Способ и устройство для передачи сигнала в системе беспроводной связи

Иллюстрации

Показать все

Изобретение относится к беспроводной связи и может быть использовано, в частности, для передачи сигнала с использованием скачкообразной перестройки частоты в связи между устройствами (D2D). Способ передачи сигнала пользовательским оборудованием (UE) для связи между устройствами (D2D) в системе беспроводной связи включает в себя определение пула ресурсов для D2D сигнала управления, определение пула ресурсов для D2D сигнала связи на основании пула ресурсов для D2D сигнала управления и передачу D2D сигнала связи с использованием пула ресурсов для D2D сигнала связи. Подкадры пула ресурсов для D2D сигнала связи были переиндексированы, начиная с первого подкадра после последнего подкадра пула ресурсов для D2D сигнала управления. Технический результат - предотвращение конфликтов ресурсов. 2 н. и 12 з.п. ф-лы, 11 ил., 1 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к системе беспроводной связи и, в частности, к способу и устройству для передачи и приема сигнала с использованием скачкообразной перестройки частоты в связи между устройствами (D2D).

УРОВЕНЬ ТЕХНИКИ

Системы беспроводной связи широко используются для обеспечения различных типов услуг связи, например, передачи голоса или данных. В общем случае система беспроводной связи является системой множественного доступа, которая поддерживает связь множественных пользователей за счет совместного использования доступных системных ресурсов (полосы, мощности передачи и т.д.) между ними. Например, системы множественного доступа включают в себя систему множественного доступа с кодовым разделением (CDMA), систему множественного доступа с частотным разделением (FDMA), систему множественного доступа с временным разделением (TDMA), систему множественного доступа с ортогональным частотным разделением (OFDMA), систему множественного доступа с частотным разделением с одной несущей (SC-FDMA) и систему множественного доступа с частотным разделением с несколькими несущими (MC-FDMA).

D2D связь представляет собой схему связи, в которой между экземплярами пользовательского оборудования (UE) устанавливается прямая линия связи, и UE обмениваются друг с другом голосом и данными напрямую без вмешательства усовершенствованного узла B (eNB). D2D связь может охватывать связь UE с UE и связь между равноправными устройствами. Кроме того, D2D связь может находить применение в межмашинной (M2M) связи и связи машинного типа (MTC).

D2D связь рассматривается как решение в отношении служебной нагрузки eNB, обусловленной быстрым увеличением трафика данных. Например, поскольку, благодаря D2D связи, устройства обмениваются друг с другом данными напрямую без вмешательства eNB, по сравнению с традиционной беспроводной связью, служебную нагрузку сети можно снизить. Кроме того, предполагается, что введение D2D связи упростит процедуры усовершенствованного узла B (eNB), снизит энергопотребление устройств, участвующих в D2D связи, увеличит скорости передачи данных, повысит емкость сети, распределит нагрузку и расширит зону покрытия соты.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая проблема

Задача настоящего изобретения состоит в обеспечении способов скачкообразной перестройки для связи между устройствами (D2D), которые позволяют предотвратить конфликт ресурсов.

Специалистам в данной области техники следует понимать, что задачи, которые позволяет решить настоящее изобретение, не ограничиваются конкретно описанными выше, и вышеупомянутые и другие задачи, которые позволяет решить настоящее изобретение, можно лучше понять из нижеследующего подробного описания.

Техническое решение

Задачу настоящего изобретения можно решить путем обеспечения способа передачи сигнала пользовательским оборудованием (UE) для связи между устройствами (D2D) в системе беспроводной связи, включающего в себя определение пула ресурсов для D2D сигнала управления, определение пула ресурсов для D2D сигнала связи на основании пула ресурсов для D2D сигнала управления и передачу D2D сигнала связи с использованием пула ресурсов для D2D сигнала связи. Подкадры пула ресурсов для D2D сигнала связи были переиндексированы, начиная с первого подкадра после последнего подкадра пула ресурсов для D2D сигнала управления.

