Система и способ сбора образца нуклеиновой кислоты

Иллюстрации

Показать все

Группа изобретений относится к области биохимии. Предложена система и способ для сбора нуклеиновой кислоты из образца текучей среды организма, а также стерильная съемная крышка для приемника для сбора отходов. Система содержит приемник, съемную крышку для приемника с вентиляционным отверстием и отверстием для соединения с образцом текучей среды организма, фильтрационную колонку, контейнер для сбора образца текучей среды организма и выполненный с возможностью вмещения фильтрационной колонки транспортировочный контейнер. Способ включает обеспечения образца текучей среды организма в контейнере, присоединение контейнера к приемнику, пропускание данного образца из контейнера через фильтрационную колонку, помещение транспортировочного контейнера над фильтрационной колонкой, зацепление фильтрационной колонки с транспортировочным контейнером и отсоединение фильтрационной колонки от крышки приемника. Изобретения обеспечивают обработку большего объёма образца текучих сред организма и обнаружение низких концентраций внеклеточных нуклеиновых кислот в образце текучих сред организма. 3 н. и 36 з.п. ф-лы, 17 ил., 5 табл., 4 пр.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

Настоящая заявка испрашивает приоритет предварительной заявки US 61/827244, озаглавленной «Система и способ сбора образца нуклеиновой кислоты» (System and method for collecting a sample of nucleic acid) и поданной 24 мая 2013 г., которая во всей своей полноте включена в материалы настоящего описания посредством ссылки.

УРОВЕНЬ ТЕХНИКИ

Существующие в настоящее время системы и способы сбора, экстракции и обнаружения нуклеиновой кислоты в исследуемых биологических образцах, как правило, оказываются чрезмерно сложными, требуют множество этапов с квалифицированным техническим персоналом и не являются оптимизированными для обработки образцов, имеющих большие объемы, или для предотвращения перекрестного загрязнения при обработке образцов и стабилизации для транспортировки.

Разнообразные текучие среды организма, такие как кровь, плазма, сыворотка, спинномозговая жидкость (СМЖ), плевральный выпот, перитонеальный выпот, моча и т.д., содержат короткоцепочечные фрагменты нуклеиновых кислот (НА), а именно внеклеточные нуклеиновые кислоты (вкНК) или циркулирующие нуклеиновые кислоты (цНК). Измененные нуклеиновые кислоты, образующиеся эндогенно из опухоли или «экзогенно» из плода или патогенной инфекции внутри организма могут присутствовать как вкНК в периферической крови в очень низких концентрациях, и их можно обнаруживать, а затем отличать от нормальных вкНК хозяина. Экстракция этих вкНК в достаточном количестве из исследуемой плазмы или сыворотки требует обработки относительно большого объема текучей среды, что вызывает неизбежные технические проблемы определения условий клинической диагностики. Соответственно, в данной области существует потребность в новых способах решения таких проблем.

Примеры таких способов обнаружения, например, туберкулеза, описывает рассматриваемая опубликованная международная патентная заявка PCT WO 2012/135815, составленная автором настоящего описания и включенная в настоящее описание посредством ссылки. Однако такое исследование может оказаться полезным в тех регионах мира, в которых отсутствует быстрый доступ к дорогостоящему технологическому оборудованию, используемому для анализа образцов. Соответственно, в технике существует потребность в системе сбора образцов и способах, которые позволяют улавливать нуклеиновые кислоты в достаточных количествах из большого объема биологических образцов, чтобы осуществлять последующий анализ, предотвращать загрязнение от окружающей среды и операторов, а также предохранять и перемещать нуклеиновую кислоту, таким образом, что нуклеиновые кислоты можно собирать в помещении медицинского учреждения с использованием относительно недорогостоящего оборудования, а затем транспортировать в стабилизированной форме в центральное учреждение для дополнительной обработки и исследований.

