Выявление вязкости с использованием стартерного электродвигателя

Иллюстрации

Показать все

Изобретение относится к управлению двигателем с меняющимися вязкостями масла и их выявлению. Предусмотрены различные способы для логического вывода вязкости масла и/или индекса вязкости масла в двигателе внутреннего сгорания. В одном из примеров новый способ управления содержит проворачивание коленчатого вала двигателя во время режима запуска с электродвигателем, присоединенным к по существу постоянному источнику электрической мощности, логический вывод вязкости моторного масла по меньшей мере на основании температуры масла и числа оборотов двигателя у двигателя, в то время как проворачивается электродвигателем во время режима запуска, и внесение поправки в рабочий параметр двигателя на основании логически выведенной вязкости моторного масла. 3 н. и 17 з.п. ф-лы, 11 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Область техники раскрытия относится к управлению двигателем с меняющимися вязкостями масла и их выявлению.

УРОВЕНЬ ТЕХНИКИ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Вязкость масла оказывает непосредственное воздействие на трение в двигателе, которое, в свою очередь, оказывает влияние на выходной крутящий момент и число оборотов холостого хода двигателя. Поэтому, трение в двигателе должно оцениваться или предполагаться многими частями стратегии управления двигателем, включающей в себя регулирование числа оборотов холостого хода и электронное управление дросселем. Вязкость масла также оказывает влияние на давление масла, которое, в свою очередь, оказывает влияние на системы, подобные VCT (регулируемой установке фаз распределительного вала), которые полагаются на давление масла для работы.

Что касается традиционных моторных масел, вязкость значительно изменяется в качестве функции температуры (то есть, низкого индекса вязкости). Разрабатываются новые масла, которые имеют гораздо более высокий индекс вязкости, поэтому, их вязкость изменяется в гораздо меньшей степени с изменением температуры.

Некоторые стратегии управления двигателем включают в себя модификаторы температуры, которые помогают компенсировать изменения вязкости масла. Например, при низкой температуре, и более высокой вязкости, большее открывание дросселя (более интенсивный поток воздуха) используется для достижения требуемого числа оборотов холостого хода или крутящего момента на выходном валу двигателя.

Изобретатели в материалах настоящей заявки осознали, что эти модификаторы температуры могут вызывать нежелательную работу, если двигатель заправлен маслом, имеющим индекс вязкости, который является в значительной мере иным, чем рекомендация производителя. Например, модификаторы температуры, предназначенные для рекомендованного производителем масла с высоким индексом вязкости, не будут сильно изменять открывание дросселя на холостом ходу при низкой температуре. Если двигатель заправлен маслом с низким индексом вязкости, число оборотов холостого хода на низких температурах будет более низким, чем намечено, и двигатель может останавливаться.

Изобретатели решили эти проблемы посредством новой стратегии управления, которая выявляет реальные вязкость и/или индекс вязкости масла и управляет двигателем надлежащим образом. В одном из аспектов, новый способ управления содержит: проворачивание коленчатого вала двигателя во время режима запуска с электродвигателем, присоединенным к по существу постоянному источнику электрической мощности; логический вывод вязкости моторного масла по меньшей мере на основании температуры масла и числа оборотов двигателя у двигателя, в то время как проворачивается электродвигателем во время режима запуска; и внесение поправки в рабочий параметр двигателя на основании логически выведенной вязкости моторного масла. В более конкретном примере, рабочий параметр двигателя содержит положение дросселя по дроссельной заслонке, управляющей количеством воздуха, засасываемого в двигатель. И дроссельной заслонке дается команда в положение дросселя, основанное на требуемом числе оборотов (скорости) холостого хода двигателя, температуре масла и предполагаемой вязкости масла, и положение или угол дросселя подвергается поправке на логически выведенную вязкость масла. Таким образом, правильное число оборотов (скорость) холостого хода будет поддерживаться даже после значительного изменения вязкости после замены моторного масла. Таким образом, технический результат достигается этими действиями.