В другом аспекте настоящего изобретения здесь предусмотрено UE для передачи сигнала связи между устройствами (D2D) в системе беспроводной связи, включающее в себя модуль передачи и процессор. Процессор выполнен с возможностью определения пула ресурсов для D2D сигнала управления, определения пула ресурсов для D2D сигнала связи на основании пула ресурсов для D2D сигнала управления и передачи D2D сигнала связи с использованием пула ресурсов для D2D сигнала связи. Подкадры пула ресурсов для D2D сигнала связи были переиндексированы, начиная с первого подкадра после последнего подкадра пула ресурсов для D2D сигнала управления.

Вышеупомянутые аспекты настоящего изобретения могут включать в себя полностью или частично следующее.

Подкадры можно переиндексировать посредством операции по модулю 10, при увеличении индекса подкадра, начиная с первого подкадра пула ресурсов для D2D сигнала связи.

Если для передачи D2D сигнала связи используется скачкообразная перестройка частоты, наименьший из индексов блока физических ресурсов (PRB) для PRB, в которые отображается D2D сигнал связи, может изменяться между первым индексом PRB и вторым индексом PRB, согласно изменению номера переиндексированного подкадра.

Если для передачи D2D сигнала связи используется скачкообразная перестройка на основе поддиапазонов, индекс слота, используемый при определении индекса PRB можно создавать путем осуществления переиндексирования, начиная со слота первого подкадра после последнего подкадра пула ресурсов для D2D сигнала управления.

Начальное значение функции генерации псевдослучайной последовательности, используемой при определении индекса PRB, можно задавать равным 0.

Количество поддиапазонов может быть больше или равно 2.

Если дуплексный режим для D2D UE является дуплексным режимом с временным разделением (TDD), первый подкадр может быть подкадром восходящей линии связи после последнего подкадра пула ресурсов для D2D сигнала управления.

Положительные результаты

Согласно настоящему изобретению, когда скачкообразная перестройка используется между D2D UE, имеющими разные шаблоны передачи, можно предотвратить конфликт ресурсов.

Специалистам в данной области техники следует понимать, что результаты, которые могут достигаться настоящим изобретением, не ограничиваются конкретно описанными выше, и другие преимущества настоящего изобретения можно лучше понять из нижеследующего подробного описания, приведенного совместно с прилагаемыми чертежами.

ОПИСАНИЕ ЧЕРТЕЖЕЙ

Прилагаемые чертежи, которые включены для обеспечения дополнительного понимания изобретения и включены в и составляют часть данной заявки, иллюстрируют варианты осуществления изобретения и, совместно с описанием, служат для объяснения принципа изобретения. В чертежах:

фиг. 1 иллюстрирует структуру радиокадра;

фиг. 2 иллюстрирует структуру сетки ресурсов нисходящей линии связи для длительности одного слота нисходящей линии связи;

фиг. 3 иллюстрирует структуру подкадра нисходящей линии связи;

фиг. 4 иллюстрирует структуру подкадра восходящей линии связи;

фиг. 5 и 6 иллюстрируют скачкообразная перестройка частоты;

фиг. 7-10 иллюстрируют способ скачкообразной перестройки согласно варианту осуществления настоящего изобретения; и

фиг. 11 - блок-схема передающего устройства и приемного устройства.

ПРЕДПОЧТИТЕЛЬНЫЕ ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Описанные ниже варианты осуществления построены путем объединения элементов и признаков настоящего изобретения в заранее определенной форме. Элементы или признаки можно рассматривать как необязательные, если явно не указано обратное. Каждый из элементов или признаков можно реализовать, не объединяя его с другими элементами. Кроме того, некоторые элементы и/или признаки можно объединить для конфигурирования варианта осуществления настоящего изобретения. Последовательный порядок операций, рассмотренный в вариантах осуществления настоящего изобретения, может изменяться. Некоторые элементы или признаки одного варианта осуществления также могут быть включены в другой вариант осуществления, или могут быть заменены соответствующими элементами или признаками другого варианта осуществления.

Варианты осуществления настоящего изобретения будут описаны применительно к передаче данных между базовой станцией и терминалом. Базовая станция выступает в роли оконечного узла сети, по которой базовая станция напрямую осуществляет связь с терминалом. Конкретные операции, проиллюстрированные как проводимые базовой станцией в этом описании изобретения, при необходимости, могут проводиться верхним узлом базовой станции.

