Устройство кодирования видео, устройство декодирования видео, способ кодирования видео и способ декодирования видео
Иллюстрации
Показать всеГруппа изобретений относится к технологиям кодирования/декодирования видео, которые осуществляют прогнозирование в отношении восстановленного изображения и выполняют сжатие данных посредством квантования. Техническим результатом является повышение эффективности декодирования видео для декодирования блоков изображения, используя размер шага квантования. Предложено устройство декодирования видео для декодирования блоков изображения, используя размер шага квантования. Устройство содержит первое средство получения для получения первого размера шага квантования, который управляет степенью детализации обратного квантования, причем упомянутый размер шага квантования назначается соседнему блоку изображения, который уже декодирован. Устройство также содержит второе средство получения для получения второго размера шага квантования, который управляет степенью детализации обратного квантования, причем второй размер шага квантования назначается блоку изображения, который был декодирован непосредственно перед. Средство выбора для выбора первого размера шага квантования или второго размера шага квантования. 3 н.п. ф-лы, 27 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Настоящее изобретение относится к методике кодирования видео, и в частности, к методике кодирования видео, которая осуществляет прогнозирование в отношении восстановленного изображения и выполняет сжатие данных посредством квантования.
УРОВЕНЬ ТЕХНИКИ
[0002] Типичное устройство кодирования видео выполняет процесс кодирования, который соответствует предварительно определенной схеме кодирования видео, чтобы формировать кодированные данные, т.е. поток битов. В ISO/IEC 14496-10, стандарте усовершенствованного кодирования видео (AVC), описанном в непатентном документе (NPL) 1 в качестве характерного примера предварительно определенной схемы кодирования видео, каждый кадр разделяется на блоки размера 16×16 пикселов, называемые MB (макроблоками), и каждый MB дополнительно разделяется на блоки размера 4×4 пикселов, задавая MB в качестве минимальной единицы кодирования. Фиг. 23 показывает пример разделения на блоки в случае, если цветовой формат кадра представляет собой формат 4:2:0 YCbCr, а пространственное разрешение представляет собой QCIF (четверть общего промежуточного формата).
[0003] Каждый из разделенных блоков изображений вводится последовательно в устройство кодирования видео и кодируется. Фиг. 24 является блок-схемой, показывающей пример структуры типичного устройства кодирования видео для формирования потока битов, который соответствует AVC. Ссылаясь на фиг. 24, ниже описывается структура и работа типичного устройства кодирования видео.
[0004] Устройство кодирования видео, показанное на фиг. 24, включает в себя преобразователь 101 частоты, квантователь 102, кодер 103 с переменной длиной кода, контроллер 104 квантования, обратный квантователь 105, обратный преобразователь 106 частоты, запоминающее устройство 107 кадров, модуль 108 внутрикадрового прогнозирования, модуль 109 межкадрового прогнозирования и модуль 110 выбора прогнозирования.
[0005] Входное изображение в устройство кодирования видео вводится в преобразователь 101 частоты в качестве изображения ошибки прогнозирования после того, как прогнозное изображение, предоставляемое из модуля 108 внутрикадрового прогнозирования или модуля 109 межкадрового прогнозирования через модуль 110 выбора прогнозирования, вычитается из входного изображения.
[0006] Преобразователь 101 частоты преобразует входное изображение ошибки прогнозирования из пространственной области в частотную область и выводит результат в качестве коэффициентного изображения.
[0007] Квантователь 102 квантует коэффициентное изображение, предоставляемое из преобразователя 101 частоты, с использованием размера шага квантования, предоставляемого из контроллера 104 квантования, управляющего степенью детализации квантования, и выводит результат в качестве квантованного коэффициентного изображения.
[0008] Кодер 103 с переменной длиной кода энтропийно кодирует квантованное коэффициентное изображение, предоставляемое из квантователя 102. Кодер 103 с переменной длиной кода также кодирует вышеуказанный размер шага квантования, предоставляемый из контроллера 104 квантования, и параметр прогнозирования изображений, предоставляемый из модуля 110 выбора прогнозирования. Эти фрагменты кодированных данных мультиплексируются и выводятся из устройства кодирования видео в качестве потока битов.