В еще одном аспекте раскрытия, изобретатели предусмотрели способ, который изучает индекс вязкости масла и управляет двигателем надлежащим образом. В частности, способ содержит: проворачивание коленчатого вала двигателя во время режима запуска с электродвигателем, присоединенным к по существу постоянному источнику электрической мощности; логический вывод вязкости моторного масла по меньшей мере на основании температуры масла и числа оборотов двигателя у двигателя, в то время как проворачивается электродвигателем во время режима запуска; после по меньшей мере двух логических выводов, изучение индекса вязкости моторного масла по логически выведенным вязкостям моторного масла и температурам; и внесение поправки в рабочий параметр двигателя на основании текущей температуры моторного масла и изученного индекса вязкости моторного масла.

В кроме того еще одном аспекте раскрытия, изобретатели предложили способ, который в особенности применим к транспортным средствам с гибридным приводом. В частности, способ содержит:

ускорение двигателя во время режима запуска электродвигателем до тех пор, пока двигатель не достигает предопределенного числа оборотов; логический вывод вязкости моторного масла по меньшей мере на основании температуры моторного масла и величины электрической мощности, используемой, чтобы двигатель достигал предопределенного числа оборотов во время режима запуска; и внесение поправки в рабочий параметр двигателя на основании упомянутой логически выведенной вязкости масла.

Вышеприведенные преимущества и другие преимущества и признаки настоящего описания будут без труда очевидны из последующего подробного описания, когда воспринимается в одиночку или в связи с прилагаемыми чертежами.

Должно быть понятно, что сущность изобретения, приведенная выше, предоставлена для знакомства с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Она не предполагается для идентификации ключевых или существенных признаков заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен реализациями, которые кладут конец каким-нибудь недостаткам, отмеченным выше или в любой части этого раскрытия.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 иллюстрирует примерный привод на ведущие колеса транспортного средства.

Фиг. 2 показывает структурную схему двигателя с турбонаддувом.

Фиг. 3 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода вязкости масла в двигателе по фиг. 2.

Фиг. 4 показывает блок-схему последовательности операций способа, иллюстрирующую еще один способ для логического вывода вязкости масла в двигателе по фиг. 2.

Фиг. 5 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода вязкости масла в приводе на ведущие колеса транспортного средства по фиг. 1.

Фиг. 6 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода индекса вязкости масла в двигателе по фиг. 2.

Фиг. 7 показывает примерный график вязкости-температуры масла, сформированный в соответствии с вариантом осуществления настоящего раскрытия.

Фиг. 8 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода вязкости масла в двигателе по фиг. 2 на основании времени пополнения поддона.

Фиг. 9 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода индекса вязкости масла в двигателе по фиг. 2 на основании времени пополнения поддона.

Фиг. 10 показывает блок-схему последовательности операций способа, иллюстрирующую способ для регулирования числа оборотов холостого хода двигателя по фиг. 2.

Фиг. 11 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода вязкости масла в транспортном средстве с гибридным приводом MHT.

ПОДРОБНОЕ ОПИСАНИЕ

Выходной крутящий момент и число оборотов холостого хода двигателя находятся под непосредственным влиянием вязкости масла, текущего через двигатель. Соответственно, работа двигателя может управляться более оптимальным образом, если известна вязкость масла. Некоторые типы моторных масел имеют вязкости, которые значительно меняются в качестве функции температуры. В некоторых подходах, работа двигателя модифицируется, чтобы компенсировать эти изменения вязкости. Например, положение дроссельной заслонки, регулирующей воздух, засасываемый в двигатель, может меняться по мере того, как происходят изменения вязкости масла. Однако, такие подходы могут не быть приспособлены для значительных изменений индекса вязкости, например, обусловленных заменами моторного масла. По существу, может происходить субоптимальная работа двигателя, например, давая в результате остановки двигателя.

