Передача сигналов со структурой ресурса в режиме связи устройства с устройством

Иллюстрации

Показать все

Изобретение относится к способу, выполняемому первым устройством связи для осуществления связи в режиме связи устройства с устройством (D2D), со вторым устройством связи. Технический результат заключается в обеспечении улучшения пропускной способности ресурса передачи данных в режиме D2D. Способ содержит этапы, на которых: получают информацию о дуплексной конфигурации узла радиосети, выполненного с возможностью оказания влияния на выделение ресурсов первым устройством связи для связи D2D со вторым устройством связи; выводят набор структур ресурса (RPT), на основе указанной информации; выбирают один RPT из набора RPT на основе информации планировщика; и сигнализируют индекс, используемый для идентификации выбранного RPT, второму устройству связи. 4 н. и 23 з.п. ф –лы, 11 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее раскрытие направлено на передачу данных и, более конкретно, на способы, сети и сетевые узлы для беспроводной передачи данных.

Уровень техники

Последние усовершенствования систем Долгосрочного развития (LTE) 3GPP способствуют доступу к локальным услугам на основе IP в доме, в офисе, в общественных активных участках или даже за пределами помещений. Одна из важных причин использования локального доступа IP и возможности локального подключения включает в себя прямое соединение между беспроводными устройствами передачи данных, например, устройствами оборудования пользователя (UE), находящимися в непосредственной близости (обычно меньше чем на расстоянии нескольких десятков метров, однако иногда до нескольких сотен метров) друг от друга. Например, когда устройства передачи данных (для краткости называемые устройствами) находятся близко друг к другу, они могут быть выполнены с возможностью работы в режиме передачи данных от устройства устройству (D2D), в котором они связываются через соединение непосредственно между ними, без маршрутизации передачи данных через какое-либо другое устройство или узел радиосети (например, eNB). На фиг. 1 иллюстрируется система, в которой пара электронных устройств 100 и 102 передачи данных (также для краткости называемых устройствами передачи данных и устройствами) могут работать в режиме передачи данных D2D через соединение непосредственно между ними, или, в качестве альтернативы, могут работать с опосредованной передачей данных друг другу через узел 110 радиосети.

Такая прямая передачи данных из устройства в устройство (то есть, D2D) обеспечивает множество потенциальных улучшений по сравнению с релейной передачей данных через узел радиосети (например, сотовой сети), поскольку путь передачи между устройствами D2D может быть намного короче, чем между устройствами опосредованной передачи данных (например, сотовыми устройствами), которые связываются через узел радиосети (например, сотовую базовую станцию, eNB). Преимущества передачи данных D2D могут включать в себя одно или больше из следующих:

- Прирост пропускной способности: Радиоресурсы (например, блоки ресурса OFDM) между D2D и сотовыми уровнями могут повторно использоваться (обеспечивая прирост за счет повторного использования). Кроме того, для соединения D2D используется однократный скачок для передачи между устройствами передачи и приема в отличие от линии с 2 скачками при передаче через узел сотовой радиосети, например, точку доступа (что обеспечивает улучшение за счет количества скачков).

- Повышение пиковой скорости передачи данных: Благодаря близости и потенциально благоприятным условиям распространения, могут быть достигнуты пиковые скорости передачи данных (усиление за счет непосредственной близости); и

- Улучшение латентности: Когда устройства связывается через прямое соединение, исключается перенаправление узла радиосети (например, eNB), и может уменьшаться латентность из конца в конец.

Некоторые привлекательные варианты применения передачи данных D2D представляют собой потоковую передачу видеоданных, онлайн игры, загрузка мультимедийных данных, пиринговая передача данных (Р2Р), совместное использование файлов и т.д.

В заметках Chairman RAN1#76 от февраля 2014 г. была раскрыта следующая обработка для назначения планирования (SA). Для широковещательной передачи данных D2D, назначение планирования, которое, по меньшей мере, обозначает местоположение ресурса (ресурсов) для приема ассоциированного физического канала, по которому передают данные D2D, передают, используя устройство широковещательной передачи, которое также называется оборудованием пользователя (UE). Показатель ресурса (ресурсов) для приема может быть скрытым и/или открытым на основе ресурса назначения планирования или содержания. Другими словами, SA используются для широковещательной передачи данных D2D для, по меньшей мере, обозначения ресурсов времени, когда передают соответствующие данные D2D. Преимущества SA и соответствующих процедур были описаны в R1-140778, под названием "On scheduling procedure for D2D", Ericsson, февраль 2014.

