Способ работы двигателя (варианты)

Иллюстрации

Показать все

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания. Предложены системы и способы отделения более высокооктанового топлива от топливной смеси. В одном из примеров более высокооктановое топливо отделяется от более низкооктанового топлива, хранящегося в нескольких топливных баках, путем образования паров более высокооктанового топлива и обеспечивается возможность конденсации указанных паров в топливном баке, содержащем более высокооктановое топливо, причем предотвращается обратное поступление паров высокооктанового топлива в баки с низкооктановым топливом. Таким образом, паразитные потери в двигателе не повышаются необходимостью отделять более высокооктановое топливо от более низкооктанового топлива второй раз, а также достигается более эффективное использование паров топлива. Подход применим к топливным системам, которые включают в себя многочисленные топливные баки 230, 232, 234, хранящие разные типы топлива, причем в топливной системе могут быть применены один или несколько бачков 302, 306, 316 для улавливания и хранения паров топлива из указанных топливных баков. 3 н. и 16 з.п. ф-лы, 4 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее описание относится к системе и способам уменьшения паразитных потерь, которые могут быть связаны с разделением топливной смеси на ее составляющие виды топлива. Способы могут быть особенно полезны для двигателей, которые работают на более чем одном типе топлива.

УРОВЕНЬ ТЕХНИКИ

Двигатель может питаться разными типами топлива в разных условиях работы двигателя для улучшения рабочих характеристик и/или экономии топлива двигателя. Например, двигатель может питаться бензином через первую топливную форсунку и этиловым спиртом через вторую топливную форсунку. Бензин может быть единственным топливом, подаваемым в двигатель при более низких нагрузках двигателя, где может уменьшаться вероятность детонации в двигателе. По мере того, как нагрузка двигателя возрастает, этиловый спирт начинает подаваться в двигатель в больших количествах. Этиловый спирт также подается в качестве большей доли топлива, выдаваемого в двигатель, так чтобы могла понижаться вероятность детонации в двигателе. Однако владельцы транспортных средств могут неохотно заправлять транспортное средство двумя типами топлива для получения выгод работы двигателя на двух различных и отдельных видах топлива.

Один из способов подачи двух разных типов топлива в двигатель посредством дозаправки одиночного топливного бака состоит в том, чтобы отделять виды топлива из смеси видов топлива посредством избирательно проницаемой мембраны. Топливная смесь, содержащая два или более типов топлива, может выдерживаться по одну сторону от мембраны разделения топлива. Насос повышает давление топливной смеси для увеличения количества более высокооктанового топлива, которое может отделяться или извлекаться из топливной смеси. После того как виды топлива разделены, виды топлива могут храниться в отдельных топливных баках. Однако работа насоса для разделения двух видов топлива повышает паразитные потери в транспортном средстве, а более высокооктановые и более низкооктановые виды топлива могут повторно объединяться через систему обращения паров топлива.

Два отдельных вида топлива, хранимых в отдельных баках, могут повторно объединяться посредством суточного нагревания и остывания топливной системы. В US 2007/295307 (МПК F02M 69/46, опубл. 27.12.2007) описан способ обращения с парами в топливных баках из многочисленных топливных баков. Однако в системе, описанной в US 2007/295307, пары топлива более высокооктановых видов топлива могут конденсироваться в топливных баках, содержащих в себе более низкооктановое топливо. Поэтому дополнительная паразитная энергия может быть необходима, чтобы еще раз отделять более высокооктановое топливо от более низкооктанового топлива, так чтобы рабочие характеристики и эффективность использования топлива двигателя могли достигаться посредством двух разных типов топлива.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Авторы в материалах настоящего описания выявили вышеуказанные недостатки и предложили способ работы двигателя, включающий в себя этапы, на которых:

отделяют пары более высокооктанового топлива от первого более низкооктанового топлива;

накапливают отделенные пары топлива посредством химически чистого угля первого бачка накопления паров топлива;

ограничивают отделенные пары топлива от поступления во второй топливный бак, содержащий первое более низкооктановое топливо, при этом не ограничивают отделенные пары топлива от поступления в первый топливный бак, содержащий более высокооктановое топливо, причем ограничение включает в себя этап, на котором закрывают клапан для паров топлива в ответ на уменьшение давления в топливном баке, хранящем первое более низкооктановое топливо, и остановленный двигатель, и

