Способ сварки внахлест, нахлесточное соединение, способ изготовления нахлесточного соединения и деталь автомобиля
Иллюстрации
Показать всеИзобретение относится к способу сварки внахлест, нахлесточному сварному соединению, способу изготовления нахлесточного сварного соединения и детали автомобиля, которая содержит нахлесточное соединение. Способ сварки внахлест включает наложение один на другой множества стальных листов и зажигание лазера для образования по существу круглого лазерного сварного шва (1). В процессе сварки лазер перемещают по прямой линии через внешний край по существу круглого лазерного сварного шва (1) так, чтобы образовать упрочненную часть (8) в стальных листах и таким образом подавлять возникновение трещин, возникающих вследствие образования размягченной части зоны термического влияния. 4 н. и 6 з.п. ф-лы, 13 ил.
Реферат
Область техники
Настоящее изобретение относится к сварке внахлест множества стальных листов, нахлесточному соединению, образованному при помощи этой сварки внахлест, и способу его изготовления, а также к детали автомобиля, имеющей это нахлесточное соединение сварным швом.
Уровень техники
Вплоть до настоящего времени, в соответствии с их функцией и средой эксплуатации, в конструкциях, образуемых с использованием множества элементов из стальных листов, для соединения таких элементов, наложенных один на другой, используется точечная контактная сварка. Образование точечных сварных швов, имеющих сварные точки, для образования сваренного внахлест элемента внахлест, состоящего из множества элементов из стальных листов, является общей практикой. Например, в кузове автомобиля, имеющем несущую конструкцию, обычной практикой является наложение высокопрочных стальных листов один на другой и соединение фланцев (наложенных частей) при помощи точечной сварки для улучшения безопасности при ударе и эффективности расходования топлива.
В последние годы, при сборке кузовов легковых автомобилей вместо обычно используемой точечной контактной сварки стала использоваться дистанционная лазерная сварка. В дистанционной лазерной сварке вводится гальванизированное зеркало, чтобы обеспечить возможность свободы при сварке в пределах заранее определенной трехмерной площади. При дистанционной лазерной сварке гальванизированное зеркало, прикрепленное к переднему концу манипулятора робота, можно быстро перемещать между точками сварки, в результате чего можно значительно сократить время сварочного цикла. Кроме того, при дистанционной лазерной сварке отсутствует шунтирование сварочного тока существующими сварными швами, как в случае точечной контактной сварки, так что возможно сократить шаг между швами. Благодаря многопозиционной сварке также улучшается жесткость кузова легкового автомобиля.
Вместо точечной контактной сварки используется дистанционная лазерная сварка, поэтому обычно используется по существу круглое сварное соединение, а именно, круглой формы, овальной формы, круглой кольцевой формы, овальной кольцевой формы, С-образной формы, вытянутой С-образной формы, формы в виде множества круглых колец или другой сварочной формы.
С другой стороны, в качестве материала, образующего кузов легкового автомобиля, в последние годы все больше используется высокопрочный стальной лист. Также стали использоваться холоднопрессованные детали и горячепрессованные детали (горячештампованные детали), из высокопрочных стальных листов с классом прочности на растяжение 1500 МПа, либо 1180 МПа или выше. По этой причине в будущем предполагается применение дистанционной лазерной сварки для высокопрочного стального листа с классом прочности 1180 МПа или выше.
Однако такой высокопрочный стальной лист имеет структуру металла, состоящую, главным образом, из упрочненного мартенсита, в результате чего в окрестностях лазерного сварного шва происходит отпуск, образуется отпущенный мартенсит, и твердость падает. Например, в случае высокопрочного стального листа класса 1500 МПа, твердость материала матрицы составляет 460 HV, но твердость зоны термического воздействия вокруг лазерного сварного шва (далее называемой ЗТВ) локально падает до 300 HV, и эта часть размягчается. Эта локально размягченная часть называется "размягченной частью ЗТВ".
Такая размягченная часть ЗТВ иногда становится точкой начала разрушения стального листа, образующего кузов легкового автомобиля, во время удара транспортного средства. Например, в случае средней стойки, полученной путем сварки стального листа класса 1500 МПа к фланцу как усиливающего элемента при помощи лазерной сварки, при испытании на боковое столкновение, иногда трещина начинается от размягченной части ЗТВ фланца, и средняя стойка разрушается.