Поскольку SA используется для обозначения местоположения ресурса в устройствах приемника, один из аспектов здесь представляет собой конструкцию структуры ресурса (RPT), то есть, местоположение подфреймов, в которых должна происходить широковещательная передача данных D2D. В конструкции RPT должна учитываться цель рабочих характеристик, например, может быть определено, что опорный уровень принимаемой мощности должен быть больше чем -107 дБм. Для достижения уровня мощности -107 дБм, может выполняться следующая обработка:

1) Занимаемая полоса пропускания ограничена для исключения конфликтов в области частоты.

2) Учитываются рабочие характеристики аппаратных средств устройства (например, UE) для излучения внутри полосы, для оценки взаимных помех с соседним каналом.

3) Для компенсации плохого качества канала (включая в себя высокие потери на пути передачи, затухание, взаимные помехи в том же канале и/или взаимные помехи в соседнем канале), может потребоваться некоторое улучшение L1, такое как повторная передача;

4) Повторная передача дополнительно увеличивает необходимые ресурсы для передачи данных D2D в области времени, что является более проблематичным для системы TDD, где присутствует меньшее количество подфреймов UL, чем в системе FDD.

Передача D2D может происходить в ресурсах восходящего канала передачи (UL) (подфрейм UL в системе дуплексирования с временным разделением (TDD) и в полосе UL в системе дуплексирования с частотным разделением (FDD)). Из-за полудуплексной передачи устройство (например, UE) не может передавать и принимать одновременно. Полудуплексная передача также представляет собой фактор, который требуется учитывать в конструкции RPT.

В R1-141384 под названием "D2D Physical Channels Design", Ericsson, апрель 2014 было предложено, чтобы конструкция структуры ресурса для системы FDD была такой, как поясняется ниже и представлено на фиг. 2, где учитывается трафик передачи голоса через IP (VoIP). На фиг. 2, на оси Y (вертикальная ось) представлена область частоты, и на оси X (горизонтальная ось) представлена область времени. UE-A (например, 100) передает назначение планирования SA 200а по одной частоте в UE-B (например, 102) и после этого повторно передает назначение SA 200b планирования на другой частоте в UE-B, для определения первой структуры данных, в которой будут переданы голосовые пакеты 204 с переключением частоты между двумя разными частотами. Аналогично, UE-B (например, 102) передает назначение планирования SA 202а в UE-A (например, 100), для определения второй структуры данных, при которой голосовые пакеты 206 будут переданы с переключением частоты между двумя разными частотами.

В примере на фиг. 2 существует один голосовой пакет, формируемый каждые 20 мс из уровня приложения, для которого:

1) Выделяют один набор SA, который позволяет выполнять от одной до четырех передач SA для цикла SA 160 мс, то есть, управлять местоположением ресурса для восьми голосовых пакетов, которые должны быть переданы после цикла SA;

2) Выделяют четыре (повторных) передачи данных в течении каждых 20 мс, где полоса пропускания 2RB выделяется для каждой передачи данных; и

3) Между циклом SA и периодами передачи данных, то есть, в течение периода передачи данных, имеются некоторые подфреймы, зарезервированные для SA, которые используются для планирования пакета данных в следующих подфрейма.

Потенциальные проблемы при использовании таких подходов:

Поскольку конструкция RPT, описанная в R1-141384, предназначена для системы FDD и для трафика VoIP, ее трудно применять в системе TDD. Например, она требует, по меньшей мере, 4 (для SA) + 8*4 (для данных) = 36 широковещательных передач данных D2D на каждые 160 мс, что приводит к тому, что приблизительно 22,5% ресурсов будут выделены, как ресурсы D2D, что может привести к деградации пропускной способности, по меньшей мере, на 22,5% UL сотовой системы. В то время как для системы TDD, доступное количество подфрейма UL составляет от 10% (конфигурация 5) до 60% (конфигурация 0), что означает в системе TDD, если используется обработка повторного использования RPT системы FDD, это может привести либо к еще большей деградации рабочей характеристики UL, или может привести даже к недостаточному количеству оставшихся ресурсов только для широковещательной передачи данных D2D.