Известны разнообразные способы экстракции, подходящие для выделения циркулирующих ДНК или РНК из больших объемов биологических текучих сред, такие как способы, которые описывает, например, «Справочник по циркулирующим нуклеиновым кислотам QIAamp®» компании Qiagen (второе издание, февраль 2011 г.), и усовершенствованный способ экстракции с центрифужной колонкой, описанный в патенте US 5234809 компании Boom Technology. Патент US 5346994 описывает технологический способ экстракции органическими жидкостями с использованием фенола и хлороформа. Оба эти способа можно использовать для экстракции больших объемов, например, из образцов плазма или сыворотки, но органические реагенты отличаются токсичностью, которая ограничивает их применение.

Патенты US 7897378 и US 8158349 описывают устройства и способ очистки или выделения нуклеиновых кислот из образцов большого объема с использованием систем, включающих пару соответствующих полых элементов, через которые образцы пропускаются в приемник для сбора, причем нуклеиновые кислоты прикрепляются связующим материалом в одном из этих полых элементов. Полый элемент, в котором находится удерживаемый образец, перемещается в первый приемный приемник для промывания, а затем очищенные или выделенные нуклеиновые кислоты элюируются и собираются во втором приемном приемнике для последующего анализа.

В качестве примера, патент US 5234809 компании Boom, включенный в настоящее описание посредством ссылки, описывает способ выделения нуклеиновых кислот, который является подходящим для множества разнообразных применений. Этот патент описывает способ выделения нуклеиновых кислот из содержащих нуклеиновые кислоты исходных материалов посредством инкубации вышеупомянутого исходного материала с хаотропным (вызывающим диссоциацию) буферным раствором и связывающей ДНК твердой фазой. Хаотропный буферный раствор одновременно осуществляет, если это необходимо, лизис исходного материала и прикрепление нуклеиновых кислот к твердой фазе.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Согласно одному аспекту настоящего изобретения предлагаются способ и система для обработки биологического образца. Обработка, упомянутая в настоящем описании, включает в себя этыпы разложения, связывания, промывания, стабилизации и элюирования биомолекул биологического образца.

Согласно одному варианту осуществления предлагается система для сбора образца нуклеиновой кислоты, содержащая приемник, образующий внутренний объем, съемную крышку для приемника, имеющую соединительный интерфейс в сообщении по текучей среде с отверстием для соединения с образцом, фильтрационную колонку, выполненную с возможностью съемного присоединения к соединительному интерфейсу крышки приемника, контейнер для сбора образца и транспортировочный контейнер. Съемная крышка для приемника имеет внутреннюю сторону, обращенную к внутреннему объему приемника и внешнюю сторону, обращенную от внутреннего объема. Крышка имеет вентиляционное отверстие в сообщение между внутренней стороной и внешней стороной, и отверстие для соединения с образцом в сообщении между внутренней стороной и внешней стороной. Отверстие для соединения с образцом имеет первый блокировочный компонент для высвобождаемого блокирования отверстия для соединения с образцом с взаимодействующим вторым блокировочным компонентом. Соединительный интерфейс в сообщении по текучей среде с отверстием для соединения с образцом располагается на внутренней стороне крышки. Фильтрационная колонка имеет открытый первый конец, открытый второй конец и расположенный между ними внутренний канал, содержащий субстрат для сбора нуклеиновой кислоты. Контейнер для сбора образца содержит второй блокировочный компонент, выполненный с возможностью присоединения к первому блокировочному компоненту отверстия для соединения с образцом в крышке приемника. Транспортировочный контейнер имеет открытый конец и образует объем, выполненный с возможностью вмещения фильтрационной колонки. Транспортировочный контейнер выполнен с возможностью высвобождаемого зацепления с фильтрационной колонкой для ее отсоединения от соединительного интерфейса крышки приемника. Транспортировочный контейнер дополнительно содержит съемное покрытие для временной запечатывания фильтрационной колонки внутри транспортировочного контейнера. Согласно некоторым вариантам осуществления, транспортировочный контейнер содержит влагопоглотитель.