подают пары топлива в химически чистый уголь второго бачка накопления паров топлива только посредством третьего топливного бака, выпускают пары топлива из химически чистого угля второго бачка накопления паров топлива только к двигателю или первому топливному баку и накапливают пары топлива из первого бачка накопления паров топлива и второго бачка накопления паров топлива в химически чистый уголь третьего бачка накопления паров топлива.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором предотвращают продувку паров топлива из химически чистого угля первого бачка накопления паров только при подаче низкооктанового топлива к двигателю посредством топливной форсунки на основании скорости вращения и нагрузки двигателя.

В одном из вариантов предложен способ, дополнительно включающий в себя этапы, на которых ограничивают пары топлива из химически чистого угля второго бачка накопления паров топлива от поступления в третий топливный бак, при этом не ограничивают пары топлива из химически чистого угля второго бачка накопления паров топлива от поступления в первый топливный бак, содержащий более высокооктановое топливо.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором переносят пары топлива из первого бачка накопления паров топлива и второго бачка накопления паров топлива в первый топливный бак.

В одном из вариантов предложен способ, в котором отделение паров более высокооктанового топлива от первого более низкооктанового топлива осуществляют в ответ на повышение температуры топлива.

В одном из вариантов предложен способ, в котором повышение температуры топлива обусловлено теплотой, передаваемой от выхлопных газов двигателя.

В одном из вариантов предложен способ, дополнительно включающий в себя этапы, на которых конденсируют отделенные пары топлива в жидкое топливо в первом топливном баке и впрыскивают жидкое топливо в двигатель.

В одном из дополнительных аспектов предложен способ работы двигателя, включающий в себя этапы, на которых:

отделяют пары топлива от первого более низкооктанового топлива посредством изменений температуры топлива;

накапливают отделенные пары топлива посредством химически чистого угля первого бачка накопления паров топлива; и

ограничивают отделенные пары топлива от поступления во второй топливный бак, содержащий первое более низкооктановое топливо, при этом не ограничивают отделенные пары топлива от поступления в первый топливный бак, содержащий более высокооктановое топливо, в ответ на остывание паров топлива, причем обеспечивают поступление паров топлива в первый бачок накопления паров топлива только через второй топливный бак и выпуск паров топлива из первого бачка накопления паров топлива и протекание только к двигателю или первому топливному баку, при этом ограничение отделенных паров топлива от поступления во второй топливный бак, содержащий первое более низкооктановое топливо, включает в себя этап, на котором закрывают клапан для паров топлива в ответ на уменьшение давления во втором топливном баке, и

накапливают пары топлива из третьего топливного бака, содержащего второе более низкооктановое топливо, в химически чистом угле второго бачка накопления паров топлива и накапливают топливо из первого и второго бачков накопления паров топлива в химически чистом угле третьего бачка накопления паров топлива.

В одном из вариантов предложен способ, в котором пары топлива, поступающие во второй бачок накопления паров топлива, поступают только через третий топливный бак, причем пары топлива выходят из второго бачка накопления паров топлива и протекают только в двигатель или первый топливный бак.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором накапливают пары топлива из третьего топливного бака в первом бачке накопления паров топлива.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором ограничивают пары топлива из третьего топливного бака от поступления во второй топливный бак.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором ограничивают пары топлива в первом бачке накопления паров топлива от поступления в третий топливный бак.

В одном из вариантов предложен способ, при котором двигатель не вращается и изменения температуры топлива обусловлены суточным нагреванием и остыванием.

В одном из вариантов предложен способ, в котором изменения температуры топлива происходят вследствие управляемого переноса тепла от хладагента.

