO)(H)], [Ir(PPh3)2(CO)(Cl)], [Ir(PPh3)3(Cl)] с добавлением соответствующих лигандов, предпочтительно упомянутых выше моно- или полидентатфосфиновых лигандов или упомянутых выше азотсодержащих гетероциклических карбенов только в условиях взаимодействия.

Для целей настоящего изобретения Cp означает циклопентадиенил и Cp* означает пентаметилциклопентадиенил. COD означает циклоокта-1,5-диенил, Et: этил, Me: метил, Ph: фенил, н-Pr: н-пропил, н-Bu: н-бутил.

В одном варианте выполнения настоящего изобретения скелет, синтезированный согласно поликонденсациям или полисополиконденсациям, описанным выше, обладает гидроксильным числом в интервале от 1 до 1000 мг КОН/г, предпочтительно от 2 до 500 мг КОН/г, наиболее предпочтительно от 10 до 300 мг КОН/г. Гидроксильное число можно определить согласно DIN 53240.

В одном варианте выполнения настоящего изобретения скелет алкоксилата (A) синтезированный согласно поликонденсациям или полисополиконденсациям, описанным выше, имеет число первичных аминов в интервале от 1 до 1000 мг КОН/г, предпочтительно от 10 до 500 мг КОН/г, наиболее предпочтительно от 50 до 300 мг КОН/г. Число первичных аминов можно определить согласно ASTM D2074-07.

В одном варианте выполнения настоящего изобретения скелет алкоксилата (A) синтезированный согласно поликонденсациям или полисополиконденсациям, описанным выше, имеет число вторичных аминов в интервале от 1 до 1000 мг КОН/г, предпочтительно от 10 до 500 мг КОН/г, наиболее предпочтительно от 50 до 300 мг КОН/г. Число вторичных аминов можно определить согласно ASTM D2074-07.

В одном варианте выполнения настоящего изобретения скелет алкоксилата (A) синтезированный согласно поликонденсациям или полисополиконденсациям, описанным выше, имеет число третичных аминов в интервале от 1 до 300 мг КОН/г, предпочтительно от 5 до 200 мг КОН/г, наиболее предпочтительно от 10 до 100 мг КОН/г. Число третичных аминов можно определить согласно ASTM D2074-07.

В одном варианте выполнения настоящего изобретения молярную долю третичных атомов N определяют 15N-ЯМР спектроскопией. В случаях, когда число третичных аминов и результат 15N-ЯМР спектроскопии, являются несовместимыми, отдавать предпочтение результатам, полученным 15N-ЯМР спектроскопии.

В предпочтительном варианте выполнения настоящего изобретения полипропилениминный скелет алкоксилированного полипропиленимина (A) можно получить каталитическим политрансаминированием пропандиамина и необязательно по меньшей мере одного дополнительного диамина.

Примерами пропандиаминов являются пропан-1,2-диамин и пропан-1,3-диамин и их смеси. Особенно предпочтительными являются политрансаминирования пропан-1,3-диамина.

Необязательно вплоть до 40 мол.% пропандиамина можно заменить одним или более алифатическим диамином, отличающимся от пропандиамина, в частности вплоть до 30 мол.%.

Примерами дополнительных алифатических диаминов являются линейные, разветвленные или циклические диамины. Конкретными примерами являются этилен диамин, бутилендиамин, например, 1,4-бутилен диамин или 1,2-бутилендиамин, диаминопентан, например, 1,5-диаминопентан или 1,2-диаминопентан, диаминогексан, например, 1,6-диаминогексан или 1,2-диаминогексан или 1,5-диамино-2-метилпентан, диаминогептан, например, 1,7-диаминогептан или 1,2-диаминогептан, диаминооктан, например, 1,8-диаминооктан или 1,2-диаминооктан, диаминононан, например, 1,9-диаминононан или 1,2-диаминононан, диаминодекан, например, 1,10-диаминодекан или 1,2-диаминодекан, диаминоундекан, например, 1,11-диаминоундекан или 1,2-диаминоундекан, диаминододекан, например, 1,12-диаминододекан или 1,2-диаминододекан, где соответствующие α,ω-диамины предпочтительнее их 1,2-изомеров, 3,3'-диметил-4,4'-диаминодициклогексилметан, 4,4'-диаминодициклогексилметан, изофорондиамин, 2,2-диметилпропан-1,3-диамин, 4,7,10-триоксадекан-1,13-диамин, 4,9-диоксадодекан-1,12-диамин, амины простых полиэфиров и 3-(метиламино)пропиламин. Предпочтение отдается 1,2-этилендиамину и 1,4-бутандиамину.