Предусмотрены различные способы для логического вывода вязкости масла и/или индекса вязкости масла в двигателе внутреннего сгорания. В одном из примеров, новый способ управления содержит проворачивание коленчатого вала двигателя во время режима запуска с электродвигателем, присоединенным к по существу постоянному источнику электрической мощности, логический вывод вязкости моторного масла по меньшей мере на основании температуры масла и числа оборотов двигателя у двигателя, в то время как проворачивается электродвигателем во время режима запуска, и внесение поправки в рабочий параметр двигателя на основании логически выведенной вязкости моторного масла. Фиг. 1 иллюстрирует примерный привод на ведущие колеса транспортного средства. Фиг. 2 показывает структурную схему двигателя с турбонаддувом. Фиг. 3 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода вязкости масла в двигателе по фиг. 2. Фиг. 4 показывает блок-схему последовательности операций способа, иллюстрирующую еще один способ для логического вывода вязкости масла в двигателе по фиг. 2. Фиг. 5 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода вязкости масла в приводе на ведущие колеса транспортного средства по фиг. 1. Фиг. 6 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода индекса вязкости масла в двигателе по фиг. 2. Фиг. 7 показывает примерный график вязкости-температуры масла, сформированный в соответствии с вариантом осуществления настоящего раскрытия. Фиг. 8 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода вязкости масла в двигателе по фиг. 2 на основании времени пополнения поддона. Фиг. 9 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода индекса вязкости масла в двигателе по фиг. 2 на основании времени пополнения поддона. Фиг. 10 показывает блок-схему последовательности операций способа, иллюстрирующую способ для регулирования числа оборотов холостого хода двигателя по фиг. 2. Фиг. 11 показывает блок-схему последовательности операций способа, иллюстрирующую способ для логического вывода вязкости масла в транспортном средстве с гибридным приводом MHT. Двигатель по фиг. 2 также включает в себя контроллер, выполненный с возможностью выполнять способы, изображенные на фиг. 3-6 и 8-10.

Фиг. 1 - структурная схема привода 1 на ведущие колеса транспортного средства и транспортного средства 2. Привод 1 на ведущие колеса может быть механизирован двигателем 10. Двигатель 10 может запускаться с помощью DISG 3, встроенного в привод на ведущие колеса стартера/генератора, который, в этом конкретном примере, является типом транспортного средства с гибридным приводом. Кроме того, двигатель 10 может вырабатывать или настраивать крутящий момент посредством исполнительного механизма 4 крутящего момента, такого как одно или более из топливной форсунки, дросселя, распределительного вала, подъема клапанов, и т.д.

Крутящий момент на выходном валу двигателя может передаваться на входную сторону маховика 5 двойной массы. Число оборотов двигателя, а также положение и частота вращения входной стороны маховика двойной массы могут определяться посредством датчика 118 положения двигателя, подробнее описанного ниже со ссылкой на фиг. 2. Маховик 5 двойной массы может включать в себя пружины и отдельные массы (не показаны) для демпфирования возмущений крутящего момента привода на ведущие колеса. Выходная сторона маховика 5 двойной массы показана являющейся механически присоединенной к входной стороне муфты 7 расцепления. Муфта 7 расцепления может быть с электрическим или гидравлическим приводом и может использоваться для проворачивания коленчатого вала двигателя 10 во время горячих перезапусков, а в некоторых примерах, также при теплых перезапусках. Датчик 8 положения расположен на стороне муфты расцепления маховика 5 двойной массы для считывания выходного положения и частоты вращения маховика 5 двойной массы. Расположенная ниже по потоку сторона муфты 7 расцепления показана механически присоединенной к входному валу 9 DISG.

DISG 3 может приводиться в действие, чтобы выдавать крутящий момент на привод 1 на ведущие колеса или преобразовывать крутящий момент привода на ведущие колеса в электрическую энергию, которая должна накапливаться в устройстве 11 накопления энергии. DISG 3 может иметь более высокую несущую способность по крутящему моменту на выходном валу, чем электродвигатель 41, показанный на фиг. 2. Кроме того, DISG 3 непосредственно приводит в движение привод 1 на ведущие колеса или непосредственно приводится в движение приводом 1 на ведущие колеса. Нет никаких ремней, шестерен или цепей для присоединения DISG 3 к приводу 1 на ведущие колеса. Скорее, DISG 3 вращается на той же самой частоте, что и привод 1 на ведущие колеса. Устройство 11 накопления электрической энергии может быть аккумуляторной батареей, конденсатором или катушкой индуктивности. Расположенная ниже по потоку сторона DISG 3 механически присоединена к насосному колесу 13 гидротрансформатора 14 через вал 15. Расположенная выше по потоку сторона DISG 3 механически присоединена к муфте 7 расцепления. Гидротрансформатор 14 включает в себя турбину 16 для вывода крутящего момента на входной вал 17 трансмиссии. Входной вал 17 трансмиссии механически присоединяет гидротрансформатор 14 к автоматической трансмиссии 18. Гидротрансформатор 14 также включает в себя обходную блокировочную муфту 19 гидротрансформатора (TCC). Крутящий момент непосредственно передается с насосного колеса 13 на турбину 16, когда TCC блокирована. TCC электрически приводится в действие контроллером 12. В качестве альтернативы, TCC может блокироваться гидравлически. В одном из примеров, гидротрансформатор может указываться ссылкой как компонент трансмиссии. Частота вращения и положение турбины гидротрансформатора могут определяться посредством датчика 20 положения. В некоторых примерах, 25 и/или 20 могут быть датчиками крутящего момента или могут быть комбинированными датчиками положения и крутящего момента.