Явление разрушения, начинающегося от размягченной части ЗТВ, образованной при такой лазерной сварке, в значительной степени возникает в высокопрочном стальном листе, с прочностью на растяжение более 1180 МПа. В частности, в значительной степени это проявляется в лазерном сварном шве при сварке высокопрочного стального листа с прочностью на растяжение 1180 МПа или более, упрочненная структура которого образована с помощью установки для непрерывного отжига, имеющей функцию охлаждения в воде, или высокопрочного стального листа, образованного путем горячей штамповки (горячепрессованного). Дистанционная лазерная сварка обеспечивает возможность укоротить шаг между сварными швами, в результате чего на фланце образуется большое число сварных швов. Однако при образовании большого числа лазерных сварных швов также образуется большое число размягченных частей ЗТВ, в результате чего повышается риск разрушения.
До настоящего времени не сообщалось о мерах противодействия разрушению из-за размягченной части ЗТВ, образованной в высокопрочном стальном листе. Однако есть информация о том, что аналогичное явление также возникает в случае точечной контактной сварки.
В Непатентном документе 1 описана термическая обработка части передней стойки, образованной с помощью горячей штамповки, в которой имеется риск разрушения при ударе, во время горячей штамповки, чтобы снизить прочность материала матрицы, и, таким образом, предотвращать размягчение ЗТВ, возникающее в результате точечной контактной сварки. Благодаря этому, возможно предотвратить разрушение конструктивного элемента, начинающееся в размягченной части ЗТВ.
В Непатентном документе 2 описан способ отпуска фланцевой части средней стойки, образованной с помощью горячей штамповки, при помощи высокочастотного нагрева, чтобы понизить прочность материала матрицы, в результате чего размягчение ЗТВ не возникает даже при выполнении точечной контактной сварки, и предотвратить таким образом разрушение конструктивного элемента, которое начинается в размягченной части ЗТВ.
Кроме того, в качестве близкого аналога, например, в Патентном документе 1 описан способ комбинирования лазерной сварки и точечной сварки для ослабления напряжений в сварном шве и подавления замедленного разрушения при сварке высокопрочных стальных листов с образованием конструктивного элемента для автомобиля. В Патентном документе 2 описан метод лазерной сварки металлического материала для образования непрерывного сварного шва вдоль сварных соединений, полученных точечной сваркой, как метод улучшения соединения с помощью сварных швов. Кроме того, в Патентном документе 3 описан метод лазерной сварки для сварного шва, полученного точечной сваркой, или его окрестностей, как метод улучшения прочности сварного шва.
Список литературы
Патентная литература
Патентный документ 1: Опубликованный японский патент № 2008-178905А
Патентный документ 2: Опубликованный японский патент № 2009-241116А
Патентный документ 3: Опубликованный японский патент № 2010-264503А
Непатентная литература
Непатентный документ 1: Tailored Properties for Press-Hardened Body Parts (Оптимизация свойств деталей кузова, твердость которых повышена при обработке давлением), Dr. Camilla Wastlund, Automotive Circle International, Insight edition, 2011, Ultra-high strength steels in car body lightweight design - current challenges and future potential (Стали со сверхвысокой прочностью в конструкции кузова автомобиля с небольшим весом - текущие проблемы и будущие возможности).
Непатентный документ 2: Tempering of hot-formed steel using induction heating (Отпуск горячеформованной стали с использованием индукционного нагрева), Olof Hedegard, Martin Aslund, Diploma Work № 54/2011, Chalmers University of Technology, Gothenburg, Sweden (URL: http://publications.lib.chalmers.se/records/fulltext/144308.pdf).
Сущность изобретения
Решение задачи
При использовании способа регулирования прочности каждой доли передней стойки, описанного в Непатентном документе 1, в передней стойке неизбежно образуются части низкой прочности в относительно широком диапазоне передней стойки. По этой причине нельзя в достаточной степени воспользоваться эффектом придания высокой прочности при горячей штамповке, и эффект снижения веса также становится ограниченным. В дополнение к этому, этим способом между упрочненными областями и неупрочненными областями существуют широкие переходные области, прочностные характеристики становятся неравномерными, и ударные свойства передней стойки могут стать нестабильными.