[0009] Здесь, процесс кодирования для размера шага квантования в кодере 103 с переменной длиной кода описывается со ссылкой на фиг. 25. В кодере 103 с переменной длиной кода кодер размеров шагов квантования для кодирования размера шага квантования включает в себя буфер 10311 размеров шагов квантования и энтропийный кодер 10312, как показано на фиг. 25.
[0010] Буфер 10311 размеров шагов квантования запоминает размер Q(i-1) шага квантования, назначаемый предыдущему блоку изображений, кодированному непосредственно перед блоком изображений, который должен быть кодирован.
[0011] Как показано в следующем уравнении (1), предыдущий размер Q(i-1) шага квантования, предоставляемый из буфера 10311 размеров шагов квантования, вычитается из входного размера Q(i) шага квантования, и результат вводится в энтропийный кодер 10312 в качестве размера dQ(i) разности шагов квантования.
[0012] dQ(i)=Q(i)-Q(i-1)…(1)
[0013] Энтропийный кодер 10312 энтропийно кодирует входной размер dQ(i) разности шагов квантования и выводит результат в качестве кода, соответствующего размеру шага квантования.
[0014] Выше описан процесс кодирования для размера шага квантования.
[0015] Контроллер 104 квантования определяет размер шага квантования для текущего входного блока изображений. В общем, контроллер 104 квантования отслеживает выходную кодовую скорость кодера 103 с переменной длиной кода, чтобы повышать размер шага квантования, с тем, чтобы уменьшать выходную кодовую скорость для соответствующего блока изображений, или, наоборот, чтобы понижать размер шага квантования, с тем, чтобы увеличивать выходную кодовую скорость для соответствующего блока изображений. Увеличение или уменьшение размера шага квантования предоставляет возможность устройству кодирования видео кодировать входное движущееся изображение посредством целевой скорости. Определенный размер шага квантования предоставляется в квантователь 102 и кодер 103 с переменной длиной кода.
[0016] Квантованное коэффициентное изображение, выводимое из квантователя 102, обратно квантуется посредством обратного квантователя 105, чтобы получать коэффициентное изображение, которое должно использоваться для прогнозирования при кодировании последующих блоков изображений. Коэффициентное изображение, выводимое из обратного квантователя 105, задается обратно в пространственную область посредством обратного преобразователя 106 частоты для того, чтобы получать изображение ошибки прогнозирования. Прогнозное изображение суммируется с изображением ошибки прогнозирования, и результат вводится в запоминающее устройство 107 кадров и модуль 108 внутрикадрового прогнозирования в качестве восстановленного изображения.
[0017] Запоминающее устройство 107 кадров хранит восстановленные изображения кодированных кадров с изображениями, вводимых ранее. Кадры с изображениями, сохраненные в запоминающем устройстве 107 кадров, называются опорными кадрами.
[0018] Модуль 108 внутрикадрового прогнозирования обращается к восстановленным изображениям блоков изображений, кодированных ранее, в кадре с изображением, кодируемом в данный момент, чтобы формировать прогнозное изображение.
[0019] Модуль 109 межкадрового прогнозирования обращается к опорным кадрам, предоставляемым из запоминающего устройства 107 кадров, чтобы формировать прогнозное изображение.
[0020] Модуль 110 выбора прогнозирования сравнивает прогнозное изображение, предоставляемое из модуля 108 внутрикадрового прогнозирования, с прогнозным изображением, предоставляемым из модуля 109 межкадрового прогнозирования, выбирает и выводит одно прогнозное изображение, которое ближе ко входному изображению. Модуль 110 выбора прогнозирования также выводит информацию (называемую "параметром прогнозирования изображений") в отношении способа прогнозирования, используемого посредством модуля 108 внутрикадрового прогнозирования или модуля 109 межкадрового прогнозирования, и предоставляет информацию в кодер 103 с переменной длиной кода.
[0021] Согласно вышеуказанной обработке, типичное устройство кодирования видео кодирует со сжатием входное движущееся изображение, чтобы формировать поток битов.