Когда блокировочная муфта 19 гидротрансформатора полностью расцеплена, гидротрансформатор 14 передает крутящий момент двигателя на автоматическую трансмиссию 18 посредством переноса текучей среды между турбиной 16 гидротрансформатора и насосным колесом 13 гидротрансформатора, тем самым, давая возможность умножения крутящего момента. В противоположность, когда муфта 19 блокировки гидротрансформатора полностью зацеплена, крутящий момент на выходе двигателя передается непосредственно через муфту гидротрансформатора на входной вал 17 трансмиссии 18. В качестве альтернативы, блокировочная муфта 19 гидротрансформатора может зацепляться частично, тем самым, давая возможность настраиваться величине крутящего момента, передаваемого непосредственно на трансмиссию. Контроллер 12 может быть выполнен с возможностью настраивать величину крутящего момента, передаваемого гидротрансформатором 19, посредством настройки блокировочной муфты гидротрансформатора в ответ на различные условия эксплуатации двигателя или на основании основанного на водителе запроса режима работы двигателя.

Автоматическая трансмиссия 18 включает в себя муфты 28 передач (например, передачи 1-N, где N - целое число между 2-25) и муфту 29 переднего хода. Муфты 28 передач и муфта 29 переднего хода могут избирательно вводиться в зацепление для продвижения транспортного средства. Крутящий момент на выходе из автоматической трансмиссии 18, в свою очередь, может передаваться на колеса 31, чтобы приводить транспортное средство в движение, через выходной вал 32. Более точно, автоматическая трансмиссия 18 может передавать входной вращающий момент на входном валу 17 в ответ на состояние перемещения транспортного средства перед передачей выходного вращающего момента на колеса 31.

Кроме того, сила трения может прикладываться к колесам 31 посредством приведения в действие колесных тормозов 33. В одном из примеров, колесные тормоза 33 могут приводиться в действие в ответ на нажимание водителем его ступней на тормозную педаль (не показана). В других примерах, контроллер 12 или контроллер, связанный с контроллером 12, может включать колесные тормоза 33. Таким же образом, сила трения может снижаться в отношении колес 31 посредством отведения колесных тормозов 33 в ответ на отпускание водителем своей ступни с тормозной педали. Кроме того, тормоза транспортного средства могут прикладывать силу трения к колесам 31 посредством контроллера 12 в качестве части процедуры автоматического останова.

Механический масляный насос 34 может находиться в сообщении по текучей среде с автоматической трансмиссией 18, чтобы выдавать гидравлическое давление для приведения в действие различных муфт, таких как муфта 29 переднего хода, муфта 28 передач и/или блокировочная муфта 19 гидротрансформатора. Механический масляный насос 34, например, может приводиться в действие в соответствии с гидротрансформатором 14, и может приводиться в движение вращением входного вала двигателя или DISG через входной вал 15. Таким образом, гидравлическое давление, вырабатываемое в механическом масляном насосе 34, может повышаться по мере того, как увеличиваются число оборотов двигателя и/или частота вращения DISG, и может снижаться по мере того, как уменьшается число оборотов двигателя и/или частота вращения DISG.