Одно возможное решение состоит в том, чтобы определить множество структур, некоторые оптимизированные для FDD, некоторые оптимизированные для TDD, и все эти разные структуры обозначить разными индексами, включенными в SA. Однако полезная нагрузка SA должна быть минимизирована для обеспечения приемлемого бюджета соединения, что является еще более проблематичным в системе TDD с меньшим количеством подфреймов UL, чем в системе FDD. Кроме того, для разных услуг трафика структуры данных могут быть разными, из-за разных требований к рабочим характеристикам.

Учитывая различные услуги трафика и разные сценарии конфигурации TDD, может существовать большое количество структур данных. Тогда количество индексов структуры могло бы быть слишком большим, и, таким образом, длина индекса структуры могла бы быть слишком большой, чтобы ее можно было включить в ограниченную полезную нагрузку SA.

Подходы, описанные в разделе уровень техники, могут выполняться, но не обязательно подходы, которые были ранее рассмотрены, должны быть выполнены. Поэтому, если только другое не будет указано здесь, подходы, описанные в разделе "Уровень техники", не являются предшествующим уровнем для формулы изобретения в данном приложении и не допущены, как предшествующий уровень техники в результате включения в раздел "Уровень техники".

Раскрытие сущности изобретения

Некоторые варианты осуществления настоящего раскрытия направлены на способ, выполняемый первым устройством передачи данных для передачи данных от устройства на устройство (D2D) со вторым устройством передачи данных. Способ включает в себя этапы, на которых: получают информацию о дуплексной конфигурации узла радиосети, которая может влиять на выделение ресурсов первым устройством передачи данных для передачи данных D2D со вторым устройством передачи данных. Способ дополнительно включает в себя этапы, на которых: определяют набор структур ресурса (RPT) на основе информации, выбирают один RPT из набора RPT, на основе информации планировщика, и передают сигналы с индексом, который используется для идентификации выбранного RPT для второго устройства передачи данных.

Потенциальное преимущество такого подхода состоит в том, что может быть выведен набор RPT, который является оптимизированным с учетом дуплексной конфигурации узла радиосети, который влияет на выделение ресурсов первым устройством передачи данных для передачи данных D2D со вторым устройством передачи данных. Кроме того, использование доступных ресурсов для передачи служебных сигналов минимизируется путем выбора одного RPT из набора RPT, на основе информации планировщика и с последующей передачей вместе с сигналами индекса для второго устройства передачи данных, которое используется вторым устройством передачи данных для идентификации выбранного RPT. Улучшения пропускной способности ресурса передачи данных, пиковой скорости трафика и/или латентности передачи данных могут быть получены для передачи данных D2D между такими устройствами передачи данных.

В некоторых дополнительных вариантах осуществления способ включает в себя этапы, на которых: вводят ресурсы, предназначенные для передачи D2D из первого устройства передачи данных во второе устройство передачи данных на основе выбранного RPT, и передают данные из первого устройства передачи данных во второе устройство передачи данных, используя ресурсы, выведенные для передачи D2D.

Информация может быть принята из узла радиосети, когда первое устройство связи расположено в пределах зоны обслуживания при передаче данных узла радиосети, принимаемой из релейной передачи плоскости управления, когда первое устройство передачи данных расположено близко к кромке зоны обслуживания при передаче данных узла радиосети, или принимается из третьего устройства связи, когда первое устройство связи расположено за пределами зоны обслуживания при передаче данных узла радиосети.

Набор RPT может быть выведен на основе дуплексной схемы FDD/TDD для определенной несущей, обозначенной информацией, и одна RPT может быть выбрана среди набора RPT на основе, предназначена ли информация планировщика для дуплексной схемы FDD или для дуплексной схемы TDD.

Набор RPT может быть выведен на основе одного или больше из следующих: конфигурация PRACH для исключения отображения ресурсов данных на ресурсы, которые используются для PRACH, параметры HARQ для исключения ресурсов, используемых для повторной передачи восходящего канала передачи узлом радиосети, и PUCCH или конфигурация SR для исключения отображения ресурсов данных на ресурсы, которые используются для PUCCH или SR, обозначенных информацией.

Набор RPT может быть выведен на основе любого одного или больше из следующих: периодичности, смещения по времени и/или выделения ресурсов, обозначенных информацией. В качестве альтернативы или в дополнение, набор RPT может быть выведен на основе типа трафика, который должен быть передан в режиме D2D во второе устройство передачи данных.