Таким образом, следует понимать, что различные операции, осуществляемые для осуществления связи с терминалом по сети, состоящей из множественных сетевых узлов, включающих в себя базовую станцию, могут проводиться базовой станцией или сетевыми узлами, отличными от базовой станции. Термин "базовая станция (BS)" можно заменить такими терминами, как ʺфиксированная станцияʺ, ʺNode-Bʺ, ʺeNode-B (eNB)ʺ и ʺточка доступаʺ. Термин "ретранслятор" можно заменить такими терминами, как ʺретрансляционный узел (RN)ʺ и ʺретрансляционная станция (RS)ʺ. Термин "терминал" также можно заменить такими терминами, как ʺпользовательское оборудование (UE)ʺ, ʺмобильная станция (MS)ʺ, ʺмобильная абонентская станция (MSS)ʺ и ʺабонентская станция (SS)ʺ.

Следует отметить, что конкретные термины, используемые в нижеприведенном описании, призваны обеспечивать лучшее понимание настоящего изобретения, и эти конкретные термины могут изменяться на другие формы в технической сущности настоящего изобретения.

В ряде случаев общеизвестные структуры и устройства могут быть опущены или можно обеспечивать блок-схемы, иллюстрирующие только ключевые функции структур и устройств, чтобы не затемнять принцип настоящего изобретения. Одни и те же ссылочные позиции будет использоваться на протяжении этого описания изобретения для обозначения одинаковых или сходных частей.

Иллюстративные варианты осуществления настоящего изобретения могут поддерживаться стандартными документами для по меньшей мере одной из систем беспроводного доступа, включающего в себя систему института инженеров по электротехнике и радиоэлектронике (IEEE) 802, систему проекта партнерства третьего поколения (3GPP), систему проекта долгосрочного развития систем связи (LTE) 3GPP, систему LTE-Advanced (LTE-A) и систему 3GPP2. Таким образом, этапы или части, которые не описаны в вариантах осуществления настоящего изобретения, чтобы не затемнять техническую сущность настоящего изобретения, могут поддерживаться вышеупомянутыми документами. Все используемые здесь термины могут поддерживаться вышеупомянутыми стандартными документами.

Описанные ниже варианты осуществления настоящего изобретения можно применять к различным технологиям беспроводного доступа, например, множественного доступа с кодовым разделением (CDMA), множественного доступа с частотным разделением (FDMA), множественного доступа с временным разделением (TDMA), множественного доступа с ортогональным частотным разделением (OFDMA) и множественного доступа с частотным разделением с одной несущей (SC-FDMA). CDMA можно реализовать посредством технологий радиосвязи, например универсального наземного радиодоступа (UTRA) или CDMA2000. TDMA можно реализовать посредством технологий радиосвязи, например глобальная система мобильной связи (GSM)/общая радиослужба пакетной передачи (GPRS)/повышенные скорости передачи данных для развития GSM (EDGE). OFDMA можно реализовать посредством технологий радиосвязи, например IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20 и усовершенствованного UTRA (E-UTRA). UTRA является частью универсальной системы мобильной связи (UMTS). Проект долгосрочного развития систем связи (LTE) проекта партнерства третьего поколения (3GPP) является частью усовершенствованного UMTS (E-UMTS), который использует E-UTRA. 3GPP LTE использует OFDMA для нисходящей линии связи и использует SC-FDMA для восходящей линии связи. LTE-Advanced (LTE-A) является усовершенствованным вариантом 3GPP LTE. WiMAX можно объяснить стандартом IEEE 802.16e (опорная система WirelessMAN-OFDMA) и усовершенствованный стандартом IEEE 802.16m (система WirelessMAN-OFDMA Advanced). Для ясности, нижеследующее описание сосредоточено на системах 3GPP LTE и 3GPP LTE-A. Однако сущность настоящего изобретения этим не ограничивается.

Структура подкадра/канала LTE/LTE-A

Далее, со ссылкой на фиг. 1, будет описана структура радиокадра.

В системе беспроводной пакетной сотовой связи OFDM, пакет данных восходящей линии связи (UL)/нисходящей линии связи (DL) передается на подкадровой основе, и один подкадр определяется как заранее определенный интервал времени, включающий в себя множество символов OFDM. 3GPP LTE поддерживает структуру радиокадра типа 1, применимую к дуплексному режиму с частотным разделением (FDD) и структура радиокадра типа 2, применимую к дуплексному режиму с временным разделением (TDD).