Контроллер 12 может быть выполнен с возможностью принимать входные сигналы с двигателя 10, как подробнее показано на фиг. 2, и соответствующим образом управлять выходным крутящим моментом двигателя и/или работой гидротрансформатора, трансмиссии, DISG, муфт и/или тормозов. В качестве одного из примеров, крутящий момент на выходном валу двигателя может управляться посредством настройки комбинации установки момента зажигания, длительности импульса топлива, установки момента импульса топлива и/или заряда воздуха посредством управления открыванием дросселя и/или установкой фаз клапанного распределения, подъемом клапана и давлением наддува для двигателей с нагнетателем и турбонагнетателем. В случае дизельного двигателя, контроллер 12 может управлять крутящим моментом на выходном валу двигателя, управляя комбинацией длительности импульса, установки момента импульса топлива и заряда воздуха. Во всех случаях, управление двигателем может выполняться на основе цилиндр за цилиндром, чтобы регулировать крутящий момент на выходном валу двигателя. Контроллер 12 также может управлять выходным крутящим моментом и выработкой электрической энергии из DISG посредством настройки тока, втекающего в и из обмоток возбуждения и/или обмоток якоря DISG, как известно в данной области техники.

Когда условия выключения холостого хода удовлетворены, контроллер 42 может инициировать остановку двигателя посредством отключения топлива и зажигания у двигателя. Однако, двигатель может продолжать вращаться в некоторых примерах. Кроме того, для поддержания величины кручения в трансмиссии, контроллер 12 может заземлять вращающиеся элементы трансмиссии 18 в картер 35 трансмиссии и тем самым, на раму транспортного средства. В частности, контроллер 12 может вводить в зацепление одну или более муфт трансмиссии, таких как муфта 29 переднего хода, и блокировать зацепленную муфту(ы) трансмиссии относительно картера 35 трансмиссии и транспортного средства. Давление муфт трансмиссии может меняться (например, повышаться), чтобы настраивать состояние зацепления муфты трансмиссии и выдавать требуемую величину кручения трансмиссии. Когда удовлетворены условия запуска, и/или водитель транспортного средства желает пустить в ход транспортное средство, контроллер 12 может повторно активировать двигатель, возобновляя сгорание в цилиндрах.

Давление колесных тормозов также может настраиваться во время отключения двигателя на основании давления муфты трансмиссии, чтобы содействовать удерживания трансмиссии наряду с уменьшением крутящего момента, передаваемого через колеса. Более точно, посредством применения колесных тормозов 33 наряду с блокировкой одной или более зацепленных муфт трансмиссии, противодействующие силы могут прикладываться к трансмиссии и, следовательно, к приводу на ведущие колеса, тем самым, сохраняя промежуточную передачу в активном зацеплении, и потенциальную энергию кручения в зубчатой передаче трансмиссии, не двигая колеса. В одном из примеров, давление колесных тормозов может настраиваться, чтобы координировать применение колесных тормозов с блокировкой зацепленной муфты трансмиссии во время остановки двигателя. По существу, посредством настройки давления колесных тормозов и давления муфты, может настраиваться величина кручения, удерживаемая в трансмиссии, когда двигатель остановлен.

Фиг. 2 - принципиальная схема, показывающая примерный вариант осуществления двигателя 10, который может быть включен в силовую установку автомобиля, включающую в себя, но не в качестве ограничения, привод 1 на ведущие колеса транспортного средства, показанный на фиг. 1. Двигатель 10 показан с четырьмя цилиндрами 30. Однако, другие количества цилиндров могут использоваться в соответствии с данным раскрытием. Двигатель 10 может управляться, по меньшей мере частично, системой управления, включающей в себя контроллер 12, и входными сигналами от водителя 132 транспортного средства через устройство 130 ввода. В этом примере, устройство 130 ввода включает в себя педаль акселератора и датчик 134 положения педали для формирования пропорционального сигнала PP положения педали. Каждая камера 30 сгорания (например, цилиндр) двигателя 10 может включать в себя стенки камеры сгорания с поршнем (не показан), расположенными в них. Поршни могут быть присоединены к коленчатому валу 40, так чтобы возвратно-поступательное движение поршня преобразовывалось во вращательное движение коленчатого вала. Коленчатый вал 40 может быть присоединен к по меньшей мере одному ведущему колесу транспортного средства через промежуточную систему трансмиссии (не показана). Кроме того, электродвигатель 41 (например, стартер) показан в качестве являющегося присоединенным к коленчатому валу 40 через маховик 43, чтобы давать возможность операции запуска двигателя 10. Электрическая мощность может выдаваться в электродвигатель 41 через аккумуляторную батарею 45 транспортного средства. Аккумуляторная батарея 45 транспортного средства может давать возможность проворачивания коленчатого вала двигателя 10, а также других операций, в том числе, искрового зажигания и освещения транспортного средства, и может иметь различные пригодные типы, в том числе, но не в качестве ограничения, 12-вольтной свинцово-кислотной аккумуляторной батареи. Аккумуляторная батарея 45 транспортного средства может обеспечивать (например, с отклонением менее чем в 5%) постоянный источник электрической мощности для электродвигателя 41 и других компонентов, в зависимости от ее состояния заряда (SOC).