В одном из дополнительных аспектов предложен способ работы двигателя, включающий в себя этапы, на которых:

отделяют пары топлива от более низкооктанового топлива;

накапливают отделенные пары топлива в химически чистом угле первого бачка накопления паров топлива посредством того, что открывают клапан для паров топлива в ответ на увеличение давления в топливном баке;

ограничивают отделенные пары топлива от поступления во второй топливный бак, содержащий более низкооктановое топливо, при этом не ограничивают отделенные пары топлива от поступления в первый топливный бак, содержащий более высокооктановое топливо; причем ограничение отделенных паров топлива от поступления во второй топливный бак включает в себя этап, на котором закрывают клапан для паров топлива в ответ на уменьшение давления в топливном баке, и

продувают отделенные пары топлива из химически чистого угля первого бачка накопления паров топлива в ответ на требования к октановому числу моторного топлива, при этом предотвращают продувку отделенных паров топлива из химически чистого угля первого бачка накопления паров топлива при подаче только более низкооктанового топлива в двигатель посредством топливной форсунки на основании скорости вращения и нагрузки двигателя, и дополнительно включающий в себя этапы, на которых отделяют пары топлива от более высокооктанового топлива, накапливают пары топлива от более высокооктанового топлива в химически чистом угле второго бачка накопления паров топлива и подают пары топлива из химически чистого угля второго бачка накопления паров топлива и пары топлива из химически чистого угля первого бачка накопления паров топлива в двигатель.

В одном из вариантов предложен способ, в котором требования к октановому числу моторного топлива основаны на скорости вращения и нагрузке двигателя.

В одном из вариантов предложен способ, в котором требования к октановому числу моторного топлива повышают в ответ на повышение нагрузки двигателя.

В одном из вариантов предложен способ, в котором отделенные пары топлива продувают из химически чистого угля первого бачка накопления паров топлива, только когда более высокооктановое топливо подают в двигатель на основании скорости вращения и нагрузки двигателя.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором подают пары топлива из химически чистого угля третьего бачка накопления паров топлива в двигатель.

Посредством отделения более высокооктанового топлива от более низкооктановой топливной смеси и предотвращения повторного объединения более высокооктанового топлива с более низкооктановой топливной смесью, может быть возможным уменьшать паразитные потери, связанные с отделением более высокооктанового топлива от более низкооктановой топливной смеси. Дополнительно, может быть возможным отделять более высокооктановое топливо от более низкооктановой топливной смеси посредством суточного нагревания без вынуждения повторно объединять высокооктановое топливо с более низкооктановой топливной смесью во время суточного остывания, так чтобы более высокооктановое топливо могло неограниченно отделяться от более низкооктановой топливной смеси. Следовательно, может быть возможным использовать суточное нагревание и остывание для уменьшения паразитных потерь, которые могут сопровождать разделение двух типов топлива.

Настоящее описание может давать несколько преимуществ. Например, подход может уменьшать паразитные потери двигателя, которые снижают экономию моторного топлива. Дополнительно, подход может обеспечивать более эффективное использование паров топлива. Кроме того еще, подход может применяться к широкому диапазону конфигураций топливной системы.

Вышеприведенные преимущества и другие преимущества и признаки настоящего описания будут без труда очевидны из последующего подробного описания, когда воспринимаются по отдельности или в связи с прилагаемыми чертежами.

Следует понимать, что раскрытие изобретения, приведенное выше, представлено для ознакомления с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Не предполагается идентифицировать ключевые или существенные признаки заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен вариантами осуществления, которые исключают какие-либо недостатки, отмеченные выше или в любой части этого описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Преимущества, описанные в материалах настоящего описания, будут полнее понятны по прочтению примера варианта осуществления, указанного в материалах настоящего описания как описание предпочтительных вариантов осуществления изобретения, когда воспринимаются по отдельности или со ссылкой на чертежи, на которых:

фиг. 1 - схематичное изображение двигателя;

фиг. 2 и 3 показывают примерные топливные системы транспортного средства; и

фиг. 4 показывает примерный способ работы топливной системы транспортного средства.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Настоящее описание имеет отношение к управлению парами топлива транспортного средства. Пары топлива могут использоваться в двигателе, как показанный на фиг. 1. Двигатель может питаться топливом из одного или более топливных баков, как показано в топливных системах по фиг. 2 и 3. Составляющие виды топлива могут отделяться от топливной смеси, содержащей два или более видов топлива, посредством суточного нагревания и остывания топливных систем транспортного средства. Топливные системы транспортного средства могут быть выполнены с возможностью предоставлять парам топлива с более высоким октановым числом конденсироваться только в топливном баке для более высокооктанового топлива, так чтобы могла уменьшаться вероятность непреднамеренного смешивания топлива. Способ по фиг. 4 осуществляет работу топливной системы транспортного средства некоторым образом, который уменьшает вероятность смешивания видов топлива посредством секции парообразующих выбросов топливной системы транспортного средства.