Некоторые другие варианты осуществления настоящего раскрытия направлены на способ, выполняемый первым устройством связи для передачи данных D2D со вторым устройством связи. Способ включает в себя этапы, на которых: получают информацию о дуплексной конфигурации узла радиосети, который может влиять на использование радиоресурса D2D первым устройством связи, для приема передачи данных D2D из второго устройства связи. Способ дополнительно включает в себя этапы, на которых: выводят набор структур ресурса (RPT) на основе информации, принимают индекс, передаваемый вторым устройством связи, выбирают один RPT среди набора RPT на основе индекса, и выводят ресурсы для использования, для приема D2D из второго устройства связи на основе выбранного RPT.

В некоторых дополнительных вариантах осуществления способ включает в себя этапы, на которых: принимают данные в первом устройстве связи из второго устройства связи, используя ресурсы, выведенные для приема D2D.

Раскрыты соответствующие устройства связи и узлы радиосети. Другие способы, устройства связи и узлы радиосети в соответствии с вариантами осуществления изобретения будут понятны для специалиста в данной области техники после просмотра следующих чертежей и подробного описания изобретения. Предполагается, что все такие дополнительные способы, устройства передачи данных и узлы радиосети

Краткое описание чертежей

Приложенные чертежи, которые включены для обеспечения дополнительного понимания раскрытия и представлены здесь и составляют часть данного приложения, иллюстрируют определенный неограничительный вариант (варианты) осуществления изобретательных концепций. На чертежах:

на фиг. 1 представлена система, в которой устройства могут работать для опосредованной или непосредственной связи друг с другом;

на фиг. 2 представлен физический канал широковещательной передачи, который переносит, как данные, так и назначения планирования (SA);

на фиг. 3 показана блок-схема последовательности операций и способов, которые выполняются устройством передатчика (Tx), выполняющим связь D2D с устройством приемника (Rx) в соответствии с некоторыми вариантами осуществления;

на фиг. 4 показаны структуры ресурса (RPT) для двух конфигураций TDD;

на фиг. 5 показана блок-схема последовательности операций и способов, которые выполняются устройством приемника (Rx), принимающим информацию из устройства передатчика (Tx) при связи D2D, в соответствии с некоторыми вариантами осуществления;

на фиг. 6 показана блок-схема устройства связи, выполненного в соответствии с некоторыми вариантами осуществления;

на фиг. 7 показана блок-схема узла радиосети, выполненного в соответствии с некоторыми вариантами осуществления;

на фиг. 8 показана блок-схема последовательности операций и способов, выполняемых устройством передатчика (Tx) для передачи D2D данных в устройство приемника (Rx), в соответствии с некоторыми вариантами осуществления;

на фиг. 9 показана блок-схема последовательности операций и способов, которые выполняются устройством приемника (Rx) для приема данных от устройства передатчика (Тх), используя ресурсы, предназначенные для передачи D2D;

на фиг. 10 показана блок-схема функциональных модулей, которые могут быть воплощены в устройстве передатчика (Тх), в соответствии с некоторыми вариантами осуществления; и

на фиг. 11 показана блок-схема функциональных модулей, которые могут быть воплощены в устройстве приемника (Rx), в соответствии с некоторыми вариантами осуществления.

Осуществление изобретения

Изобретательные концепции будут более полно описаны ниже со ссылкой на приложенные чертежи, на которых показаны примеры вариантов осуществления изобретательных концепций. Изобретательные концепции, однако, могут быть воплощены во множестве различных форм, и их не следует рассматривать, как ограниченные вариантами осуществления, представленными здесь. Скорее, данные варианты осуществления предусмотрены таким образом, что данное раскрытие будет исчерпывающим и законченным, и будет полностью передавать объем настоящих изобретательных концепций для специалиста в данной области техники. Следует также отметить, что эти варианты осуществления не являются взаимно исключающими. При этом подразумевается, что компоненты из одного варианта осуществления могут быть представлены/могут использоваться в другом варианте осуществления.

Различные варианты осуществления, раскрытые здесь, могут преодолевать одну или больше потенциальных проблем, пояснявшихся выше, используя некоторые ранее известные подходы.