Фиг. 1(a) иллюстрирует структуру радиокадра типа 1. Радиокадр нисходящей линии связи делится на 10 подкадров. Каждый подкадр включает в себя два слота во временной области. Длительность передачи одного подкадра определяется как интервал времени передачи (TTI). Например, подкадр может иметь длительность 1 мс, и один слот может иметь длительность 0,5 мс. Слот может включать в себя множество символов OFDM во временной области и множество блоков ресурсов (RB) в частотной области. Поскольку 3GPP LTE использует OFDMA для нисходящей линии связи, символ OFDM представляет один период символа. Символ OFDM может именоваться символом SC-FDMA или периодом символа. Блок ресурсов (RB), который является единицей выделения ресурсов, может включать в себя множество последовательных поднесущих в слоте.

Количество символов OFDM, включенных в один слот, зависит от конфигурации циклического префикса (CP). CP делятся на расширенный CP и нормальный CP. Для нормального CP, конфигурирующего каждый символ OFDM, каждый слот может включать в себя 7 символов OFDM. Для расширенного CP, конфигурирующего каждый символ OFDM, длительность каждого символа OFDM расширяется и, таким образом, количество символов OFDM, включенных в слот, меньше, чем в случае нормального CP. Для расширенного CP, каждый слот может включать в себя, например, 6 символов OFDM. Когда состояние канала не стабильно, как в случае высокоскоростного перемещения UE, расширенный CP можно использовать для снижения межсимвольной помехи.

При использовании нормального CP каждый слот включает в себя 7 символов OFDM и, таким образом, каждый подкадр включает в себя 14 символов OFDM. В этом случае первые два или три символа OFDM каждого подкадра могут выделяться физическому каналу управления нисходящей линии связи (PDCCH), и другие символы OFDM могут выделяться физическому совместно используемому каналу нисходящей линии связи (PDSCH).

Фиг. 1(b) иллюстрирует структуру радиокадра типа 2. Радиокадр типа 2 включает в себя два полукадра, каждый из которых имеет 5 подкадров, временные слоты пилот-сигнала нисходящей линии связи (DwPTS), защитные периоды (GP) и временные слоты пилот-сигнала восходящей линии связи (UpPTS). Каждый подкадр состоит из двух слотов. DwPTS используется для поиска начальной соты, синхронизации или оценки канала на UE, тогда как UpPTS используется для оценки канала на eNB и синхронизации передачи UL для UE. GP обеспечен для устранения помехи UL, обусловленной многопутевой задержкой сигнала DL между DL и UL. Независимо от типов радиокадров, подкадр состоит из двух слотов.

Проиллюстрированные структуры радиокадра являются лишь примерами, и можно вносить различные изменения в количество подкадров, включенных в радиокадр, количество слотов, включенных в подкадр, или количество символов, включенных в слот.

На фиг. 2 показана схема, демонстрирующая сетку ресурсов одного слота DL. Один слот DL включает в себя 7 символов OFDM во временной области, и RB включает в себя 12 поднесущих в частотной области. Однако варианты осуществления настоящего изобретения этим не ограничиваются. Для нормального CP слот может включать в себя 7 символов OFDM. Для расширенного CP слот может включать в себя 6 символов OFDM. Каждый элемент в сетке ресурсов именуется ресурсным элементом (RE). RB включает в себя 12×7 RE. Количество NDL RB, включенных в слот DL, зависит от полосы передачи DL. Слот UL может иметь такую же структуру, как слот DL.