В контексте настоящего изобретения соединения с 2 NH2-группами и третичной аминогруппой, такие как, но не ограниченные ими, N,N-бис(3-аминопропил)метиламин, также рассматриваются в качестве диаминов.

В особенно предпочтительном варианте выполнения скелет алкоксилированного полипропиленимина (A) можно получить каталитическим политрансаминированием пропан-1,3-диамина без какого-либо дополнительного диамина, отличающегося от пропан-1,3-диамина.

Катализаторы, подходящие для политрансаминирования пропандиамина и необязательно по меньшей мере одного дополнительного алифатического диамина в основном представляют собой гетерогенные катализаторы, которые содержат по меньшей мере один или более переходных металлов, выбираемых из Fe, Co, Ni, Ru, Rh, Pd, Os, Ir и Pt, предпочтительно из Co, Ni, Ru, Cu и Pd, и особенно предпочтительно Co, Ni или Cu, а также смеси по меньшей мере двух из приведенных выше. Приведенные выше металлы можно также назвать каталитически активными металлами в контексте настоящего изобретения.

В одном варианте выполнения настоящего изобретения в каталитически активный металл можно ввести присадку активатора, например, с помощью по меньшей мере одного металла, отличающегося от каталитически активного металла, выбираемого из Cr, Co, Mn, Mo, Ti, Sn, щелочных металлов, щелочноземельных металлов или фосфора.

Предпочтительно использовать катализатор типа Ренея, который можно получить активацией сплава каталитически активного металла и по меньшей мере одного дополнительного металла, в частности алюминия. Предпочтительны никелевый катализатор Ренея и кобальтовый катализатор Ренея.

В одном варианте выполнения можно использовать катализаторы с нанесением Pd или нанесением Pt. Предпочтительными материалами для нанесения являются углерод, например, в виде древесного угля, а также Al2O3, TiO2, ZrO2 и SiO2.

Особенно предпочтительными являются катализаторы, которые можно получить восстановлением каталитического исходного вещества. Исходное вещество может содержать каталитически активный компонент и необязательно по меньшей мере один дополнительный компонент, выбираемый из активаторов и материалов для нанесения. Так называемый каталитически активный компонент обычно представляет собой соединение соответствующего каталитически активного металла, например, оксида или гидроксида, такого как - но не ограничиваясь ими - CoO, CuO, NiO или смесей из любых их комбинаций.

Политрансаминирование пропандиамина и необязательно дополнительного диамина (диаминов) можно проводить в присутствии водорода, например, при давлении водорода от 1 до 400 бар, предпочтительно при давлении водорода в интервале от 1 до 200 бар и даже более предпочтительно при давлении водорода в интервале от 1 до 100 бар.

Политрансаминирование пропандиамина и необязательно дополнительного диамина (диаминов) можно проводить при температуре в интервале от 50 до 200°C. Предпочтительно температура находится в интервале от 90 до 180°C и предпочтительно в интервале от 120 до 160°C.

В одном варианте выполнения настоящего изобретения политрансаминирование пропандиамина и необязательно дополнительного диамина (диаминов) можно проводить при давлении в интервале от 1 до 400 бар, предпочтительно в интервале от 1 до 200 бар и даже более предпочтительно в интервале от 1 до 100 бар.

Получают скелет алкоксилата (А). В вариантах выполнения, в которых осуществлено политрансаминирование пропандиамина и необязательно дополнительного диамина (диаминов), соответствующий скелет оксилата (А) не имеет в своей структуре никаких гидроксильньгх групп. Следовательно, его гидроксильное число равно нулю мг КОН/г, определенное согласно DIN 53240. В контексте настоящего изобретения термин, что соответствующий скелет алкоксилата (А) не имеет в своей структуре никаких гидроксильных групп, относится к соответствующему скелету до алкоксилирования.

В вариантах выполнения, в которых осуществлено политрансаминирование диамина (диаминов), соответствующий скелет алкоксилата (А) может иметь число первичных аминов в интервале от 10 до 1000 мг КОН/г, предпочтительно от 80 до 800 мг КОН/г, наиболее предпочтительно от 100 до 500 мг КОН/г. Число первичных аминов можно определить согласно ASTM D2074-07.

В вариантах выполнения, в которых осуществлено политрансаминирование диамина (диаминов), соответствующий скелет алкоксилата (A) может иметь число вторичных аминов в интервале от 100 до 2000 мг КОН/г, предпочтительно от 200 до 1500 мг КОН/г, наиболее предпочтительно от 300 до 1000 г КОН/г. Число вторичных аминов можно определить согласно ASTM D2074-07.