[0022] Выходной поток битов передается в устройство декодирования видео. Устройство декодирования видео выполняет процесс декодирования таким образом, что поток битов должен быть распакован в качестве движущегося изображения. Фиг. 26 показывает пример структуры типичного устройства декодирования видео, которое декодирует поток битов, выводимый из типичного устройства кодирования видео, чтобы получать декодированное видео. Ссылаясь на фиг. 26, ниже описывается структура и работа типичного устройства декодирования видео.
[0023] Устройство декодирования видео, показанное на фиг. 26, включает в себя декодер 201 с переменной длиной кода, обратный квантователь 202, обратный преобразователь 203 частоты, запоминающее устройство 204 кадров, модуль 205 внутрикадрового прогнозирования, модуль 206 межкадрового прогнозирования и модуль 207 выбора прогнозирования.
[0024] Декодер 201 с переменной длиной кода декодирует на основе кода с переменной длиной кода входной поток битов, чтобы получать размер шага квантования, который управляет степенью детализации обратного квантования, квантованное коэффициентное изображение и параметр прогнозирования изображений. Вышеуказанные размер шага квантования и квантованное коэффициентное изображение предоставляются в обратный квантователь 202. Параметр прогнозирования изображений предоставляется в модуль 207 выбора прогнозирования.
[0025] Обратный квантователь 202 обратно квантует входное квантованное коэффициентное изображение на основе входного размера шага квантования и выводит результат в качестве коэффициентного изображения.
[0026] Обратный преобразователь 203 частоты преобразует коэффициентное изображение, предоставляемое из обратного квантователя 202, из частотной области в пространственную область и выводит результат в качестве изображения ошибки прогнозирования. Прогнозное изображение, предоставляемое из модуля 207 выбора прогнозирования, суммируется с изображением ошибки прогнозирования, чтобы получать декодированное изображение. Декодированное изображение не только выводится из устройства декодирования видео в качестве выходного изображения, но также и вводится в запоминающее устройство 204 кадров и модуль 205 внутрикадрового прогнозирования.
[0027] Запоминающее устройство 204 кадров хранит кадры с изображениями, декодированные ранее. Кадры с изображениями, сохраненные в запоминающем устройстве 204 кадров, называются опорными кадрами.
[0028] На основе параметра прогнозирования изображений, предоставляемого из декодера 201 с переменной длиной кода, модуль 205 внутрикадрового прогнозирования обращается к восстановленным изображениям блоков изображений, декодированных ранее, в кадре с изображением, декодируемом в данный момент, чтобы формировать прогнозное изображение.
[0029] На основе параметра прогнозирования изображений, предоставляемого из декодера 201 с переменной длиной кода, модуль 206 межкадрового прогнозирования обращается к опорным кадрам, предоставляемым из запоминающего устройства 204 кадров, чтобы формировать прогнозное изображение.
[0030] Модуль 207 выбора прогнозирования выбирает любое из прогнозных изображений, предоставляемых из модуля 205 внутрикадрового прогнозирования и модуля 206 межкадрового прогнозирования, на основе параметра прогнозирования изображений, предоставляемого из декодера 201 с переменной длиной кода.
[0031] Здесь, процесс декодирования для размера шага квантования в декодере 201 с переменной длиной кода описывается со ссылкой на фиг. 27. В декодере 201 с переменной длиной кода декодер размеров шагов квантования для декодирования размера шага квантования включает в себя энтропийный декодер 20111 и буфер 20112 размеров шагов квантования, как показано на фиг. 27.
[0032] Энтропийный декодер 20111 энтропийно декодирует введенный код и выводит размер dQ(i) разности шагов квантования.
[0033] Буфер 20112 размеров шагов квантования запоминает предыдущий размер Q(i-1) шага квантования.
[0034] Как показано в следующем уравнении (2), Q(i-1), предоставляемый из буфера 20112 размеров шагов квантования, суммируется с размером dQ(i) разности шагов квантования, сформированным посредством энтропийного декодера 20111. Суммированное значение не только выводится в качестве размера Q(i) шага квантования, но также и вводится в буфер 20112 размеров шагов квантования.
[0035] Q(i)=Q(i-1)+dQ(i)…(2)
[0036] Выше описан процесс декодирования для размера шага квантования.