Фиг. 3 иллюстрирует структуру подкадра DL. До трех символов OFDM в передней части первого слота в подкадре DL соответствует участку управления, которому выделяется канал управления. Другие символы OFDM подкадра DL соответствуют участку данных, которому выделяется PDSCH. Каналы управления DL, используемые в 3GPP LTE, включают в себя, например, физический канал индикатора формата управления (PCFICH), физический канал управления нисходящей линии связи (PDCCH) и физический канал индикатора гибридного автоматического запроса повторения передачи (HARQ) (PHICH). PCFICH передается в первом символе OFDM подкадра, несущем информацию о количестве символов OFDM, используемых для передачи каналов управления в подкадре. PHICH несет сигнал HARQ ACK/NACK в ответ на передачу по восходящей линии связи. Информация управления, переносимая на PDCCH, называется информацией управления нисходящей линии связи (DCI). DCI включает в себя информацию планирования UL или команду управления передаваемой мощностью DL или UL для группы UE. PDCCH может доставлять информацию о выделении ресурсов и транспортном формате совместно используемого канала DL (DL-SCH), информацию выделения ресурсов совместно используемого канала UL (UL-SCH), пейджинговую информацию пейджингового канала (PCH), системную информацию на DL-SCH, информацию о выделении ресурсов для управляющего сообщения более высокого уровня, например ответа произвольного доступа, передаваемого на PDSCH, набор команд управления передаваемой мощностью для отдельных UE в группе UE, информацию управления передаваемой мощностью и информацию активации голосовой связи через интернет-протокол (VoIP). На участке управления может передаваться множество PDCCH. UE может отслеживать множество PDCCH. PDCCH передается в совокупности из одного или более последовательных элементов канала управления (CCE). CCE является логической единицей выделения, используемой для обеспечения PDCCH на скорости кодирования на основании состояния радиоканала. CCE соответствует множеству групп RE. Формат PDCCH и количество доступных битов для PDCCH определяются в зависимости от корреляции между количеством CCE и скоростью кодирования, обеспеченной CCE. eNB определяет формат PDCCH согласно DCI, передаваемому на UE, и добавляет циклический контроль по избыточности (CRC) к информации управления. CRC маскируется идентификатором (ID), известным как временный идентификатор радиосети (RNTI) согласно владельцу или использованию PDCCH. Если PDCCH адресован конкретному UE, его CRC может маскироваться Cell-RNTI (C-RNTI) UE. Если PDCCH служит для пейджингового сообщения, CRC PDCCH может маскироваться пейджинговым временным идентификатором радиосети (P-RNTI). Если PDCCH доставляет системную информацию (в частности, блок системной информации (SIB)), CRC может маскироваться ID системной информации и RNTI системной информации (SI-RNTI). Для указания ответа произвольного доступа, который является ответом на преамбулу произвольного доступа, передаваемую UE, CRC может маскироваться RNTI произвольного доступа (RA-RNTI).

Фиг. 4 иллюстрирует структуру подкадра UL. Подкадр UL может делиться на участок управления и участок данных в частотной области. Физический канал управления восходящей линии связи (PUCCH), несущий информацию управления восходящей линии связи, выделяется участку управления. Физический совместно используемый канал восходящей линии связи (PUSCH), несущий пользовательские данные, выделяется участку данных. Для поддержания свойства одной несущей, UE не передает одновременно PUSCH и PUCCH. PUCCH для UE выделяется паре RB в подкадре. RB из пары RB занимают разные поднесущие в двух слотах. Это называется скачкообразной перестройкой частоты пары RB, выделенной PUCCH, через границу слот.

Скачкообразная перестройка PUSCH

Для обеспечения разнесения по частоте, скачкообразная перестройка частоты может применяться к передаче PUSCH. В системе LTE/LTE-A существует два типа скачкообразной перестройки частоты: скачкообразная перестройка частоты типа 1 и скачкообразная перестройка частоты типа 2. В схеме скачкообразной перестройки частоты типа 1 один из 1/4, -1/4 и 1/2 полосы скачкообразной перестройки выбирается согласно битам скачкообразной перестройки, указанным в DCI предоставления UL. В частности, наименьший индекс PRB первого слота определяется согласно . , где можно получить из предоставления UL. Когда наименьший индекс PRB первого слота определен, наименьший индекс PRB второго слота определяется согласно уравнению 1 и таблице 1.

Уравнение 1

где - смещение скачкообразной перестройки (pusch-HoppingOffset) в пределах от 0 до 98. Если является нечетным числом, , и если является четным числом, .

Таблица 1

Системная BW Количество битов скачкообразной перестройки Информация в битах скачкообразной перестройки
6-49 1 0
1 скачкообразная перестройка типа 2 PUSCH
50-110 2 00
01
10
11 скачкообразная перестройка типа 2 PUSCH

В таблице 1, - количество RB PUSCH (т.е. полоса скачкообразной перестройки).