Со ссылкой на фиг. 1, двигатель 10 внутреннего сгорания, содержащий множество цилиндров, один цилиндр которого показан на фиг. 1, управляется электронным контроллером 12 двигателя. Электрические соединения между контроллером 12 и различными датчиками и исполнительными механизмами указаны пунктирными линиями.

Двигатель 10 включает в себя камеру 30 сгорания и стенки 32 цилиндра с поршнем 36, расположенным в них и присоединенным к коленчатому валу 40. Маховик 97 и зубчатый венец 99 присоединены к коленчатому валу 40. Стартер 96 включает в себя ведущий вал 98 зубчатой передачи и ведущую шестерню 95. Ведущий вал 98 зубчатой передачи может избирательно выдвигать ведущую шестерню 95 для зацепления с зубчатым венцом 99. Стартер 96 может быть установлен непосредственно спереди двигателя или сзади двигателя. В некоторых примерах стартер 96 может избирательно подавать крутящий момент на коленчатый вал 40 через ремень или цепь. В одном из примеров стартер 96 находится в базовом состоянии, когда не зацеплен с коленчатым валом двигателя. Камера 30 сгорания показана сообщающейся с впускным коллектором 44 и выпускным коллектором 48 через соответствующий впускной клапан 52 и выпускной клапан 54. Каждый впускной клапан и выпускной клапан может приводиться в действие кулачком 51 впускного клапана и кулачком 53 выпускного клапана. Положение кулачка 51 впускного клапана может определяться датчиком 55 кулачка впускного клапана. Положение кулачка 53 выпускного клапана может определяться датчиком 57 кулачка выпускного клапана. Кулачок 51 впускного клапана и кулачок 53 выпускного клапана могут перемещаться относительно коленчатого вала 40.

Топливная форсунка 66 показана расположенной для впрыска топлива непосредственно в цилиндр 30, что известно специалистам в данной области техники как непосредственный впрыск. В качестве альтернативы, топливо может впрыскиваться во впускное окно, что известно специалистам в данной области техники как оконный впрыск. Топливная форсунка 66 выдает жидкое топливо пропорционально длительности импульса сигнала из контроллера 12. Топливо подается в топливную форсунку 66 топливной системой 175, подробнее показанной на фиг. 2 и 3. В дополнение, впускной коллектор 44 показан сообщающимся с возможным электронным дросселем 62, который регулирует положение дроссельной заслонки 64 для регулирования потока воздуха из воздухозаборника 42 во впускной коллектор 44. В одном из примеров может использоваться система непосредственного впрыска низкого давления, где давление топлива может подниматься до приблизительно 20-30 бар. В качестве альтернативы, двухкаскадная топливная система высокого давления может использоваться для формирования более высоких давлений топлива. В некоторых вариантах осуществления дроссель 62 и дроссельная заслонка 64 могут быть расположены между впускным клапаном 52 и впускным коллектором 44, так что дроссель 62 является дросселем окна.

Система 88 зажигания без распределителя выдает искру зажигания в камеру 30 сгорания через свечу 92 зажигания в ответ на действие контроллера 12. Универсальный датчик 126 кислорода выхлопных газов (UEGO) показан присоединенным к выпускному коллектору 48 выше по потоку от каталитического нейтрализатора 70 выхлопных газов. В качестве альтернативы, двухрежимный датчик кислорода выхлопных газов может использоваться вместо датчика 126 UEGO.

Нейтрализатор 70 выхлопных газов в одном из примеров включает в себя многочисленные брикеты катализатора. В еще одном примере могут использоваться многочисленные устройства снижения токсичности выхлопных газов, каждое с многочисленными брикетами. Нейтрализатор 70 выхлопных газов в одном из примеров может быть катализатором трехкомпонентного типа.