Камеры 30 сгорания могут принимать всасываемый воздух из впускного коллектора 44 через впускной канал 42 и могут выпускать отработавшие газы через выпускной канал 48. Впускной коллектор 44 и выпускной коллектор 46 могут избирательно сообщаться с камерой 30 сгорания через соответственные впускные клапаны и выпускные клапаны (не показаны). В некоторых вариантах осуществления, камера 30 сгорания может включать в себя два или более впускных клапанов и/или два или более выпускных клапанов.

Топливные форсунки 50 показаны присоединенными непосредственно к камере 30 сгорания для впрыска топлива непосредственно в нее пропорционально длительности импульса сигнала FPW, принятого из контроллера 12. Таким образом, топливная форсунка 50 обеспечивает то, что известно в качестве непосредственного впрыска топлива в камеру 30 сгорания. Топливная форсунка, например, может быть установлена сбоку камеры сгорания или сверху камеры сгорания. Топливо может подаваться в топливную форсунку 50 топливной системой (не показана), включающей в себя топливный бак, топливный насос и направляющую-распределитель для топлива. В некоторых вариантах осуществления, камеры 30 сгорания, в качестве альтернативы или дополнительно, могут включать в себя топливную форсунку, скомпонованную во впускном коллекторе 44, в конфигурации, которая предусматривает то, что известно как оконный впрыск топлива во впускное окно выше по потоку от каждой камеры 30 сгорания.

Впускной канал 42 может включать в себя дроссель 21 и 23, имеющий дроссельные заслонки 22 и 24, соответственно. В этом конкретном примере, положение дроссельных заслонок 22 и 24 может регулироваться контроллером 12 посредством сигналов, выдаваемых на привод, включенный в состав дросселями 21 и 23. В одном из примеров, приводы могут быть электроприводами (например, электродвигателями), конфигурацией, которая обычно указывается ссылкой как электронный регулятор дросселя (ETC). Таким образом, заслонки 21 и 23 могут приводиться в действие для варьирования всасываемого воздуха, подаваемого в камеру 30 сгорания, между другими цилиндрами двигателя. Примерный способ для управления положением дросселя описан ниже со ссылкой на фиг. 10. Положение дроссельных заслонок 22 и 24 может выдаваться в контроллер 12 сигналом TP положения дросселя. Впускной канал 42 дополнительно может включать в себя датчик 120 массового расхода воздуха, датчик 122 давления воздуха в коллекторе и датчик 124 давления на входе дросселя для выдачи соответственных сигналов MAF (массового расхода воздуха), MAP (давления воздуха в коллекторе) в контроллер 12.

Выпускной канал 48 может принимать отработавшие газы из цилиндров 30. Датчик 128 отработавших газов показан присоединенным к выпускному каналу 48 выше по потоку от турбины 62 и устройства 78 снижения токсичности выбросов. Датчик 128 может быть выбран из числа различных пригодных датчиков для выдачи показания топливо/воздушного соотношения в отработавших газах, например, таких как линейный кислородный датчик или UEGO (универсальный или широкодиапазонный датчик кислорода в отработавших газах), двухрежимный кислородный датчик или EGO, датчик NOx, HC, или CO. Устройство 78 снижения токсичности выбросов может быть трехкомпонентным каталитическим нейтрализатором (TWC), уловителем NOx, различными другими устройствами снижения токсичности выбросов или их комбинациями.

Температура отработавших газов может измеряться одним или более датчиков температуры (не показаны), расположенных в выпускном канале 48. В качестве альтернативы, температура отработавших газов может логически выводиться на основании условий эксплуатации двигателя, таких как число оборотов, нагрузка, топливо-воздушное соотношение (AFR), запаздывание искрового зажигания, и т.д.