Фиг. 5 иллюстрирует пример скачкообразной перестройки типа 1. На фиг. 5, предполагается, что два бита скачкообразной перестройки заданы равными 01. Таким образом, . Наименьший индекс PRB второго слота можно определить из уравнения 1, который получается скачкообразной перестройкой от наименьшего индекса PRB первого слота на -1/4 полосы скачкообразной перестройки.

Если режим скачкообразной перестройки является межподкадровым в скачкообразной перестройке частоты типа 1, выделение ресурсов первого слота применяется к четному CURRENT_TX_NB, и выделение ресурсов второго слота применяется к нечетному CURRENT_TX_NB. CURRENT_TX_NB представляет номер передачи для транспортного блока (TB), передаваемого в слоте .

Скачкообразная перестройка PUCCH типа 2 основана на поддиапазонах. Если зеркалирование не применяется, наименьший индекс PRB слота определяется согласно уравнению 2.

Уравнение 2

где - количество поддиапазонов, указанное сигнализацией более высокого уровня. задается уравнением 3.

Уравнение 3

Функция скачкообразной перестройки задается уравнением 4.

Уравнение 4

Функция зеркалирования задается уравнением 5.

Уравнение 5

где и CURRENT_TX_NB представляет номер передачи для TB, передаваемого в слоте . Функция генерации псевдослучайной последовательности (см. 3GPP TS 36.211, 7.2) инициализируется: для структуры кадра типа 1 и с начала каждого кадра, для структуры кадра типа 2.

Другими словами, в скачкообразной перестройке типа 2 зеркалирование применяется, то есть последовательность использования ресурсов передачи в поддиапазоне резервируется, тогда как скачкообразная перестройка осуществляется на поддиапазонной основе согласно функции скачкообразной перестройки . Функция скачкообразной перестройки определяется псевдослучайной последовательностью , которая является функцией ID соты (шаблон зеркалирования также является функцией ID соты). Поэтому один и тот же шаблон скачкообразной перестройки используется для всех UE в одной соте. В скачкообразной перестройке типа 2 можно использовать зеркалирование, зависящее от соты.

Фиг. 6 иллюстрирует примеры скачкообразной перестройки типа 2 для количества поддиапазонов , равного 4. В примере, приведенном на фиг. 6(a), виртуальный RB (VRB) 601 перескакивает на один поддиапазон в первом слоте и на два поддиапазона во втором слоте. В примере, приведенном на фиг. 6(b), зеркалирование применяется ко второму слоту.

Вхождение в синхронизм D2D UE

Ниже приведено описание вхождения в синхронизм между UE в D2D связи на основе вышеприведенного описания в контексте традиционной системы LTE/LTE-A. В системе OFDM, если временная/частотная синхронизация не выполнена, результирующая межсотовая помеха (ICI) может не позволять мультиплексировать разные UE в сигнале OFDM. Если каждое отдельное D2D UE входит в синхронизм, напрямую передавая и принимая сигнал синхронизации, это неэффективно. Поэтому в системе распределенных узлов, например системе D2D связи, конкретный узел может передавать репрезентативный сигнал синхронизации, и другие UE могут входить в синхронизм с использованием репрезентативного сигнала синхронизации. Другими словами, некоторые узлы (которыми могут быть eNB, UE и опорный узел синхронизации (SRN, также именуемый источником синхронизации)) может передавать D2D сигнал синхронизации (D2DSS), и остальные UE могут передавать и принимать сигналы синхронно с D2DSS.

D2DSS может иметь период передачи, больший или равный 40 ми. Для передачи D2DSS в подкадре можно использовать один или более символов.

D2DSS могут включать в себя первичный D2DSS (PD2DSS) или первичный сигнал синхронизации побочной линии связи (PSSS) и вторичный D2DSS (SD2DSS) или вторичный сигнал синхронизации побочной линии связи (SSSS). PD2DSS может быть сконфигурирован иметь аналогичную/модифицированную/повторяющуюся структуру последовательности Задова-Чу заранее определенной длины или первичного сигнала синхронизации (PSS), и SD2DSS может быть сконфигурирован иметь аналогичную/модифицированную/повторяющуюся структуру M-последовательности или вторичного сигнала синхронизации (SSS).