Способом отпуска с помощью высокочастотного нагрева после горячей штамповки, описанного в Непатентном документе 2, термическая деформация, вызванная высокочастотным нагревом, может вызвать деформацию средней стойки и снижению точности размеров. Это не ограничивается средней стойкой. Точность размеров также должна гарантироваться для конструктивных элементов, расположенных вокруг дверного отверстия, например, передних стоек и продольных лаг крыши, так что зазоры, например, с дверными панелями, по всему периметру этих панелей становятся равномерными. Если точность размеров конструктивных элементов, расположенных вокруг дверных отверстий, падает, больше нельзя гарантировать качественный внешний вид транспортного средства. По этой причине трудно применить метод, описанный в Непатентном документе 2, для конструктивных элементов вокруг дверных отверстий.
Отметим, что можно разработать такую конструкцию средней стойки и других элементов, чтобы размягченные части ЗТВ точечных сварных швов не достигали зоны разрушающей деформации во время удара. Однако такая конструкция приведет к увеличению толщины стальных листов, образующих конструктивные элементы, а также к добавлению усиливающих элементов, и поэтому увеличит стоимость и вес кузова легкового автомобиля.
Способ, описанный в Патентном документе 1, представляет собой метод предотвращения замедленного разрушения из-за водородного охрупчивания, возникающего сразу после непрерывной лазерной сварки для соединения наложенных один на другой стальных листов. Водородное охрупчивание вызывается остаточными напряжением или деформацией, сопровождающими сварку, с их концентрацией на переднем и заднем концах лазерного сварного шва, и с концентрацией в этих точках водорода, растворенного в стали. Поэтому, чтобы предотвратить деформацию стальных листов и снизить остаточные напряжения и деформацию, предлагается сваривать листы угловыми швами и т.п. в положениях, запланированных для лазерной сварки, чтобы подавлять деформацию стальных листов. То есть этот метод относится к подавлению деформации стальных листов, возникающей при непрерывной лазерной сварке, и борьбе с замедленным разрушением, вызванным водородным охрупчиванием, и не относится к замене точечной контактной сварки и борьбе с разрушением из-за наличия размягченных частей ЗТВ вокруг по существу круглых лазерных сварных швов, для соединения наложенных один на другой стальных листов.
В способе, описанном в Патентном документе 2, перед выполнением непрерывной лазерной сварки также выполняется точечная контактная сварка, таким образом, служащая средством закрепления для соединения наложенных одна на другую частей. То есть этот метод также представляет собой метод подавления деформации стальных листов, возникающей при непрерывной лазерной сварке, и не относится к замене точечной контактной сварки и борьбе с разрушением, вызванным размягченными частями ЗТВ, окружающими по существу круглые лазерные сварные швы для соединения наложенных один на другой стальных листов.
В способе, описанном в Патентом документе 3, последовательно выполняют точечную сварку и лазерную сварку, так что даже если точечный сварной шов нельзя образовать между толстым стальным листом, примыкающим к стальному листу поверхностной стороны, стальным листом поверхностной стороны из двух или более стальных листов, лазерная сварка обеспечивает возможность сваривать стальной лист поверхностной стороны и этот толстый стальной лист для надежного сваривания внахлест. То есть этот способ также не относится к замене точечной контактной сварки и борьбе с разрушением, вызванным размягченными частями ЗТВ вокруг по существу круглых лазерных сварных швов для наложения один на другой стальных листов.
Итак, предполагается применять лазерную сварку для замены точечной контактной сварки при соединении наложенных один на другой стальных листов, включающих в себя высокопрочный стальной лист (в частности, стальной лист с прочностью класса 1180 МПа или выше). Несмотря на это, не предложено эффективных мер для борьбы с разрушением, возникающим в области размягченных частей ЗТВ. Настоящее изобретение сделано с учетом такой ситуации, и его целью является предотвращение разрушения из-за трещин, возникающих в размягченных частях ЗТВ, даже при выполнении лазерной сварки для соединения множества наложенных один на другой стальных листов, включающих в себя высокопрочный стальной лист. В частности, его крайне необходимой целью является разработка эффективных мер, препятствующих разрушению при небольшой деформации во время применения стоек и других ударопрочных конструктивных элементов автомобилей. Ниже в этом описании лазерная сварка для соединения наложенных один на другой стальных листов, будет называться "лазерной сваркой внахлест", а сваренные части будут называться "лазерными сварными нахлесточными швами ". Кроме того, в этом описании, если в частности не указано иное, стальной лист с прочностью класса 1180 МПа или выше будет называться "высокопрочным стальным листом".