Различные варианты осуществления раскрыты в контексте электронных устройств передачи данных (для краткости называются устройствами), которые могут выполнять передачу данных друг с другом, используя D2D, и могут выполнять передачу данных с узлом радиосети (например, eNB). Устройства в неограничительном примере могут включать в себя оборудование пользователя (UE), устройства, выполненные с возможностью передачи данных из машины в машину (М2М), PDA, iPAD, планшетный компьютер, мобильные терминалы, смартфон, оборудование, встроенное в переносной компьютер (LLE), оборудование, установленное в переносной компьютер (LME), миниатюрные устройства, подключаемые через USB, и т.д.

Различные варианты осуществления, раскрытые здесь, направлены на операции и способы, выполняемые при связи устройства с устройством (D2D) с помощью передающего (Тх) устройства в приемное (Rx) устройство. В передающих и приемных устройствах используется информация о несущей, которая будет использоваться для передачи D2D, для вывода поднабора структур ресурса (RPT) (например, структур времени данных). Сигналы со структурами данных из передающего устройства в приемное устройство затем основаны на передаче сигналов с одной из множества структур выведенного поднабора RPT.

В некоторых вариантах осуществления SA включает в себя заданное (малое) количество битов, которое обозначает индекс RPT. Потенциальное устройство приема (Rx) выполнено так, чтобы оно обладало информацией о дуплексировании с частотным разделением (FDD)/дуплексировании с временным разделением (TDD) и о конфигурации TDD и, возможно, других соответствующих параметрах. Поднабор всех возможных RPT, передаваемых сигналами, используя биты SA RPT, может представлять собой функцию конфигурации FDD/TDD на основе одного из заранее определенных параметров отображения и/или других определенных параметров. Другие определенные параметры могут включать в себя положения физического канала случайного доступа (PRACH), гибридного ARQ, параметров гибридного автоматического запроса повторной передачи (HARQ) и/или физического канала управления восходящим каналом передачи (PUCCH) или конфигурации опорного сигнала зондирования (SRS).

RPT может в явной форме обозначать структуру только ресурсов времени, только ресурсов частоты или комбинации ресурсов времени и ресурсов частоты. Другие свойства RPT могут быть выведены в устройстве приемника (Rx) в скрытом виде или вслепую.

Потенциальное преимущество данного подхода состоит в том, что объем служебных сигналов SA может быть меньше, чем в противном случае при одновременном поддержании гибкости.

На фиг. 3 иллюстрируется блок-схема последовательности операций и способов, которые выполняются устройством передатчика (Тх) (например, устройством 100 на фиг. 1), которое выполняет обмен данными с устройство приемника (Rx) (например, устройством 102 на фиг. 1), в соответствии с некоторыми вариантами осуществления. Как представлено в блоке 300 на фиг. 3, перед передачей данных, устройство Тх получает информацию, которая обозначает дуплексную конфигурацию узла радиосети (например, eNB 110 на фиг. 1), с использованием которого устройство Тх может выполнять передачу данных и/или получать другую конфигурацию сигналов, которая может влиять па выделение ресурсов устройством Тх для передачи данных D2D с устройством Rx. Информация может включать в себя одну или больше из: дуплексной схемы FDD/TDD для определенной несущей, конфигурации TDD, и/или другую информацию, которая может влиять на выделение ресурсов D2D, включая в себя, например, конфигурацию PRACH, параметры HARQ, конфигурацию PUCCH/SRS, периодичность, смещение по времени, и/или выделение ресурсов.

Устройство Тх может получать информацию путем приема ее из узла радиосети (когда оно расположено в пределах зоны обслуживания передачи данных узла радиосети), из радиорелейной передачи плоскости управления (CP) (когда оно расположено рядом с кромкой зоны обслуживания передачи данных узла радиосети), и/или из других устройств, например, UE, таких как головное устройство кластера (СН), когда оно расположено за пределами зоны обслуживания передачи данных узла радиосети. Устройство Тх может дополнительно или в качестве альтернативы получать информацию на основе предварительно сконфигурированных данных, сохраненных в памяти устройства Тх.

Как представлено в блоке 302, устройство Тх использует информацию (блок 300) для вывода RPT и, более конкретно, может выводить набор RPT. Следовательно, разная информация, которую принимают или получают, может обеспечить вывод устройством Тх разных наборов RPT. Как показано в блоке 304, устройство Тх выбирает одну RPT среди наборов RPT, которые были выведены (блок 302), на основе информации планировщика.