D2D UE должно выбрать источник синхронизации D2D на основании того же критерия приоритета. В ситуации вне зоны покрытия, если интенсивность сигнала всех принятых D2DSS меньше или равна заранее определенному значению, источником синхронизации может быть UE. Если UE синхронизируют свое хронирование (временное распределение) с eNB, источником синхронизации может быть eNB, и D2DSS может быть PSS/SSS. D2DSS источника синхронизации, выведенный из eNB, может отличаться от D2DSS источника синхронизации, не выведенного из eNB.

Физический D2D канал синхронизации (PD2DSCH) может быть (широковещательным) каналом, несущим базовую (системную) информацию, которую UE должно в первую очередь получать до передачи и приема D2D сигнала (например, информацию, связанную с D2DSS, дуплексный режим (DM), конфигурацию UL/DL TDD, информацию, связанную с пулом ресурсов, тип приложения, связанного с D2DSS, и т.д.). PD2DSCH может передаваться в том же подкадре, что и D2DSS, или в подкадре, следующем за кадром, несущим D2DSS.

D2DSS может быть конкретной последовательностью, и PD2DSCH может быть последовательностью, представляющей конкретную информацию или кодовое слово, создаваемое посредством заранее определенного кодирования канала. SRN может быть eNB или конкретным D2D UE. В случае частичного нахождения в зоне покрытия сети или вне зоны покрытия сети, SRN может быть UE.

В ситуации, представленной на фиг. 7, D2DSS может ретранслироваться для D2D связи с UE вне зоны покрытия. D2DSS может ретранслироваться через множественные перескоки. Нижеследующее описание приведено, исходя из того, что ретранслятор SS покрывает передачу D2DSS в отдельном формате согласно времени приема SS, а также прямой ретрансляции с усилением и пересылкой (AF) SS, передаваемого с eNB. При ретрансляции D2DSS, UE в зоне покрытия может напрямую осуществлять связь с UE вне зоны покрытия.

Ниже приведено описание способа передачи сигнала, способа скачкообразной перестройки частотного ресурса и способа индексирования подкадров для D2D связи на основе вышеприведенного описания. Фиг. 8 иллюстрирует иллюстративный пул ресурсов в окружении D2D связи. На фиг. 8(a), первое UE (UE 1) может выбирать единицу ресурса, соответствующую конкретным ресурсам из пула ресурсов, который является набором ресурсов, и может передавать D2D сигнал в выбранной единице ресурса. Второе UE (UE 2) может получать извещение о конфигурации пула ресурсов, в котором UE 1 может передавать сигнал, и, соответственно, может регистрировать сигнал, передаваемый с UE 1. eNB может передавать конфигурацию пула ресурсов в системной информации. В отсутствие информации о пуле ресурсов в системной информации конфигурация пула ресурсов может сигнализироваться по запросу UE. В случае, когда UE находится вне зоны покрытия eNB, другое UE (например, UE-ретранслятор D2D) может указывать конфигурацию пула ресурсов для UE вне зоны покрытия, или UE вне зоны покрытия может использовать заранее определенную область ресурсов.

Пул ресурсов может включать в себя множество единиц ресурса, и UE может передавать D2D сигнал в одной или более из единиц ресурса. На фиг. 8(b) показаны иллюстративные единицы ресурса. В частности, можно задать всего NF×NT единиц ресурса делением полных частотных ресурсов на NF частей и полных временных ресурсов на NT частей. Кроме того, единицы ресурса могут повторяться в каждом периоде из NT подкадров. Или индекс физической единицы ресурса (PRB), в которую отображается одна логическая единица ресурса, может изменяться в течение времени или по заранее определенному шаблону для обеспечения разнесения по времени или разнесения по частоте. В этой структуре единиц ресурса пул ресурсов может означать набор единиц ресурса, доступных для передачи D2D сигнала UE.