Решение задачи
Авторы настоящего изобретения провели глубокие исследования для решения указанных выше задач и в результате обнаружили, что за счет зажигания лазерного луча, пересекающего по существу круглый лазерный сварной шов внахлест, до наружной стороны размягченной части ЗТВ, и образования повторно упрочненной части, возможно предотвращать концентрацию деформаций в размягченной части ЗТВ и предотвращать разрушение в размягченной части ЗТВ. Авторы настоящего изобретения провели дополнительные исследования и обнаружили следующее.
(а) Они обнаружили, что при зажигании лазера для повторного нагрева и упрочнения размягченной части ЗТВ, образованной при помощи лазерной сварке внахлест, возможно повысить твердость уже размягченной части, устранить размягченную часть и, таким образом, предотвращать разрушение, начинающееся от этой размягченной части ЗТВ. Они также обнаружили, что достаточно упрочнить размягченную часть ЗТВ с помощью повторного нагрева с помощью зажигания лазера. То есть возможно использовать лазер для плавления и кристаллизации этой части, но плавление и кристаллизация не являются необходимыми. В этом описании упрочнение с помощью отжига лазером будет называться "лазерным упрочнением", и упрочненная часть будет называться "частью, упрочненной лазером".
(б) Они обнаружили, что упрочнение с помощью повторного нагрева должно выполняться, по существу, по прямой линии в направлении главного напряжения. В этом описании направление максимального напряжения будет называться " направлением главного напряжения". При этом деформация будет называться "основной деформацией". Обычно ударопрочный элемент, в котором в качестве элемента усиления используется высокопрочный стальной лист, характеризуется направлением, в котором прикладывается ударная нагрузка. В стойке и других элементах автомобиля направление по длине фланца становится направлением главного напряжения. Поэтому достаточно принять меры для предотвращения возникновению трещин в этом направлении.
(в) Они обнаружили, что размягченная часть также образуется вокруг части, упрочненной лазером, и что задний конец (конец завершения) становится точкой начала новой трещины, но кривизна этого заднего конца меньше, чем у размягченной части ЗТВ лазерного сварного нахлесточного шва, так что можно в значительной степени подавлять возникновение трещин. То есть после того, как лазер зажигают в направлении главного напряжения по прямой линии, часть, становящаяся точкой начала трещины, становится размягченной частью, образованной у заднего конца части, упрочненной лазером. Авторы настоящего изобретения провели эксперименты и подтвердили, что с наружной стороны части, упрочненной лазером, образуется размягченная часть шириной примерно 1 мм. То есть радиус кривизны размягченной части у заднего конца зависит от ширины прохода лазером. По сравнению с эквивалентным диаметром окружности (радиусом кривизны) для лазерного сварного шва внахлест по существу круглой формы радиус кривизны заднего конца части, упрочненной лазером (ширина прохода лазером) является небольшим. Длина дуги при некотором центральном угле пропорциональна радиусу кривизны. Поэтому длина дуги на заднем конце части, упрочненной лазером, если брать центральный угол, равный центральному углу той части размягченной части ЗТВ, твердость которой восстановлена, благодаря лазерной сварке внахлест, гораздо короче по сравнению с длиной этой части размягченной части ЗТВ, твердость которой восстановлена. По этой причине, за счет выполнения лазерного упрочнения по прямой линии в направлении главного напряжения возможно в значительной степени подавлять возникновение трещины. Обычно диаметр лазерного сварного шва внахлест, выполненного, по существу, круглой формы, составляет примерно от 2 до 15 мм. С другой стороны, ширина прохода лазером при повторном нагреве (такая же, как диаметр луча) составляет примерно от 0,15 до 0,9 мм. Поэтому если ширина прохода лазером во время повторного нагрева меньше диаметра лазерного сварного нахлесточного соединения (радиуса кривизны той части, через которую проходит упрочненная часть), возможно получить эффект предотвращения возникновения трещин. В частности, если ширина прохода лазером составляет 50% или меньше от диаметра лазерного сварного шва внахлест (радиуса кривизны), можно в значительной степени подавлять возникновение трещин из-за размягченной части. Более предпочтительно, ширина должна составлять 40% или менее, еще более предпочтительно - 30% или менее. С другой стороны, если сделать ширину прохода лазером слишком узкой, эффект предотвращения возникновения трещин в размягченной части ЗТВ падает. По этой причине ширина прохода лазером должна составлять, по меньшей мере, 10% диаметра лазерного сварного нахлесточного шва (радиуса кривизны части, через которую проходит упрочненная часть). Более предпочтительно, она должна составлять 20% или более.