[0037] Согласно вышеуказанной обработке, типичное устройство декодирования видео декодирует поток битов, чтобы формировать движущееся изображение.
[0038] Между тем, чтобы поддерживать субъективное качество движущегося изображения, которое должно быть сжато посредством процесса кодирования, контроллер 104 квантования в типичном устройстве кодирования видео, в общем, анализирует одно или оба из входного изображения и изображения ошибки прогнозирования, а также анализирует выходную кодовую скорость для того, чтобы определять размер шага квантования согласно визуальной восприимчивости человека. Другими словами, контроллер 104 квантования выполняет адаптивное квантование на основе визуальной восприимчивости. В частности, когда визуальная восприимчивость человека к текущему изображению, которое должно быть кодировано, определяется как высокая, размер шага квантования задается небольшим, тогда как когда визуальная восприимчивость определяется как низкая, размер шага квантования задается большим. Поскольку такое управление может назначать большую кодовую скорость области низкой визуальной восприимчивости, субъективное качество повышается.
[0039] В качестве технологии адаптивного квантования на основе визуальной восприимчивости, например, известно адаптивное квантование на основе сложности текстуры входного изображения, используемое в тестовой модели 5 (TM5) MPEG-2. Сложность текстуры обычно называют активностью. Патентный документ (PTL) 1 предлагает систему адаптивного квантования с использованием активности прогнозного изображения в сочетании с активностью входного изображения. PTL 2 предлагает систему адаптивного квантования на основе активности, которая учитывает краевые участки.
[0040] Когда используется технология адаптивного квантования на основе визуальной восприимчивости, это приводит к проблеме, если размер шага квантования часто меняется в кадре с изображением. В типичном устройстве кодирования видео для формирования потока битов, который соответствует AVC-схеме, разность от размера шага квантования для блока изображений кодируется непосредственно перед тем, как энтропийно кодируется блок изображений, который должен быть кодирован, при кодировании размера шага квантования. Следовательно, когда изменение размера шага квантования в направлении последовательности кодирования становится большим, возрастает скорость, требуемая для того, чтобы кодировать размера шага квантования. Как результат, кодовая скорость, назначаемая кодированию коэффициентного изображения, относительно уменьшается, и, следовательно, качество изображений ухудшается.
[0041] Поскольку направление последовательности кодирования является независимым от непрерывности визуальной восприимчивости на экране, технология адаптивного квантования на основе визуальной восприимчивости неизменно увеличивает кодовую скорость, требуемую для того, чтобы кодировать размер шага квантования. Следовательно, даже с использованием технологии адаптивного квантования на основе визуальной восприимчивости в типичном устройстве кодирования видео, ухудшение качества изображений, ассоциированное с увеличением кодовой скорости для размера шага квантования, может сводить на нет субъективное качество, повышенное посредством технологии адаптивного квантования, т.е. возникает проблема в том, что не может достигаться достаточное повышение качества изображений.
[0042] Чтобы разрешать эту проблему, PTL 3 раскрывает технологию для адаптивного задания диапазона квантования равным нулю, т.е. мертвой зоны согласно визуальной восприимчивости в пространственной области и частотной области вместо адаптивного задания размера шага квантования согласно визуальной восприимчивости. В системе, описанной в PTL 3, мертвая зона для коэффициента преобразования, определенного как низкий с точки зрения визуальной восприимчивости, имеет большую ширину, чем мертвая зона для коэффициента преобразования, определенного как высокий с точки зрения визуальной восприимчивости. Такое управление обеспечивает адаптивное квантование на основе визуальной восприимчивости без изменения размера шага квантования.