В вариантах выполнения, в которых осуществлено политрансаминирование диамина (диаминов), соответствующий скелет алкоксилата (A) может иметь число третичных аминов в интервале от нуля до 2 мол.%, ссылаясь на общее число азота в соответствующем полипропиленимине. Они могут получаться в результате разветвления или образования кольца.

В одном варианте выполнения настоящего изобретения молярную долю третичных атомов N определяют 15N-ЯМР спектроскопией. В случаях, когда число третичных аминов и результат согласно 15N-ЯМР спектроскопии являются несовместимыми, отдавать предпочтение результатам, полученным 15N-ЯМР спектроскопии.

В предпочтительном варианте выполнения настоящего изобретения средне-численная молекулярная масса Mn скелета алкоксилата (A) находится в интервале от 300 до 4000 г/моль, предпочтительно от 400 до 2000 г/моль, определенной гель-проникающей хроматографией.

В предпочтительном варианте выполнения настоящего изобретения молекулярно-массовое распределение Mw/Mn скелета алкоксилата (A) находится в интервале от 1,2 до 20, предпочтительно от 1,5 до 7,5.

В предпочтительном варианте выполнения настоящего изобретения, плотность катионного заряда скелета алкоксилата (А) находится в интервале от 4 до 22 мэкв/г сухого вещества, предпочтительно в интервале от 6 до 18 мэкв/г сухого вещества, определенная титрованием при значении pH в интервале от 3 до 4.

В одном варианте выполнения настоящего изобретения общая молекулярная масса (средне-численная) алкоксилата (А) находится в интервале от 550 до 10000 г/моль, определенная посредством GPC.

Алкоксилированный полипропиленимин (А) содержит боковые алкокси цепи. Указанные боковые алкокси цепи можно присоединить к скелету алкоксилированием. Боковые алкокси цепи можно присоединить к скелету взаимодействием соответствующего полипропиленимина по меньшей мере с одним алкиленоксидом, например, этиленоксидом, пропиленоксидом, бутиленоксидом, пентиленоксидом, деценилоксидом, додеценилоксидом или смесями по меньшей мере двух алкиленоксидов из упомянутых выше. Предпочтение отдается этиленоксиду и 1,2-пропиленоксиду и смесям этиленоксида и 1,2-пропиленоксида. При применении по меньшей мере двух алкиленоксидов они могут взаимодействовать статистически или блочно.

Можно осуществлять взаимодействие скелета с алкиленоксидом, например, в присутствии катализатора. Подходящими катализаторами являются, например, кислоты Льюиса, такие как, например, эфират AlCl3 или BF3, BF3, BF3⋅H3PO4, SbCl5⋅2Н2О и гидротальцит. Предпочтительные катализаторы выбирают из сильных оснований, таких как гидроксид калия, гидроксид натрия, метилат калия (KOCH3) и метилат натрия (NaOCH3), предпочтительно из гидроксида калия и гидроксида натрия.

В одном варианте выполнения настоящего изобретения алкоксилированный полипропиленимин (А) выбирают из полипропилениминов с алкиленоксидными звеньями и атомами N в молярном соотношении в интервале от 1:1 до 100:1, предпочтительно в интервале от 2:1 до 50:1, причем атомы N берут начало в алкилениминных звеньях. Алкилениминные звенья представляют собой в большинстве пропилениминные звенья, например, по меньшей мере 60 мол.%, ссылаясь на общее количество алкилениминных звеньев, предпочтительно по меньшей мере 70 мол.%.

В одном варианте выполнения настоящего изобретения алкоксилированный полипропиленимин (A) выбирают из полипропилениминов с алкиленоксидными звеньями и атомами N в молярном соотношении в интервале от 1:1 до 100:1, предпочтительно в интервале от 2:1 до 50:1, причем атомы N берут начало в пропилениминных звеньях, и не присутствуют никакие алкилениминные звенья, отличающиеся от пропилениминных звеньев.

Алкоксилированный полипропиленимин (A) может присутствовать в составах согласно изобретению как таковой или как производное. Подходящие производные получают, например, кватернизацией или сульфатизацией (сульфатированием).