(г) Наиболее размягченная часть в лазерном сварном шве внахлест образована на расстоянии примерно 1-2 мм на наружной стороне расплавленной части. По этой причине длину части, упрочненной лазером, необходимо сделать равной 3 мм или более от внешнего края лазерного сварного шва внахлест. Предпочтительно длину части, упрочненной лазером, можно сделать равной 5 мм или более от внешнего края лазерного сварного шва внахлест, если возможно - 6 мм или более.
(д) Температура повторного нагрева при действии зажигания лазером (температура упрочнения) может быть равна точке А3 стальных листов или быть выше. При зажигании лазера для нагрева, если прекратить операцию, листы быстро охлаждаются, поэтому после достижения температуры точки А3 или более возникает упрочнение. Кроме того, не возникает проблем даже в случае однократного расплавления материала. Если он расплавился, происходит разбавление химических компонентов в собранных стальных листах, но напряжения концентрируются в наиболее размягченной части, образованной по внешней периферии, и остается проблема в виде образования точки начала возникновения трещины.
(е) На основе указанной выше обнаруженной информации, авторы настоящего изобретения подготовили испытательные образцы, в которых лазер зажигали по прямой линии в направлении главного напряжения, пересекающем размягченную часть ЗТВ лазерного сварного шва внахлест, и провели испытания на растяжение, на основе которых они подтвердили, что удлинение при разрушении становится больше по сравнению со случаем только лазерной сварки внахлест (Фиг.4). То есть они подтвердили, что можно разрешить проблему разрушения при небольшой деформации.
Настоящее изобретение сделано на основе указанной выше обнаруженной информации и его сущностью является следующее:
(1) Способ сварки внахлест, содержащий этап, на котором накладывают один на другой множество стальных листов и зажигают лазер для образования по существу круглого лазерного сварного шва, причем при выполнении способа сварки внахлест перемещают лазер по прямой линии через внешний край по существу круглого лазерного сварного шва, чтобы образовать упрочненную часть в стальных листах.
(2) Способ сварки внахлест по пункту (1), в котором в ходе операции перемещения лазера по прямой линии лазер зажигают в направлении главного напряжения, которое определено заранее.
(3) Способ сварки внахлест по пункту (1) или (2), в котором в ходе операции перемещения лазера по прямой линии воздействуют лазером на область, по меньшей мере, в 3 мм от внешнего края по существу круглого лазерного сварного шва.
(4) Способ сварки внахлест по любому пункту с (1) по (3), в котором "по существу, круглый" представляет собой круглую форму, овальную форму, круглую кольцевую форму, овальную кольцевую форму, С-образную форму, вытянутую С-образную форму или форму в виде множества круглых колец.
(5) Способ сварки внахлест по любому пункту с (1) по (4), в котором ширина прямолинейной части на которую воздействуют лазером, меньше диаметра кривизны той части внешнего края по существу круглого лазерного сварного шва, через который перемещают лазерный луч по прямой линии.
(6) Способ сварки внахлест по любому пункту с (1) по (5), в котором, по меньшей мере, один стальной лист из упомянутого множества стальных листов представляет собой стальной лист, имеющий мартенситную структуру.
(7) Способ сварки внахлест по пункту (6), в котором стальной лист, имеющий мартенситную структуру, представляет собой стальной лист, имеющий прочность на растяжение 1180 МПа или более.
(8) Нахлесточное соединение, полученное с помощью наложения один на другой множества стальных листов и зажигания лазера для образования по существу круглого лазерного сварного шва так чтобы соединить множество стальных листов, при этом нахлесточное соединение обеспечено упрочненной частью, образованной по прямой линии с помощью перемещения лазера через внешний край по существу круглого лазерного сварного шва.
(9) Нахлесточное соединение по пункту (8), в котором прямолинейная упрочненная часть образована в направлении главного напряжения, которое определено заранее.