СПИСОК БИБЛИОГРАФИЧЕСКИХ ССЫЛОК
Патентные документы
[0043] PTL 1. Патент (Япония) номер 2646921
PTL 2. Патент (Япония) номер 4529919
PTL 3. Патент (Япония) номер 4613909
Непатентные документы
[0044] NPL 1. ISO/IEC 14496-10 Advanced Video Coding
NPL 2. "WD1: Working Draft 1 of High-Efficiency Video Coding", Document JCTVC-C403, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 3rd Meeting в Guangzhou, Китай, октябрь 2010 года
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Техническая задача
[0045] Тем не менее, когда используется технология, описанная в PTL 3, квантование, адаптивное к визуальной восприимчивости, не может быть выполнено для коэффициентов преобразования, которые не попадают в мертвую зону. Другими словами, даже когда визуальная восприимчивость определяется как низкая, скорость коэффициентного кода для коэффициентов преобразования, которые не попадают в мертвую зону, не может быть уменьшена. Дополнительно, когда размер шага квантования увеличивается, значения коэффициентов преобразования после подвергания квантованию концентрируются около нуля, тогда как когда мертвая зона расширяется, коэффициенты преобразования, которые не попадают в мертвую зону, не концентрируются около нуля даже после подвергания квантованию. Другими словами, когда мертвая зона расширяется, эффективность энтропийного кодирования является недостаточной по сравнению со случаем, в котором размер шага квантования увеличен. По этим причинам можно сказать, что в типичной технологии кодирования существует проблема в том, что назначение кодовой скорости для высокой области визуальной восприимчивости не может быть увеличено в достаточной степени.
[0046] Настоящее изобретение осуществлено с учетом вышеизложенных проблем, и его первая цель заключается в том, чтобы предоставлять устройство кодирования видео и способ кодирования видео, допускающие частое изменение размера шага квантования в тоже время подавляя увеличение кодовой скорости, чтобы осуществлять кодирование высококачественных движущихся изображений. Вторая цель настоящего изобретения заключается в том, чтобы предоставлять устройство декодирования видео и способ декодирования видео, допускающие повторное формирование высококачественного движущегося изображения.
Решение задачи
[0047] Устройство кодирования видео согласно настоящему изобретению для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержит средство кодирования размеров шагов квантования для кодирования размера шага квантования, который управляет степенью детализации квантования, при этом средство кодирования размеров шагов квантования прогнозирует размер шага квантования, который управляет степенью детализации квантования, посредством использования размера шага квантования, назначаемого уже кодированному соседнему блоку изображений.
[0048] Устройство декодирования видео согласно настоящему изобретению для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержит средство декодирования размеров шагов квантования для декодирования размера шага квантования, который управляет степенью детализации обратного квантования, при этом средство декодирования размеров шагов квантования прогнозирует размер шага квантования, который управляет степенью детализации обратного квантования, посредством использования размера шага квантования, назначаемого уже декодированному соседнему блоку изображений.
[0049] Способ кодирования видео согласно настоящему изобретению для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержит прогнозирование размера шага квантования, который управляет степенью детализации квантования, посредством использования размера шага квантования, назначаемого уже кодированному соседнему блоку изображений.
[0050] Способ декодирования видео согласно настоящему изобретению для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержит прогнозирование размера шага квантования, который управляет степенью детализации обратного квантования, посредством использования размера шага квантования, назначаемого уже декодированному соседнему блоку изображений.
Полезные эффекты изобретения
[0051] Согласно настоящему изобретению, даже когда размер шага квантования часто изменяется в кадре с изображением, устройство кодирования видео может подавлять увеличение кодовой скорости, ассоциированной с ним. Другими словами, размер шага квантования может быть кодирован посредством меньшей кодовой скорости. Это разрешает такую проблему, что субъективное качество, повышенное посредством адаптивного квантования на основе визуальной восприимчивости, сводится на нет, т.е. может осуществляться кодирование высококачественных движущихся изображений. Дополнительно, согласно настоящему изобретению, поскольку устройство декодирования видео может декодировать часто изменяемый размер шага квантования посредством приема только небольшой кодовой скорости, высококачественное движущееся изображение может повторно формироваться посредством небольшой кодовой скорости.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0052] Фиг. 1 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в устройстве кодирования видео в первом примерном варианте осуществления настоящего изобретения.
Фиг. 2 иллюстрирует пояснительную схему, показывающую пример блока изображений, который должен быть кодирован, и соседних блоков изображений.
Фиг. 3 иллюстрирует блок-схему, показывающую декодер размеров шагов квантования в устройстве декодирования видео во втором примерном варианте осуществления настоящего изобретения.
Фиг. 4 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в устройстве кодирования видео в третьем примерном варианте осуществления настоящего изобретения.