Контроллер 12 показан на фиг. 1 в качестве традиционного микрокомпьютера, включающего в себя: микропроцессорный блок 102, порты 104 ввода/вывода, постоянное запоминающее устройство 106 (например, долговременная память), оперативное запоминающее устройство 108, энергонезависимую память 110 и традиционную шину данных. Контроллер 12 показан принимающим различные сигналы с датчиков, присоединенных к двигателю 10, в дополнение к тем сигналам, которые обсуждены ранее, в том числе: температуру хладагента двигателя (ECT) с датчика 112 температуры, присоединенного к патрубку 114 охлаждения; датчика 134 положения, присоединенного к педали 130 акселератора для считывания силы, приложенной водителем 132; измерение давления во впускном коллекторе двигателя (MAP) с датчика 122 давления, присоединенного к впускному коллектору 44; датчика положения двигателя с датчика 118 на эффекте Холла, считывающего положение коленчатого вала 40; измерение массы воздуха, поступающего в двигатель, с датчика 120; положение тормозной педали с датчика 154 положения тормозной педали, когда водитель 132 нажимает тормозную педаль 150; измерение температуры окружающей среды посредством датчика 137 температуры; и измерение положения дросселя с датчика 58. Барометрическое давление также может считываться (датчик не показан) для обработки контроллером 12. В предпочтительном аспекте настоящего описания датчик 118 положения двигателя вырабатывает заданное количество равномерно разнесенных импульсов каждый оборот коленчатого вала, по которому может определяться скорость вращения двигателя (RPM, в оборотах в минуту).

В некоторых примерах двигатель может быть присоединен к системе электродвигателя/аккумуляторной батареи в транспортном средстве с гибридным приводом. Кроме того, в некоторых примерах, могут применяться другие конфигурации двигателя, например, дизельный двигатель.

Во время работы каждый цилиндр в двигателе 10 типично подвергается четырехтактному циклу: цикл включает в себя такт впуска, такт сжатия, такт расширения и такт выпуска. В течение такта впуска, обычно, выпускной клапан 54 закрывается, а впускной клапан 52 открывается. Воздух вовлекается в камеру 30 сгорания через впускной коллектор 44, поршень 36 перемещается к дну цилиндра, чтобы увеличивать объем внутри камеры 30 сгорания. Положение, в котором поршень 36 находится около дна цилиндра и в конце своего хода (например, когда камера 30 сгорания находится при своем наибольшем объеме), типично указывается специалистами в данной области техники ссылкой как нижняя мертвая точка (НМТ, BDC). Во время такта сжатия впускной клапан 52 и выпускной клапан 54 закрыты. Поршень 36 перемещается к головке блока цилиндров, чтобы сжимать воздух внутри камеры 30 сгорания. Точка, в которой поршень 36 находится в конце своего хода и самой близкой к головке блока цилиндров (например, когда камера 30 сгорания находится при своем наименьшем объеме), типично указывается специалистами в данной области техники в качестве верхней мертвой точки (ВМТ, TDC). В процессе, в дальнейшем указываемом ссылкой как впрыск, топливо вводится в камеру сгорания. В процессе, в дальнейшем указываемом ссылкой как воспламенение, впрыснутое топливо воспламеняется известным средством воспламенения, таким как свеча 92 зажигания, приводя к сгоранию. Во время такта расширения расширяющиеся газы толкают поршень 36 обратно в НМТ. Коленчатый вал 40 преобразует перемещение поршня в крутящий момент вращающегося вала. В заключение, во время такта выпуска, выпускной клапан 54 открывается, чтобы выпускать подвергнутую сгоранию топливно-воздушную смесь в выпускной коллектор 48, и поршень возвращается в ВМТ. Отметим, что вышеприведенное показано просто в качестве примера, и что установки момента открывания и/или закрывания впускного и выпускного клапанов могут меняться так, чтобы давать положительные или отрицательное перекрытие клапанов, позднее закрывание впускного клапана, или различные другие примеры.

Далее, со ссылкой на фиг. 2, подробно показана примерная топливная система 175. Топливная система по фиг. 2 может подавать топливо в двигатель 10, подробно показанный на фиг. 1. Система по фиг. 2 может работать согласно способу по фиг. 4. Компоненты топливной системы и трубопроводы для текучей среды показаны в качестве сплошных линий, а электрические соединения показаны в качестве пунктирных линий.