(10) Нахлесточное соединение по пункту (8) или (9), в котором прямолинейная упрочненная часть образована в области, по меньшей мере, в 3 мм от внешнего края по существу круглого лазерного сварного шва.
(11) Нахлесточное соединение по любому пункту с (8) по (10), в котором "по существу, круглый" представляет собой круглую форму, овальную форму, круглую кольцевую форму, овальную кольцевую форму, С-образную форму, вытянутую С-образную форму или форму в виде множества круглых колец.
(12) Нахлесточное соединение по любому пункту с (8) по (11), в котором ширина прямолинейной упрочненной части меньше диаметра кривизны части внешнего края по существу круглого лазерного шва, который пересекает или с которым контактирует прямолинейная упрочненная область.
(13) Нахлесточное соединение по любому пункту с (8) по (12), в котором, по меньшей мере, один стальной лист из стальных листов представляет собой стальной лист, имеющий мартенситную структуру.
(14) Нахлесточное соединение по пункту (13), в котором стальной лист, имеющий мартенситную структуру, представляет собой стальной лист, имеющий прочность на растяжение 1180 МПа или более.
(15) Способ изготовления нахлесточного соединения, производимый с помощью наложения один на другой множества стальных листов и зажигания лазера для образования по существу круглого лазерного сварного шва, при этом в способе изготовления нахлесточного соединения перемещают лазер по прямой линии через внешний край по существу круглого лазерного сварного шва, чтобы образовать упрочненную часть в стальных листах.
(16) Деталь автомобиля, снабженная нахлесточным соединением по любому пункту с (8) по (14).
Отметим, что форма лазерного сварного шва, соответствующего настоящему изобретению, не является особой проблемой. Однако форма лазерного сварного нахлесточного шва при замене обычной точечной контактной сварки является, по существу, круглой. Здесь "по существу, круглая форма" представляет собой круглую форму, овальную форму, круглую кольцевую форму, овальную кольцевую форму, С-образную форму, вытянутую С-образную форму или другую комбинацию дуг, либо дополнительно - форма в виде множества круглых колец или комбинация множества дуг. Кроме того, настоящее изобретение также может быть применено к лазерной сварке для заполнения внутренности этих форм. Кроме того, хотя это обычно не используется, настоящее изобретение может также быть применено к форме, не являющейся по существу круглой. Например, форма также может быть треугольной, прямоугольной или другой многоугольной.
Преимущества при использовании изобретения
Согласно настоящему изобретению, даже при наложении один на другой множества элементов из стальных листов и соединения их с помощью лазерной сварки внахлест, не будет образовываться точки начала возникновения трещин в размягченных частях ЗТВ вокруг лазерных сварных швов внахлест, и можно избежать разрушения элементов при небольшой деформации. По этой причине, например, возможно обеспечить высокопрочную деталь автомобиля, которая имеет превосходную ударопрочность с точки зрения защиты пассажиров во время удара.
Краткое описание чертежей
Фиг.1 показывают образец для испытания на растяжение, причем на Фиг.1А показан образец в целом, а на Фиг.1В показано сечение вдоль осевой линии испытательного образца.
Фиг.2А иллюстрирует положение для исследования твердости в лазерном сварном шве круглой формы в стальном листе класса 1310 МПа, в то время как Фиг.2В иллюстрирует распределение твердости лазерного сварного шва круглой формы.
Фиг.3 иллюстрирует разрушение в размягченной части ЗТВ лазерного сварного шва круглой формы.
Фиг.4А иллюстрирует соединение лазерным сварным швом в сравнительном примере при испытании на растяжение, Фиг.4В иллюстрирует соединение лазерным сварным швом в Примере 1 изобретения, Фиг.4С иллюстрирует соединение лазерным сварным швом в Примере 2 изобретения, и на Фиг.4D приведен график зависимости "нагрузка - удлинение" для сравнительного примера, Примера 1 изобретения и Примера 2 изобретения при испытании на растяжение.
Фиг.5А иллюстрирует положение разрушения при испытании на растяжение для Примера 1 изобретения, в то время как Фиг.5В иллюстрирует положение разрушения при испытании на растяжение для Примера 2 изобретения.
Фиг.6А - Фиг.6G иллюстрируют примерные варианты реализации настоящего изобретения.