Фиг. 5 иллюстрирует блок-схему, показывающую декодер размеров шагов квантования в устройстве декодирования видео в четвертом примерном варианте осуществления настоящего изобретения.
Фиг. 6 иллюстрирует пояснительную схему, показывающую направления прогнозирования для внутрикадрового прогнозирования.
Фиг. 7 иллюстрирует пояснительную схему, показывающую пример межкадрового прогнозирования.
Фиг. 8 иллюстрирует пояснительную схему, показывающую пример прогнозирования размера шага квантования с использованием вектора движения межкадрового прогнозирования в устройстве кодирования видео в третьем примерном варианте осуществления настоящего изобретения.
Фиг. 9 иллюстрирует блок-схему, показывающую структуру другого устройства кодирования видео согласно настоящему изобретению.
Фиг. 10 иллюстрирует блок-схему, показывающую характерный компонент в другом устройстве кодирования видео согласно настоящему изобретению.
Фиг. 11 иллюстрирует пояснительную схему списка, показывающего пример мультиплексирования параметров прогнозирования размеров шагов квантования.
Фиг. 12 иллюстрирует блок-схему, показывающую структуру другого устройства декодирования согласно настоящему изобретению.
Фиг. 13 иллюстрирует блок-схему, показывающую характерный компонент в другом устройстве декодирования видео согласно настоящему изобретению.
Фиг. 14 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в седьмом примерном варианте осуществления настоящего изобретения.
Фиг. 15 иллюстрирует блок-схему, показывающую декодер размеров шагов квантования в устройстве декодирования видео в восьмом примерном варианте осуществления настоящего изобретения.
Фиг. 16 иллюстрирует блок-схему, показывающую пример конфигурации системы обработки информации, допускающей реализацию функций устройства кодирования видео и устройства декодирования видео согласно настоящему изобретению.
Фиг. 17 иллюстрирует блок-схему, показывающую характерные компоненты в устройстве кодирования видео согласно настоящему изобретению.
Фиг. 18 иллюстрирует блок-схему, показывающую характерные компоненты в другом устройстве кодирования видео согласно настоящему изобретению.
Фиг. 19 иллюстрирует блок-схему, показывающую характерные компоненты в устройстве декодирования видео согласно настоящему изобретению.
Фиг. 20 иллюстрирует блок-схему, показывающую характерные компоненты в другом устройстве декодирования видео согласно настоящему изобретению.
Фиг. 21 иллюстрирует блок-схему последовательности операций способа, показывающую характерные этапы в способе кодирования видео согласно настоящему изобретению.
Фиг. 22 иллюстрирует блок-схему последовательности операций способа, показывающую характерные этапы в способе декодирования видео согласно настоящему изобретению.
Фиг. 23 иллюстрирует пояснительную схему, показывающую пример разделения на блоки.
Фиг. 24 иллюстрирует блок-схему, показывающую пример структуры устройства кодирования видео.
Фиг. 25 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в типичном устройстве кодирования видео.
Фиг. 26 иллюстрирует блок-схему, показывающую пример структуры устройства декодирования видео.
Фиг. 27 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в типичном устройстве декодирования видео.
Подробное описание вариантов осуществления
[0053] Примерные варианты осуществления настоящего изобретения описываются ниже со ссылкой на прилагаемые чертежи.
[0054] Примерный вариант 1 осуществления
Аналогично устройству кодирования видео, показанному на фиг. 24, устройство кодирования видео в первом примерном варианте осуществления настоящего изобретения включает в себя преобразователь 101 частоты, квантователь 102, кодер 103 с переменной длиной кода, контроллер 104 квантования, обратный квантователь 105, обратный преобразователь 106 частоты, запоминающее устройство 107 кадров, модуль 108 внутрикадрового прогнозирования, модуль 109 межкадрового прогнозирования и модуль 110 выбора прогнозирования. Тем не менее, структура кодера размеров шагов квантования, включенного в кодер 103 с переменной длиной кода, отличается от структуры, показанной на фиг. 25.