Топливная система 175 включает в себя бачок 202 накопления паров топлива для накопления паров топлива. Топливная система 175 включает в себя химически чистый уголь 203 для накопления и отделения паров топлива. Пары топлива, накопленные в бачке 202 накопления паров топлива, могут иметь более высокое октановое число, чем жидкое топливо, хранимое в одном или более топливных баков, которые подают пары топлива в бачок 202 накопления паров топлива. Показан бачок 202 накопления паров топлива, включающий в себя атмосферное вентиляционное отверстие 205, которое предоставляет воздуху возможность втекать и вытекать из бачка 202 накопления паров топлива. Пары топлива могут подаваться в бачок 202 накопления паров топлива через топливные баки 230, 232 и 234. Хотя показаны три топливных бака, альтернативные примеры могут включать в себя меньшее количество или дополнительные топливные баки, не выходя из объема или замысла этого описания. Пары топлива могут продуваться через клапан 204 продувки, который предоставляет возможность сообщения по текучей среде между бачком 202 накопления паров топлива и впускным коллектором 44 двигателя.

Двигатель 10 включает в себя первую направляющую-распределитель 220 для топлива, которая подает топливо в топливную форсунку(и) 66 непосредственного впрыска. Двигатель 10 также включает в себя вторую направляющую-распределитель 221 для топлива, которая подает топливо в топливную форсунку(и) 67 оконного впрыска. Пары топлива могут засасываться во впускной коллектор 44, когда давление во впускном коллекторе ниже атмосферного давления. В некоторых примерах хладагент двигателя или выхлопные газы из выпускного коллектора 48 могут переносить тепловую энергию в текучую среду посредством теплообменника 275. Текучая среда может направляться в топливные баки 230, 232 и 234 через трубопровод 240 и насос 250. Нагретая текучая среда может повышать температуру топлива 231, 233 и 235 для повышения скорости отделения паров из соответствующих видов топлива.

В одном из примеров топливный бак 230 является топливным баком, который содержит в себе более высокооктановое топливо. Топливный бак 232 содержит в себе топливо со средним октановым числом, которое имеет октановое число между топливом, хранимым в топливном баке 230, и топливом, хранимым в топливном баке 234. Топливный бак 234 содержит в себе более низкооктановое топливо, которое имеет октановое число, которое меньше, чем у видов топлива, хранимых в топливных баках 230 и 232. Топливный бак 230 подает топливо 231 в направляющую-распределитель 220 для топлива и форсунку(и) 66 непосредственного впрыска посредством топливного насоса 252. Топливный бак 232 подает топливо 233 в направляющую-распределитель 220 для топлива и форсунку(и) 66 непосредственного впрыска посредством топливного насоса 253. Топливный бак 234 подает топливо 235 в направляющую-распределитель 221 для топлива и форсунку(и) 67 оконного впрыска посредством топливного насоса 254.

Пары топлива из топливного бака 230 могут направляться в бачок 202 накопления паров топлива из топливного бака 230 через клапан 206 для паров топлива. Пары топлива из топливного бака 232 могут направляться в бачок 202 накопления паров топлива из топливного бака 232 через клапан 208 для паров топлива. Пары топлива из топливного бака 234 могут направляться в бачок 202 накопления паров топлива из топливного бака 234 через клапан 210 для паров топлива.

Контроллер 12 может принимать входные сигналы с датчиков, описанных на фиг. 1, а также датчиков 241. В одном из примеров датчики 241 могут быть датчиками температуры. В качестве альтернативы, датчики 241 могут быть датчиками давления. Контроллер 12 также вводит в действие и выводит из работы клапаны 206, 208 и 210 для паров топлива в ответ на условия работы топливной системы и двигателя. Контроллер 12 также вводит в действие и выводит из работы клапан 204 продувки паров топлива в ответ на условия работы топливной системы и двигателя. Дополнительно, контроллер 12 избирательно приводит в действие насос 250 для увеличения выработки паров в топливном баке.

В одном из примеров система по фиг. 2 работает согласно способу по фиг. 4 посредством исполняемых команд, хранимых в постоянной памяти контроллера 12. В то время как двигатель 10 является работающим, пары топлива из топливных баков 230, 232 и 234 могут накапливаться в бачке 202 накопления паров топлива посредством открывания клапанов 206, 208 и 210 для паров топлива. Клапаны 206, 208 и 210 для паров топлива могут открываться в ответ на температуры внутри топливных баков 230, 232 и 234, превышающие отдельные пороговые температуры, которые основаны на типе топлива, хранимом в соответствующих топливных баках. В качестве альтернативы, клапаны 206, 232 и 234 для паров топлива могут открываться в ответ на давления внутри топливных баков 230, 232 и 234, превышающие отдельные пороговые давления, которые основаны на типе топлива, хранимом в соответствующих топливных баках.