Фиг.7А - Фиг.7J также иллюстрируют примерные варианты реализации настоящего изобретения.
Фиг.8 иллюстрирует пример применения настоящего изобретения для средней стойки.
Фиг.9 иллюстрирует пример применения настоящего изобретения для бокового нижнего рамного бруса.
Фиг.10 иллюстрирует пример применения настоящего изобретения для передней стойки и продольной лаги крыши.
Фиг.11А иллюстрирует образец для испытания на растяжение, полученный при помощи лазерной сварки внахлест с получением шва С-образной формы, Фиг.11В иллюстрирует лазерный сварной шов в сравнительного примере, Фиг.11С иллюстрирует лазерный сварной шов, соответствующий примеру изобретения, и Фиг.11D иллюстрирует график с результатами испытания на растяжение.
Фиг.12А иллюстрирует положение разрушения для сравнительного примера, в то время как Фиг.12В иллюстрирует положение разрушения для примера изобретения.
Фиг.13 иллюстрирует распределение твердости в лазерном соединении внахлест С-образной формы, в примере изобретения, где на Фиг.13А иллюстрирует положение измерения распределения твердости в соединении внахлест, соответствующем настоящему изобретению, Фиг.13В иллюстрирует распределение твердости на заднем конце прямолинейной части, пройденной лазером, Фиг.13С иллюстрирует распределение твердости в промежуточной части прямолинейной части, пройденной лазером, и Фиг.13D иллюстрирует распределение твердости в по существу круглом лазерном сварном шве внахлест.
Описание вариантов реализации
Сначала будет рассмотрен способ сварки с использованием лазерного луча, соответствующий настоящему изобретению.
Лазерный сварочный аппарат конкретным образом не ограничивается. Например, могут быть использованы дисковый лазер, оптоволоконный лазер, лазер на алюмоиттриевом гранате (YAG - Yttrium Aluminum Garnet) и углекислотный лазер. В качестве иллюстрации можно привести диаметр луча в диапазоне 0,15-0,9 мм, выходную мощность в диапазоне 1-10 кВт и скорость сварки в диапазоне 1-25 м/мин. Условия лазерной сварки подходящим образом определяются типами стальных листов, толщиной стальных листов и т.д., и не ограничиваются указанными выше примерами.
Сварка может представлять собой обычную сварку при помощи лазерного факела, осуществляемую роботом, но в предпочтительном случае представляет собой дистанционную лазерную сварку с использованием гальванизированного зеркала. "Дистанционная лазерная сварка" это метод объединения длиннофокусных линз со специальным сканирующим зеркалом и зажигания лазерного луча через пространство, чтобы с помощью прохода лазерной точки по поверхности с большой скоростью выполнять сварку. По сравнению с роботом или устройством с ЧПУ (NC, Numeric Control - Числовое Программное Управление), используемыми для обычной лазерной сварки, время перехода луча становится, по существу, нулевым, так что становится возможной сварка с высокой эффективностью. Эта система имеет преимущество в том, что не требуется практически никакого времени для перехода лазерной точки от текущей точки сварки к следующей.
На этапе образования упрочненной части лазерный луч зажигают в части нахлесточного соединения для образования по существу круглого лазерного сварного шва, затем он пересекает размягченную часть ЗТВ, образованную вокруг по существу круглого (внешняя периферия) лазерного сварного шва для образования прямолинейной упрочненной части и, таким образом, упрочнения размягченной части ЗТВ вокруг по существу круглого лазерного сварного шва. Поэтому с помощью перемещения лазерного луча через внешний край лазерного нахлесточного сварного шва по прямой линии возможно образовать упрочненную часть таким образом, чтобы разделить размягченную часть ЗТВ. Здесь выражение "через внешний край лазерного сварного нахлесточного шва " указывает состояние пересечения внешнего края лазерного сварного шва внахлест или контактирование с ним.
Лазерный сварной нахлесточный шов представляет собой расплавленную и кристаллизованную часть, которая показана на Фиг.2В. Поэтому внешний край лазерного сварного шва внахлест указывает границу между расплавленной и кристаллизованной частью и металлом матрицы. На Фиг.2 показан пример, где центральная часть круглой формы также подвергается плавлению и кристаллизации. На Фиг.13 показана С-образная форма, но в этом случае также лазерный сварной нахлесточный шов представляет собой расплавленную и кристаллизованную часть. Идея та же самая.