[0055] Фиг. 1 является блок-схемой, показывающей кодер размеров шагов квантования в устройстве кодирования видео в первом примерном варианте осуществления настоящего изобретения. По сравнению с кодером размеров шагов квантования, показанным на фиг. 25, кодер размеров шагов квантования в примерном варианте осуществления отличается включением в конфигурацию формирователя 10313 прогнозных размеров шагов квантования, как показано на фиг. 1.
[0056] Буфер 10311 размеров шагов квантования запоминает и хранит размеры шагов квантования, назначаемые блокам изображений, кодированным ранее.
[0057] Формирователь 10313 прогнозных размеров шагов квантования извлекает размеры шагов квантования, назначаемые соседним блокам изображений, кодированным ранее, из буфера размеров шагов квантования, чтобы формировать прогнозный размер шага квантования.
[0058] Прогнозный размер шага квантования, предоставляемый из формирователя 10313 прогнозных размеров шагов квантования, вычитается из входного размера шага квантования, и результат вводится в энтропийный кодер 10312 в качестве размера разности шагов квантования.
[0059] Энтропийный кодер 10312 энтропийно кодирует входной размер разности шагов квантования и выводит результат в качестве кода, соответствующего размеру шага квантования.
[0060] Такая структура позволяет уменьшать кодовую скорость, требуемую для того, чтобы кодировать размер шага квантования, и, следовательно, может осуществляться кодирование высококачественных движущихся изображений. Причина состоит в том, что абсолютная величина для размера разности шагов квантования, вводимая в энтропийный кодер 10312, может быть уменьшена, поскольку формирователь 10313 прогнозных размеров шагов квантования формирует прогнозный размер шага квантования с использованием размеров шагов квантования соседних блоков изображений, независимых от последовательности кодирования. Причина, по которой абсолютная величина для размера разности шагов квантования, вводимая в энтропийный кодер 10312, может быть уменьшена, если прогнозный размер шага квантования формируется с использованием размеров шагов квантования соседних блоков изображений, заключается в том, что обычно существует корреляция между соседними пикселами в движущемся изображении, и, следовательно, степень подобия размеров шагов квантования, назначаемых соседним блокам изображений, имеющим высокую корреляцию друг с другом, является высокой, когда используется адаптивное квантование на основе визуальной восприимчивости.
[0061] Конкретная работа кодера размеров шагов квантования в устройстве кодирования видео в первом примерном варианте осуществления описывается ниже посредством использования конкретного примера.
[0062] В этом примере предполагается, что размер блока изображений в качестве единицы кодирования является фиксированным размером. Также предполагается, что три блока изображений, соответственно, смежные слева, выше и вправо по диагонали выше в том же самом кадре с изображением, используются в качестве соседних блоков изображений, используемых для прогнозирования размера шага квантования.
[0063] Предположим, что текущий блок изображений, который должен быть кодирован, обозначается посредством X, и три соседних блока A, B и C изображений находятся, соответственно, рядом слева, выше и вправо по диагонали выше с блоком X изображений, как показано на фиг. 2. В этом случае, если размер шага квантования в каком-либо блоке Z обозначается посредством Q(Z), и прогнозный размер шага квантования обозначается посредством pQ(Z), формирователь 10313 прогнозных размеров шагов квантования определяет прогнозный размер pQ(X) шага квантования посредством следующего уравнения (3).
[0064] pQ(X)=Median(Q(A), Q(B), Q(C))…(3)
Следует отметить, что Median(x, y, z) представляет собой функцию для определения промежуточного значения из трех значений x, y, z.
[0065] Энтропийный кодер 10312 кодирует размер dQ(X) разности шагов квантования, полученный посредством следующего уравнения (4) с использованием экспоненциального кода Голомба со знаком в качестве одного из энтропийных кодов, и выводит результат в качестве кода, соответствующего размеру шага квантования для соответствующего блока изображений.
[0066] dQ(X)=Q(X)-pQ(X)…(4)
[0067] В этом примере три блока изображений, смежные слева, выше и вправо по диагонали выше в том же самом кадре с изображением, используются в качестве соседних блоков изображений, используемых для прогнозирования размера шага квантования. Тем не менее, соседние блоки изображений не ограничены этим. Например, блоки изображений, смежные слева, выше и влево по диагонали выше, могут быть использованы для того, чтобы определять прогнозный размер шага квантования посредством следующего уравнения (5).