Пять примеров представлены ниже для иллюстрации, как устройство Тх может выводить набор RPT, используя информацию, которая может включать в себя одну или больше из следующих:

1) Дуплексная информация:

Когда информация включает в себя дуплексную информацию, такую как FDD/TDD и различные конфигурации TDD, поле RPT в SA может иметь разную интерпретацию. Пример RPT для системы FDD представлена на фиг. 2, в то время как пример RPT для двух конфигураций TDD ("TDD конференция 1" и "TDD конференция 2) показан на фиг. 4.

На фиг. 4 можно видеть, что доступное количество подфреймов UL отличается между разными конфигурациями, и промежутки между подфреймами UL являются разными, что накладывает разные ограничения на конструкцию структуры RPT для SA и ресурсов данных. Кроме того, по сравнению с конфигурацией 1, конфигурация 2 имеет меньше подфреймов UL (40%->20%), что приводит к меньшему количеству подфреймов данных, которые должны быть выделены для связи D2D (от 3 до 1 на каждые 20 мс).

Устройство Тх может выбирать (блок 304) одну RPT среди набора RPT, который был выведен на основе того, предназначена ли информация планировщика для схемы дуплексирования FDD или для схемы дуплексирования TDD.

2) Информация PRACH:

Когда информация включает в себя конфигурацию PRACH, набор RPT может быть выведен таким образом, что устройство Тх выполняет SA с устройством Rx таким образом, что связь D2D исключает ресурс PRACH узла радиосети (например, сотового узла). PRACH и аналогичные типы информации, таким образом, могут влиять на RPT, выведенные устройством Тх таким образом, чтобы исключалось отображение ресурсов данных на ресурсы, которые используются для PRACH. Более конкретно, устройство Тх может выводить набор RPT на основе конфигурации PRACH для исключения ресурсов данных отображения на ресурсы, которые используются для PRACH.

3) Информация HARQ:

Когда информация включает в себя параметры HARQ, связь устройства с устройством, возникающая, как D2D, и связь, выполняемая узлом радиосети (например, сотовым узлом) мультиплексируется в своих ресурсах UL. UL HARQ (повторная) передача, выполняемая узлом сотовой сети радиосети является синхронной. Устройство Тх может выводить набор RPT на основе параметров HARQ для связи D2D для исключения ресурсов, используемых для повторной передачи по восходящему каналу передачи (UL), выполняемой узлом (110) радиосети.

4) PUCCH/информация SRS:

Когда информация включает в себя PUCCH или конфигурацию SRS, если D2D должно исключать PUCCH или ресурс SRS узла радиосети (например, сотового узла), этот тип информации может влиять на схему RPT, где один подход состоит в том, чтобы исключить отображение ресурсов данных на ресурсы, которые используются для PUCCH или SRS. Устройство Тх может выводить набор RPT для связи D2D на основе PUCCH или конфигурации SRS для исключения отображения ресурсов данных на ресурсы, которые используются для PUCCH или SRS.

5) Разные поддерживаемые типы трафика для D2D:

Разные типы трафика (например, VoIP, мультимедийный, FTP и т.д.) характеризуются разной пропускной способностью, латентностью, надежностью и ограничению по зоне обслуживания. Одно или больше из таких ограничений может быть получено (известные или определяются) устройством Тх и могут использоваться частично для вывода набора RPT. Тип трафика может быть определен, и/или его ограничения могут быть определены устройством Тх и могут использоваться для управления выводом из RPT на основе плотности ресурсов времени для подфреймов данных в структуре и при отображении структур повторной связи, отображении повторной передачи HARQ и/или параллельного количества обработок HARQ. Например, мультимедийный трафик имеет другие ограничения по пропускной способности и по латентности данных, чем трафик протокола передачи файлов (FTP). Устройство Тх может выводить другой набор RPT для мультимедийного трафика, чем для трафика FTP, для предоставления, например, определенной плотности подфреймов данных в структуре данных для ассоциированного типа трафика, который будет передан через связь D2D.

Следует отметить, что все возможные RPT для всех поддерживаемых наборов сценариев информации могут быть табулированы в таблице. В качестве альтернативы или дополнительно, RPT могут быть сгенерированы во время выполнения на основе заранее определенных правил.