Пары топлива из топливных баков 230, 232 и 234 выталкивают воздух из атмосферного вентиляционного отверстия 205 и накапливаются химически чистым углем 203, когда температура и/или давление в топливных баках 230, 232 и 234 являются возрастающими. Если двигатель 10 работает, в то время как пары направляются в бачок 202 накопления паров топлива, клапан 204 продувки паров топлива может открываться, так чтобы пары топлива втягивались в и сжигались в двигателе 10. Если двигатель 10 не работает или если клапан 204 продувки паров топлива закрыт, клапаны 206, 208 и 210 для паров топлива могут открываться, если температура и/или давление в топливных баках 230, 232 и 234 являются возрастающими, так что пары топлива могут накапливаться в бачке 202 накопления паров топлива.

С другой стороны, если двигатель 10 не работает, или если клапан 204 продувки паров топлива закрыт, при этом температура и/или давление в топливных баках 230, 232 и 234 являются убывающими, клапаны 208 и 210 для паров топлива могут закрываться, так что пары топлива, накопленные в бачке 202 накопления паров топлива, могут выпускаться в топливный бак 230. Таким образом, пары более высокооктанового топлива, которые отделились из топлива 233 и топлива 235, могут конденсироваться в и накапливаться в топливном баке 230. Пары топлива из топлива 233 и 235 могут иметь более высокие октановые числа, чем топливо 233 и 235. Таким образом, пары более высокооктанового топлива, которые могут вырабатываться посредством суточных изменений температуры в топливной системе, могут восстанавливаться и храниться в топливном баке, который содержит в себе более высокооктановое топливо, так что компоненты более высокооктанового топлива остаются отделенными от более низкооктановых видов топлива во время нагревания и остывания топливной системы. Пары более высокооктанового топлива, которые конденсируются в топливном баке 230, который хранит более высокооктановое топливо, также могут впрыскиваться в двигатель 10 через топливную форсунку(и) 66.

Кроме того, пары топлива могут поступать в бачок 202 накопления паров топлива только из баков 230, 232 и 234. Пары топлива могут выходить из бачка 202 накопления паров топлива и течь только в двигатель посредством клапана 204 продувки и разрежения в двигателе или в топливный бак 230 посредством суточного остывания топлива в топливном баке 230, когда открыт клапан 206 для паров. Пары топлива из бачка 202 для паров топлива предохраняются от поступления в топливные баки 232 и 234 во время суточного остывания посредством закрывания клапанов 208 и 210 для паров. Закрывание клапанов 208 и 210 для паров также предотвращает поступление паров топлива из топливного бака 232 в топливный бак 234 и, наоборот, во время суточного остывания топлива в топливной системе.

Далее, со ссылкой на фиг. 3, подробно показана альтернативная примерная топливная система 175. Топливная система по фиг. 3 может подавать топливо в двигатель 10, подробно показанный на фиг. 1. Система по фиг. 3 может работать согласно способу по фиг. 4. Компоненты топливной системы и трубопроводы для текучей среды, которые предоставляют возможность сообщения по текучей среде, показаны в качестве сплошных линий, при этом электрические соединения показаны в качестве пунктирных линий. Устройства и компоненты топливной системы, показанные на фиг. 3, которые имеют такие же числовые идентификаторы, как устройства и компоненты, показанные на фиг. 2, эквивалентны и работают, как описано на фиг. 2. Например, топливный бак 230 хранит более высокооктановое топливо, чем топливные баки 232 и 234. Поэтому описания компонентов топливной системы, которые описаны на фиг. 2, опущены ради краткости.