Пул ресурсов можно идентифицировать типом D2D сигнала, передаваемого в пуле ресурсов. Например, пулы ресурсов можно задать, соответственно, для D2D канала управления (назначения планирования (SA)), D2D канала данных и D2D канала обнаружения. Кроме того, множество пулов ресурсов можно конфигурировать для каждого типа D2D сигнала. SA может быть сигналом, включающим в себя такую информацию, как позиция ресурсов, используемых для передачи следующего D2D канала данных на каждом передающем UE, схема модуляции и кодирования (MCS), необходимая для демодуляции D2D канала данных, ID (передающего или принимающего) UE, схема передачи множественных входов и множественных выходов (MIMO), опережение хронирования и т.д. Этот сигнал можно мультиплексировать с D2D данными в одной и той же единице ресурса, для передачи. В этом случае пул ресурсов SA может означать пул ресурсов, в котором SA и D2D данные мультиплексируются и передаются. Пул ресурсов для D2D канала данных может означать пул ресурсов, указанный посредством SA, в котором передающее UE передает пользовательские данные. Если SA может мультиплексироваться с D2D данными и передаваться в одной и той же единице ресурса, только D2D канал данных без информации SA может передаваться в пуле ресурсов для D2D канала данных. Другими словами, RE, используемый для передачи информации SA в отдельной единице ресурса пула ресурсов SA, также используется для передачи D2D данных в пуле ресурсов D2D канала данных. Пул ресурсов для сигнала обнаружения означает пул ресурсов для сообщения, в котором передающее UE передает информацию, например, свой ID, что позволяет соседнему UE обнаруживать передающее UE. Аналогично PBCH, PD2DSCH является каналом, передаваемым совместно с D2DSS, включающим в себя информационных о системной полосе, конфигурации TDD и номере системного кадра.

Несмотря на тот же тип/содержимое D2D сигнала, можно использовать разные пулы ресурсов в зависимости от свойств передачи и приема D2D сигналов. Например, разные пулы ресурсов можно задавать для одного и того же D2D канала данных или сообщения обнаружения, в зависимости от схемы определения хронирования передачи D2D сигнала (например, передается ли D2D сигнал на момент приема RS или с заранее определенным опережением хронирования, применяемым к моменту приема), схемы выделения ресурсов (например, указаны ли ресурсы передачи отдельного сигнала отдельному передающему UE посредством eNB или выбраны из пула ресурсов отдельным передающим UE), формата сигнала (например, количества символов, занимаемых каждым D2D сигналом в одном подкадре или количества подкадров, используемых для передачи одного D2D сигнала), интенсивности сигнала, принятого от eNB, мощности передачи D2D UE и т.д. Для удобства описания, в D2D связи, схема, в которой eNB указывает ресурсы передачи непосредственно передающему D2D UE, именуется режимом 1, тогда как схема, в которой eNB конфигурирует область ресурсов передачи, и UE напрямую выбирает ресурсы передачи из области ресурсов передачи, именуется режимом 2. При обнаружении D2D, схема, в которой eNB непосредственно указывает ресурсы, именуется типом 2, тогда как схема, в которой UE выбирает ресурсы передачи напрямую заранее определенной области ресурсов или области ресурсов, указанной eNB, именуется типом 1.

Предложена схема скачкообразной перестройки частоты для передачи D2D сигнала. Для информации, в нижеследующем описании скачкообразную перестройку типа 1/2 следует отличать от обнаружения типа 1/2. Скачкообразная перестройка типа 1/2 относится к схеме скачкообразной перестройки частоты в системе LTE, тогда как обнаружение типа 1/2 определяется согласно схемам выделения ресурсов для обнаружения D2D. Поэтому скачкообразная перестройка типа 1/2 применима при обнаружении типа 1/2 и режима связи 1/2. Таким образом, эти термины не следует путать.

В традиционной схеме скачкообразной перестройки PUSCH, как описано выше, частотная позиция изменяется согласно CURRENT_TX_NB в скачкообразной перестройке типа 1 и согласно индексу подкадра (слота) в скачкообразной перестройке типа 2. При передаче D2D сигнала, eNB указывает шаблон временных ресурсов для передачи (T-RPT) и также позицию частотных ресурсов в режиме 1.

D2D UE может отображать блок комплексно-значных символов в PRB и затем может генерировать и передавать сигнал SC-FDMA. За подробным описанием отображения можно обратиться к части передачи сигнала UL, заданной в спецификации 3GPP. Если скачкообразная перестройка частоты разрешена в ходе отображения, наименьшие индексы PRB мо