Набор RPT может быть выведен на основе одного или больше из следующих правил:

- Обеспечивают определенное количество подфреймов UL или процент подфреймов UL, которые используются для связи D2D;

- Обеспечивают определенное разделение радиоресурсов между связью (например, сотовой) узла радиосети и связью D2D;

- Обеспечивают определенное количество подфреймов SA и подфреймов данных в структуре данных;

- Обеспечивают определенное минимальное расстояние подфрейма между SA и данными;

- Обеспечивают минимальное расстояние подфрейма между повторными передачами данных;

- Исключают или предотвращают использование подфрейма UL, который используется для PRACH/SRS; и/или

- Учитывают информацию HARQ при передаче (например, сотовой) узла радиосети.

В блоке 306 устройство Тх передает сигналы с индексом, идентифицирующим выбранный RPT для устройства Rx. Устройство Тх может отображать индекс в поле в полезной нагрузке SA (или эквивалентно в любом другом канале управления D2D). То же значение индекса может использоваться для обозначения другого выбранного RPT, например, для конфигурации TDD 1 и 2, показанных на фиг. 4.

На фиг. 5 иллюстрируется блок-схема последовательности операций и способы, которые выполняются устройством приемника (Rx), принимающим информацию из устройства Тх, используя передачу данных D2D, в соответствии с некоторыми вариантами осуществления. В блоке 500, перед детектированием данных, устройство Rx получает информацию, которая обозначает дуплексную конфигурацию узла радиосети (например, eNB 110 на фиг. 1), с помощью которого устройство Rx может выполнять передачу данных и с помощью которого оно может влиять на использование ресурсов устройством Rx, для приема передаваемых данных D2D из устройства Тх, и/или получает другие конфигурации сигналов, которые могут влиять на использование ресурса устройством Rx для приема передаваемых данных D2D из устройства Тх. Информация может включать в себя одну или больше из: схемы дуплексирования FDD/TDD для определенной несущей, конфигурации TDD и/или другую информацию, которая может влиять на выделение ресурсов D2D, включая в себя, например, конфигурацию PRACH, параметры HARQ, конфигурацию PUCCH/SRS, периодичность, смещение по времени и/или выделение ресурсов.

Устройство Rx может получать информацию путем приема ее из узла радиосети, например, eNB (когда оно находится в пределах зоны обслуживания узла радиосети), из устройства релейной передачи в плоскости управления (CP) (когда оно расположено близко к кромке зоны обслуживания узла радиосети) и/или из других устройств, например, UE, таких как головное устройство кластера (СН), когда оно расположено за пределами зоны обслуживания узла радиосети. Устройство Rx может дополнительно или в качестве альтернативы получать информацию на основе заранее сконфигурированных данных, сохраненных в памяти устройства Rx.

Как показано в блоке 502, в устройстве Rx используется информация (блок 500) для вывода RPT и, более конкретно, оно может выводить набор RPT. Следовательно, различная информация, которую принимают или получают, может приводить к тому, что устройство Rx будет выводить разные наборы RPT таким же образом или аналогичным образом, в соответствии с одной или больше операциями, описанными выше, выполняемыми устройством Тх в блоке 302, описание которых внедрено здесь по ссылке для краткости.

В блоке 504 устройство Rx принимает индекс, передаваемый с сигналами устройством Тх, где индекс используется для идентификации RPT, выбранного устройством Тх.

В блоке 506 устройство Rx выбирает один RPT среди набора RPT (выведен в блоке 502) на основе индекса.

В блоке 508 устройство Rx выводит ресурсы, которые должны использоваться для приема D2D из устройства Тх, на основе выбранного RPT. Вывод ресурсов может идентифицировать местоположение ресурсов, которые должны использоваться устройством Rx для приема данных из устройства Тх в области времени, в области частоты или, как в области времени, так и в области частоты. Когда информация включает в себя конфигурацию PRACH, устройство Rx может выводить набор RPT на основе конфигурации PRACH, для исключения отображения ресурсов данных на ресурсы, которые используются для PRACH. Когда информация включает в себя параметры HARQ, устройство Rx может выводить набор RPT на основе параметров HARQ, для исключения ресурсов, используемых для повторной передачи по восходящему каналу передачи (UL), выполняемой узлом (110) радиосети. Когда информация включает в себя PUCCH или конфигурацию SR, устройство Rx может выводить набор RPT на основе PUCCH или конфигурации SRS для исключения отображения ресурсов данных на ресурсы, которые используются для PUCCH или SRS.