В этом примере топливная система 175 включает в себя три бачка 302, 306 и 316 накопления паров топлива; однако, количество бачков накопления паров топлива может увеличиваться или уменьшаться, если количество топливных баков увеличивается или уменьшается, как указанно в системе по фиг. 2. Каждый бачок накопления паров топлива включает в себя химически чистый уголь 303 для накопления паров топлива. Первый бачок 302 накопления паров топлива включает в себя атмосферное вентиляционное отверстие 305. Дополнительно, бачки 306 и 316 накопления паров топлива включают в себя соответствующие атмосферные вентиляционные отверстия 307 и 317. Второй бачок 306 накопления паров топлива может находиться в сообщении по текучей среде с топливным баком 230 через трубопровод 384, когда открыт клапан 310 для паров топлива. Третий бачок 316 накопления паров топлива также может находиться в сообщении по текучей среде с топливным баком 230 через трубопровод 383, когда открыт клапан 320 для паров топлива. Пары топлива, вырабатываемые в топливном баке 232, могут направляться в бачок 306 накопления паров топлива через трубопровод 381, когда клапан 312 для паров топлива находится в открытом состоянии, чтобы предоставлять возможность сообщения по текучей среде между топливным баком 232 и бачком 306 накопления паров топлива. Подобным образом, пары топлива, вырабатываемые в топливном баке 234, могут направляться в бачок 316 накопления паров топлива через трубопровод 382, когда клапан 322 для паров топлива находится в открытом состоянии, чтобы предоставлять возможность сообщения по текучей среде между топливным баком 234 и бачком 316 накопления паров топлива. Первый бачок 302 накопления паров топлива показан в непосредственном сообщении по текучей среде с топливным баком 230 через трубопровод 388.

Бачок 302 накопления паров топлива может продуваться от паров топлива посредством открывания клапана 304 продувки, чтобы предоставлять возможность сообщения по текучей среде между бачком 302 накопления паров топлива и впускным коллектором 44 двигателя через трубопровод 385. Подобным образом, бачок 306 накопления паров топлива может продуваться от паров топлива посредством открывания клапана 308 продувки, чтобы предоставлять возможность сообщения по текучей среде между бачком 306 накопления паров топлива и впускным коллектором 44 двигателя через трубопровод 386. Также бачок 316 накопления паров топлива может продуваться от паров топлива посредством открывания клапана 318 продувки, чтобы предоставлять возможность сообщения по текучей среде между бачком 316 накопления паров топлива и впускным коллектором 44 двигателя через трубопровод 387.

В одном из примеров система по фиг. 3 работает согласно способу по фиг. 4 посредством исполняемых команд, хранимых в постоянной памяти контроллера 12. В то время как двигатель 10 является работающим, пары топлива из топливного бака 230 могут накапливаться в бачке 302 накопления паров топлива. Пары топлива из топливного бака 232 могут накапливаться в бачке 306 накопления паров топлива, а пары топлива из топливного бака 234 могут накапливаться в бачке 316 накопления паров топлива. Пары топлива могут накапливаться в бачках 302, 306 и 316 накопления паров топлива, когда двигатель является работающим в условиях, где пары топлива не принимаются двигателем (например, во время перекрытия топлива при замедлении). Когда пары топлива могут сжигаться двигателем, клапаны 304, 308 и/или 318 продувки паров могут открываться, чтобы предоставлять парам топлива возможность течь во впускной коллектор 44 двигателя из соответствующих бачков 302, 306 и 316 накопления паров топлива.

В одном из примеров парам топлива из одного или более бачков 302, 306 и 316 накопления паров топлива может быть предоставлена возможность течь в двигатель 10 только во время условий, где более высокооктановое топливо подается в двигатель в ответ на условия скорости вращения и нагрузки двигателя, или когда определена присутствующей детонация в двигателе. Однако, если определено, что один или более из бачков 302, 306 и 316 накопили более чем заданную пороговую вместимость накопления углеводородов (например, 85% вместимости накопления углеводородов бачка), клапан продувки, соответствующий бачку накопления паров топлива, при пороговой вместимости накопления углеводородов может открываться, чтобы предоставлять возможность продуваться бачку накопления паров топлива. Например, если бачок 306 накопления паров топлива определен накопившим количество углеводородов выше заданной пороговой вместимости накопления углеводородов, клапан 308 продувки паров может открываться для уменьшения количества накопленных паров топлива в бачке 306 накопления паров топлива. Кроме того, клапан 308 продувки паров может открываться, когда скорость вращения и нагрузка двигателя находятся в диапазоне, где более высокооктановое топливо подается в двигатель, чтобы ограничивать вероятность детонации в двигателе.

Если двигатель 10 выключен (например, не вращается) или не пр