[0068] pQ(X)=Median(Q(A), Q(B), Q(D))…(5)
[0069] Число блоков изображений, используемых для прогнозирования, может быть любым числом, а не тремя, и среднее значение или подобное, а не промежуточное значение может быть использовано в качестве вычисления, используемого для прогнозирования, может использовать. Блоки изображений, используемые для прогнозирования, не обязательно должны быть смежными с блоком изображений, который должен быть кодирован. Блоки изображений, используемые для прогнозирования, могут быть отделены на предварительно определенное расстояние от блока изображений, который должен быть кодирован. Дополнительно, блоки изображений, используемые для прогнозирования, не ограничены блоками изображений, расположенными пространственно по соседству, т.е. в том же самом кадре с изображением, они могут быть блоками изображений в любом другом уже кодированном кадре с изображением.
[0070] Дополнительно, в этом примере предполагается, что блок изображений, который должен быть кодирован, и соседние блоки изображений имеют один и тот же фиксированный размер. Тем не менее, настоящее изобретение не ограничено случаем фиксированного размера, и размер блока в качестве единицы кодирования может быть переменным размером.
[0071] Дополнительно, в этом примере, кодирование выполняется на основе экспоненциального кода Голомба, чтобы кодировать разность между размером шага квантования блока изображений, который должен быть кодирован, и прогнозным размером шага квантования. Тем не менее, настоящее изобретение не ограничено использованием экспоненциального кода Голомба, и кодирование может быть выполнено на основе любого другого энтропийного кода. Например, может быть выполнено кодирование на основе Кода Хаффмана или арифметического кода.
[0072] Выше описано устройство кодирования видео в первом примерном варианте осуществления настоящего изобретения.
[0073] Примерный вариант 2 осуществления
Аналогично устройству декодирования видео, показанному на фиг. 26, устройство декодирования видео во втором примерном варианте осуществления настоящего изобретения включает в себя декодер 201 с переменной длиной кода, обратный квантователь 202, обратный преобразователь 203 частоты, запоминающее устройство 204 кадров, модуль 205 внутрикадрового прогнозирования, модуль 206 межкадрового прогнозирования и модуль 207 выбора прогнозирования. Тем не менее, структура декодера размеров шагов квантования, включенного в декодер 201 с переменной длиной кода, отличается от структуры, показанной на фиг. 27.
[0074] Фиг. 3 является блок-схемой, показывающей декодер размеров шагов квантования в устройстве декодирования видео во втором примерном варианте осуществления настоящего изобретения. По сравнению с декодером размеров шагов квантования, показанным на фиг. 27, декодер размеров шагов квантования в примерном варианте осуществления отличается включением в конфигурацию формирователя 20113 прогнозных размеров шагов квантования, как показано на фиг. 3.
[0075] Энтропийный декодер 20111 энтропийно декодирует введенный код, чтобы выводить размер разности шагов квантования.
[0076] Буфер 20112 размеров шагов квантования запоминает и хранит размеры шагов квантования, декодированные ранее.
[0077] Из размеров шагов квантования, декодированных ранее, формирователь 20113 прогнозных размеров шагов квантования извлекает размеры шагов квантования, соответствующие соседним пиксельным блокам текущего блока изображений, который должен быть декодирован, из буфера размеров шагов квантования, чтобы формировать прогнозный размер шага квантования. В частности, например, формирователь 20113 прогнозных размеров шагов квантования работает так же, как и формирователь 10313 прогнозных размеров шагов квантования в конкретном примере устройства кодирования видео в первом примерном варианте осуществления.
[0078] Прогнозный размер шага квантования, предоставляемый из формирователя 20113 прогнозных размеров шагов квантования, суммируется с размером разности шагов квантования, сформированным посредством энтропийного декодера 20111, и результат не только выводится в качестве размера шага квантования, но также и вводится в буфер 20112 размеров шагов квантования.
[0079] Такая структура декодера размеров шагов квантования предоставляет возможность устройству декодирования видео декодировать размер шага квантования посредством приема только ме