На фиг. 7 иллюстрируется блок-схема последовательности операций для дополнительных операций и способов, которые могут выполняться устройством Тх, в соответствии с некоторыми вариантами осуществления. В блоке 800 устройство Тх выводит ресурсы, предназначенные для использования, для передачи D2D в устройство Rx на основе выбранной RPT (блок 304 на фиг. 3). В блоке 802 устройство Тх передает данные в устройство Rx, используя ресурсы, выведенные для связи D2D.

На фиг. 8 иллюстрируется блок-схема последовательности операций для соответствующих операций и способов, которые могут выполняться устройством Rx, в соответствии с некоторыми вариантами осуществления. В блоке 900 устройство Rx принимает данные из устройства Тх, используя ресурсы, выведенные (в блоке 508 на фиг. 5) для приема D2D.

Потенциальное преимущество таких подходов состоит в том, что может быть выведен набор RPT, который является оптимизированным с учетом дуплексной конфигурации узла 110 радиосети, который влияет на выделение ресурсов устройством Тх 100 для связи D2D с устройством 102 Rx. Кроме того, использование доступных ресурсов для служебных сигналов сводится к минимуму путем выбора одной RPT среди набора RPT на основе информации планировщика, и затем передают только сигналы с индексом из устройства 100 Тх в устройство 102 Rx, которые используются устройством 102 Rx для идентификации выбранной RPT. Улучшения пропускной способности ресурса передачи данных, пиковых скоростей передачи трафика, и/или латентности при передаче данных могут быть получены для связи D2D между такими устройствами 100, 102 Тх и Rx.

Пример устройства связи и узла радиосети

На фиг. 6 показана блок-схема электронного устройства 600 связи (устройство), выполненного с возможностью связи с другим устройством, используя D2D, и которое может выполнять связь с узлом радиосети (например, eNB). Устройство 600 может быть выполнено, как устройство 100 Тх, устройство 102 Rx и/или любое другое устройство связи (например, узел радиосети) для выполнения операций и способов в соответствии с одним или больше раскрытыми здесь вариантами осуществления. Устройство 600 включает в себя приемопередатчик 610, схему (схемы) 602 процессора и запоминающее устройство (устройства) 620, содержащее функциональные модули 622. Устройство 600 может дополнительно включать в себя устройство 630 отображения, интерфейс 632 ввода пользователя и громкоговоритель 634.

Приемопередатчик 610 выполнен с возможностью непосредственной передачи данных с другим устройством, используя D2D и для связи с узлом радиосети, используя одну или больше технологий радиодоступа. Схема 602 процессора может включать в себя одну или больше схем обработки данных, такую как процессор общего назначения и/или процессор специального назначения, например, микропроцессор и/или цифровой сигнальный процессор. Схема 602 процессора выполнена с возможностью выполнения инструкции компьютерной программы из функциональных модулей 622 запоминающего устройства (устройств) 620 для выполнения, по меньшей мере, некоторых из описанных здесь операций, при их выполнении устройством передачи данных.

На фиг. 7 показана блок-схема узла 110 радиосети (например, сотовой базовой станции, eNB), который включает в себя приемопередатчик 710, схему (схемы) 702 процессора и запоминающее устройство (устройства) 720, содержащее функциональные модули 722. Узел 110 радиосети может дополнительно включать в себя устройство 730 отображения, интерфейс 732 ввода пользователя и громкоговоритель 734. Приемопередатчик 710 выполнен с возможностью связи с устройствами 100, 102 связи, используя одну или больше из технологий радиодоступа. Схема 702 процессора может включать в себя одну или больше их цепей обработки данных, такую как процессор общего назначения и/или процессор специального назначения, например, микропроцессор и/или цифровой сигнальный процессор. Схема 702 процессора выполнена с возможностью выполнения инструкции компьютерной программы из функциональных модулей 722 запоминающего устройства (устройств) 720 для выполнения, по меньшей мере, некоторых из операций, описанных здесь, при их выполнении узлом радиосети.

На фиг. 10 показана блок-схема функциональных модулей, которые могут быть воплощены в устройстве 100 Тх, в соответствии с некоторыми вариантами осуществления. Модули включают в себя модуль 1000 получения, который работает и который может работать, как функциональное средство, пояснявшееся выше, со ссылкой на блок 300, модуль 1002 вывода, который работает и может работать, как функциональное средство, пояснявшееся выше для блока 302, модуль 1004 выбора, который работает и может работать, как функциональное средство, как пояснялось выше со ссылкой на блок 304, и модуль 1006 сигналов, который работает и может работать, как функциональное ср