Контроллер 12 показан на фиг. 2 в качестве микрокомпьютера, включающего в себя микропроцессорный блок 102, порты 104 ввода/вывода, электронный запоминающий носитель для исполняемых программ и калибровочных значений, показанный в качестве микросхемы 112 постоянного запоминающего устройства в этом конкретном примере, оперативное запоминающее устройство 108, дежурную память 110 и шину данных. Контроллер 12 может принимать различные сигналы с датчиков, присоединенных к двигателю 10, в дополнение к тем сигналам, которые обсуждены ранее, в том числе, измерение всасываемого массового расхода воздуха (MAF) с датчика 120 массового расхода воздуха; температуру охлаждающей жидкости двигателя (ECT) с датчика 112 температуры, схематически показанного в одном месте в пределах двигателя 10; сигнал профильного считывания зажигания (PIP) с датчика 118 на эффекте Холла (или другого типа), присоединенного к коленчатому валу 40; положение дросселя (TP) с датчика положения дросселя, как обсуждено; и сигнал абсолютного давления в коллекторе, MAP, с датчика 122, как обсуждено. Сигнал числа оборотов двигателя, RPM, может формироваться контроллером 12 из сигнала PIP. Сигнал давления в коллекторе, MAP, с датчика давления в коллекторе может использоваться для выдачи указания разряжения или давления во впускном коллекторе 44. Отметим, что могут использоваться различные комбинации вышеприведенных датчиков, такие как датчик MAF без датчика MAP, или наоборот. Во время стехиометрической работы, датчик MAP может давать показание крутящего момента двигателя. Кроме того, этот датчик, наряду с выявленным числом оборотов двигателя, может давать оценку заряда (включающего в себя воздух), введенного в цилиндр. В одном из примеров, датчик 118, который также используется в качестве датчика числа оборотов двигателя, может вырабатывать предопределенное количество равноразнесенных импульсов каждый оборот коленчатого вала 40. В некоторых примерах, постоянное запоминающее устройство 106 запоминающего носителя может быть запрограммировано машинно-читаемыми данными, представляющими команды, исполняемые процессором 102 для выполнения способов, описанных ниже, а также вариантов, которые предвосхищены, но специально не перечислены.

Двигатель 10 дополнительно может включать в себя компрессионное устройство, такое как турбонагнетатель или нагнетатель, включающий в себя по меньшей мере компрессор 60, скомпонованный вдоль впускного коллектора 44. Что касается турбонагнетателя, компрессор 60 может по меньшей мере частично приводиться в действие турбиной 62, например, через вал или другое соединительное устройство. Турбина 62 может быть скомпонована вдоль выпускного канала 48 и сообщаться с отработавшими газами, текущими через него. Различные компоновки могут быть предусмотрены для осуществления привода компрессора. Что касается нагнетателя, компрессор 60 может по меньшей мере частично приводиться в движение двигателем и/или электрической машиной и может не включать в себя турбину. Таким образом, величина сжатия, обеспечиваемого для одного или более цилиндров двигателя с помощью турбонагнетателя или нагнетателя, может регулироваться контроллером 12. В некоторых случаях, турбина 62, например, может приводить в движение электрогенератор 64 для выдачи энергии в аккумуляторную батарею 66 через приводной механизм 68 турбонагнетателя. Энергия из аккумуляторной батареи 66 затем может использоваться для приведения в движение компрессора 60 с помощью электродвигателя 70. Кроме того, датчик 123 может быть размещен во впускном коллекторе 44 для выдачи сигнала BOOST (НАДДУВ) в контроллер 12.

Кроме того, выпускной канал 48 может включать в себя перепускную заслонку 26 для отработавших газов для отвода отработавших газов от турбины 62. В некоторых вариантах осуществления, перепускная заслонка 26 для отработавших газов может быть многоступенной перепускной заслонкой для отработавших газов, таким как двухступенная перепускная заслонка для отработавших газов с первой ступенью, выполненной с возможностью регулировать давление наддува, и второй ступенью, выполненной с возможностью увеличивать тепловой поток в устройство 78 снижения токсичности выбросов. Перепускная заслонка 26 для отработавших газов может приводиться в действие с помощью привода 150, который может быть электрическим приводом или пневматическим приводом. Впускной канал 42 может включать в себя перепускной клапан 27 компрессора, выполненный с возможностью отводить всасываемый воздух вокруг компрессора 60. Перепускная заслонка 26 для отработавших газов и/или перепускной клапан 27 компрессора могут управляться контроллером 12 через исполнительные механизмы (например, привод 150), например, чтобы открываться, когда требуется более низкое давление наддува.