В одном варианте выполнения настоящего изобретения алкоксилированный полипропиленимин (A) является полностью или частично кватернизованным или полностью или частично сульфатизированным (сульфатированным). Предпочтительно алкоксилированный полипропиленимин (А) является полностью или частично кватернизованным или полностью или частично сульфатизированным до степени как при кватернизации. Кватернизацию можно получить, например, взаимодействием алкоксилированного пропиленимина (А) с агентом алкилирования, таким как алкилгалогенид, содержащий от 1 до 4 атомов углерода, например, с метилбромидом, этилхлоридом, метилиодидом, н-бутилбромидом, изопропилбромидом, или с диалкилсульфатом, содержащим от 1 до 4 атомов углерода, в присутствии основания, особенно с диметилсульфатом или с диэтилсульфатом. Подходящими основаниями являются, например, NaOH и KOH.

Комбинированную кватернизацию и сульфатизацию можно достичь, например, сначала взаимодействием алкоксилированного полипропиленимина (A) с диалкилсульфатом, содержащим от 1 до 4 атомов углерода, в присутствии основания, затем окислением реакционной смеси, полученной в результате кватернизации, например, с помощью карбоновой кислоты, такой как, молочная кислота, или с помощью минеральной кислоты, такой как, фосфорная кислота, серная кислота или соляная кислота. В другом варианте выполнения кватернизированный алкоксилированный полипропиленимин (А) может взаимодействовать с сульфатизирующим реагентом, таким как, но не ограничиваясь ими, серная кислота (предпочтительно концентрацией от 75 до 100%, более предпочтительно концентрацией от 85 до 98%), олеум, SO3, хлорсерная кислота, хлорид сульфурила, амидосерная кислота и т.д. В случае выбора в качестве агента сульфатизации хлорида сульфурила хлорид можно удалить водным выделением после сульфатизации.

Составы согласно изобретению также содержат по меньшей мере одно неионное поверхностно-активное вещество (B), в контексте настоящего изобретения также упоминаемое как поверхностно-активное вещество (B). Поверхностно-активное вещество (B) выбирают из

(B1) алкилполигликозидов, также упоминаемых как алкилполигликозид (B1) или поверхностно-активное вещество (B1), и

(B2) алкоксилированных спиртов Гербе, содержащих от 8 до 14 атомов углерода, также упоминаемых как алкоксилированные спирты Гербе, содержащие от 8 до 14 атомов углерода (B2) или поверхностно-активное вещество (B2).

Алкилполигликозиды и способы из получения по существу известны.

В одном варианте выполнения настоящего изобретения алкилполигликозид (B1) выбирают из алкилполигликозидов общей формулы (I)

в которой составляющие определяются следующим образом:

R1 выбирают из алкилов, содержащих от 1 до 4 атомов углерода, разветвленных или предпочтительно линейных, например, метила, этила, н-пропила, н-бутила или предпочтительно водорода,

R2 представляет собой алкил, содержащий от 3 до 12 атомов углерода, разветвленный или предпочтительно линейный, например, н-пропил, н-бутил, изо-бутил, н-пентил, изо-амил, н-гексил, н-гептил, изо-гептил, н-октил, изо-октил, н-децил или н-додецил.

G1 выбирают из моносахаридов, содержащих от 4 до 6 атомов углерода,

x в интервале от 1,1 до 3.

В одном варианте выполнения настоящего изобретения R1 и R2 выбирают независимо друг от друга.

В предпочтительном варианте выполнения настоящего изобретения R1 и R2 выбирают независимо друг от друга. Например, если R1 выбирают из этила, тогда R2 выбирают из н-бутила. В дополнительном примере R1 выбирают из алкила, содержащего 3 атома углерода, линейного или разветвленного и R2 выбирают из алкила, содержащего 5 атомов углерода, линейного или разветвленного. В дополнительном примере R1 выбирают из алкила, содержащего 4 атома углерода, линейного или разветвленного и R2 выбирают из алкила, содержащего 6 атомов углерода, линейного или разветвленного.

В предпочтительном варианте выполнения настоящего изобретения R1 выбирают из водорода и R2 выбирают из линейного алкила, содержащего от 6 до 10 атомов углерода.

В другом особенно предпочтительном варианте выполнения настоящего изобретения R1 представляет собой н-С3Н7 и R2 представляет собой н-C5H11.

G1 выбирают из моносахаридов, предпочтительно из тетроз, пентоз и гексоз. Примерами тетроз являются эритроза, треоза и эритулоза. Примерами пентоз являются рибулоза, ксилулоза, рибоза, арабиноза, ксилоза и ликсоза. Примерами гексоз являются галактоза, манноза и глюкоза. Моносахариды могут быть синтетическими или производными или выделенными из природных продуктов, далее в данном