На Фиг.13А показан пример упрочнения лазером, происходящего с пересечением лазерного сварного нахлесточного шва С-образной формы. Он показывает распределение твердости на поверхности стального листа в направлении, показанном пунктирной линией на Фиг.13А. На Фиг.13В, 13С и 13D показаны распределения твердости на поверхности стального листа на заднем конце (конце завершения) части, упрочненной лазером, в части, упрочненной лазером, и в лазерном сварном нахлесточном шве.
"Упрочненная часть", как показано на Фиг.13С, это область, зажатая между точками локальных максимумов твердости, которые находятся с двух сторон пройденной лазером области, при измерении распределения твердости поперек части, упрочненной лазером. Вокруг упрочненной части из-за тепла, введенного во время упрочнения, может образоваться размягченная часть. На Фиг.13С имеется часть, показывающая локальное минимальное значение твердости, с внешней стороны пика твердости. Это часть, размягченная при упрочнении лазером.
Состояние твердости на заднем конце (конце завершения) части, упрочненной лазером, показан на Фиг.13В. Фиг.13В иллюстрирует распределение твердости в направлении зажигания лазера. Точка локального максимума твердости на Фиг.13В это задний конец (конец завершения) упрочненной части. Правая сторона становится упрочненной частью. Как видно из Фиг.13В, имеется часть, показывающая точку локального минимума, непосредственно с внешней стороны точки локального максимума. Это часть, размягченная при упрочнении лазером.
Кроме того, упрочненную часть в предпочтительном случае образуют с глубиной 50% или более от толщины высокопрочного стального листа (в частности, стального листа, включающего в себя мартенсит).
Кроме того, прямолинейная упрочненная часть может быть расположена в направлении главного напряжения, наблюдаемого во время удара. В качестве альтернативы, при лазерной сварке элементов из стального листа в форме фланца, направление прохождения этого фланца может быть сделано направлением главного напряжения. Даже при отклонении от направления главного напряжения из-за точности лазерной сварки и т.д., угол этого отклонения в предпочтительном случае делают как можно меньшим. Поэтому прямолинейную упрочненную часть в предпочтительном случае образуют в диапазоне±30° относительно направления главного напряжения. Если упрочненная часть образуют в диапазоне±30° относительно направления главного напряжения, можно считать, что она образована в направлении главного напряжения. Более предпочтительно, чтобы диапазон составлял±15° относительно направления главного напряжения. Еще более предпочтительно, чтобы диапазон составлял±10° относительно направления главного напряжения.
Отметим, что направление главного напряжения может быть определено заранее на стадии конструирования. Способ предварительного определения направления главного напряжения не ограничивается. Например, для его определения может быть использован метод конечных элементов (МКЭ) или другое моделирование. В качестве альтернативы, для тестирования с целью его определения можно использовать модель или испытательный элемент реальной формы. Также может иметься несколько направлений главного напряжения. В этом случае достаточно использовать лазер на прямой линии, совпадающей с каждым направлением главного напряжения, чтобы получить упрочненные части.
При зажигании лазера для повторного нагрева таким образом, чтобы образовать прямолинейную упрочненную часть, размягченная часть ЗТВ, расположенная вокруг по существу круглого лазерного сварного нахлесточного шва, разделяется, и подавляется падение прочности в направлении главного напряжения из-за этой размягченной части ЗТВ. Отметим, что необходимо только, чтобы прямолинейная упрочненная часть разделяла размягченную часть ЗТВ лазерного сварного нахлесточного шва, поэтому нет необходимости создавать ее на прямой линии внутри лазерного сварного нахлесточного шва.
Стальной лист, к которому может быть применено настоящее изобретение, не ограничивается. Однако размягчение ЗТВ в значительной степени возникает в стали, имеющей мартенситную структуру. Если применить настоящее изобретение к такому стальному листу, эффект является большим. К стальному листу, имеющему мартенситную структуру, относится высокопрочный стальной лист, имеющий прочность на растяжение 1180 МПа или более. Такая высокопрочная сталь часто используется для горячей штамповки (горячего прессования) и иногда называется "сталью для горячей штамповки". Кроме того, наличие или отсутствие плакирования не является проблемой.
Нахлесточное сое