Впускной канал 42 может дополнительно включать в себя охладитель 80 наддувочного воздуха (CAC) (например, промежуточный охладитель) для понижения температуры нагнетаемых турбонагнетателем или нагнетателем всасываемых газов. В некоторых вариантах осуществления, охладитель 80 наддувочного воздуха может быть воздушно-воздушным теплообменником. В других вариантах осуществления охладитель 80 наддувочного воздуха может быть воздушно-жидкостным теплообменником.

Кроме того, в раскрытых вариантах осуществления, система рециркуляции отработавших газов (EGR) может направлять требуемую порцию отработавших газов из выпускного канала 48 во впускной канал 42 через канал 140 EGR. Величина EGR, выдаваемой во впускной канал 42, может регулироваться контроллером 12 посредством клапана 142 EGR. Кроме того, датчик EGR (не показан) может быть скомпонован внутри канала EGR и может выдавать показание одного или более из давления, температуры, концентрации отработавших газов. В качестве альтернативы, EGR может управляться посредством расчетного значения, основанного на сигналах с датчика MAF (выше по потоку), MAP (впускного коллектора), MAT (температуры газа в коллекторе) и датчика частоты вращения коленчатого вала. Кроме того, EGR может управляться на основании датчика O2 отработавших газов и/или кислородного датчика на впуске (впускного коллектора). В некоторых условиях, система EGR может использоваться для регулирования температуры смеси воздуха и топлива в пределах камеры сгорания. Фиг. 2 показывает систему EGR высокого давления, где EGR направляется из выше по потоку от турбины турбонагнетателя в ниже по потоку от компрессора турбонагнетателя. В других вариантах осуществления, двигатель, дополнительно или в качестве альтернативы, может включать в себя систему EGR низкого давления, где EGR направляется из ниже по потоку от турбины турбонагнетателя в выше по потоку от компрессора турбонагнетателя.

Фиг. 2 также схематически иллюстрирует поток масла через двигатель 10 для уменьшения износа компонентов двигателя и содействия рассеянию тепла, происходящего от трения. В этом примере, масло накачивается из масляного поддона 160 масляным насосом 162 для смазки множества движущихся частей в двигателе 10, таких как коленчатый вал 40 и его шатуны, а также подшипники в шатунах и пальцы поршней, расположенных в цилиндрах 30. Масло также может использоваться для смазки между кольцами поршней и цилиндров 30. Толщина и трение этой масляной пленки являются зависящими от температуры и свойств масла, таких как вязкость масла. После достижения движущихся частей двигателя 10, масло оттекает обратно в поддон 160 через множество дренажных магистралей 164. Масло может циркулировать на всем протяжении двигателя через множество каналов (не показаны).

Масляный поддон 160 включает в себя датчик 166 уровня масла, выполненный с возможностью выводить указания уровня масла в масляном поддоне в контроллер 12. Выходной сигнал с датчика 166 уровня масла может отслеживаться по времени и использоваться для контроля скорости, с которой масло оттекает из двигателя 10 в масляный поддон 160 вслед за глушением двигателя. Скорости оттока масла, полученные таким образом, могут использоваться для оценки вязкости масла в двигателе 10, как подробнее описано ниже.

Далее, с обращением к фиг. 3, показана блок-схема последовательности операций способа, иллюстрирующая примерный способ 300 для логического вывода вязкости масла в двигателе внутреннего сгорания. Способ 300, например, может храниться в качестве машинно-читаемых команд в ПЗУ 106 контроллера 12 на фиг. 2. Хотя способ 300 описан со ссылкой на двигатель 10 по фиг. 2, будет понятно, что способ 300 может выполняться для других двигателей внутреннего сгорания.

На 302 способа 300, определяется, был ли двигатель недействующим в течение по меньшей мере пороговой длительности. Двигатель может считаться недействующим на всем протяжении длительности, при которой он не работает - например, не сжигает топливо и не вращается. Вращение двигателя,