Субстрат фильтрационной колонки может содержать фильтр, опорный стеклоцемент, расположенный по ходу потока после фильтра и удерживающее кольцо, расположенное по ходу потока перед фильтром. Блокировочные компоненты отверстия для соединения с образцом могут содержать фитинг с фиксатором Люэра (Luer). Согласно некоторым вариантам осуществления, система может дополнительно содержать вакуумную камеру, имеющую внутренний участок, который выполнен с возможностью присоединения к источнику вакуума, и внешний участок, имеющий одну или более ячеек, причем каждая ячейка выполнена с возможностью приема одного из приемников с одним или более отверстиями для соединения с вакуумом в сообщении с внутренним участком камеры и выполнена с возможностью присоединения к вентиляционному отверстию приемника посредством гибкого трубопровода.

Согласно некоторым вариантам осуществления, фильтрационная колонка и крышка приемника функционально соединяются посредством резьбового интерфейса. Фильтрационная колонка может иметь первый элемент, такой как первый выступ, расположенный на ее внешней поверхности, выполненный с возможностью высвобождаемого зацепления посредством взаимодействующего второго элемента, такого как второй выступ, расположенный на внутренней поверхности транспортировочного контейнера так, что второй элемент передает усилие первому элементу, когда крутящее усилие приложено к фильтрационной колонке в направлении отвинчивания фильтрационной колонки в ее резьбовом соединении с крышкой приемника.

Система может дополнительно содержать трехходовой клапан, имеющий первое отверстие, выполненное с возможностью присоединения к отверстию для соединения с образцом в крышке приемника, второе отверстие, выполненное с возможностью присоединения к контейнеру для сбора образца, и третье отверстие, выполненное с возможностью присоединения к источнику текучей среды, в котором содержится текучая среда для обработки образца после его сбора. Один или более контейнеров с текучей средой, такой как промывочная текучая среда, например, этанол, могут присоединяться к третьему отверстию.

Контейнер для сбора образца может содержать шприц, и трехходовой клапан может содержать обратный клапан, выполненный с возможностью обеспечения исключительно потока из контейнера для сбора образца в приемник, когда существует положительное относительное давление между контейнером для сбора образца и приемником, и обеспечения исключительно потока из источника текучей среды в контейнер для сбора образца, когда существует отрицательное относительное давление между контейнером для сбора образца и источником текучей среды.

Согласно следующему аспекту настоящего изобретения, предлагается стерильная съемная крышка для приемника, имеющая внутреннюю сторону, обращенную к внутреннему объему приемника, и внешнюю сторону, противоположную внутренней стороне, при этом крышка содержит вентиляционное отверстие в сообщении между внутренней стороной и внешней стороной, и отверстие для соединения с образцом в сообщении между внутренней стороной и внешней стороной, причем отверстие для соединения с образцом содержит первый блокировочный компонент для высвобождаемого блокирования отверстия для соединения с образцом с взаимодействующим вторым блокировочным компонентом, причем внутренняя сторона крышки содержит соединительный интерфейс в сообщении по текучей среде с отверстием для соединения с образцом. Стерильная фильтрационная колонка может съемно присоединяться к соединительному интерфейсу крышки приемника, причем данная фильтрационная колонка имеет открытый первый конец, открытый второй конец и расположенный между ними внутренний канал, содержащий субстрат для сбора нуклеиновой кислоты.

Согласно следующему аспекту настоящего изобретения, предлагается Способ для сбора образца нуклеиновой кислоты, включающий в себя этапы на которых: (a) изготавливают систему сбора образца, которая описана в настоящем описании; (b) собирают объем содержащей образец текучей среды в контейнер для сбора образца; (c) присоединяют контейнер для сбора образца к приемнику посредством отверстия для сбора образца; (d) пропускают объем содержащей образец текучей среды из контейнера для сбора образца через фильтрационную колонку, в результате чего образец собирается на субстрате, а остаток собирается в приемнике; (e) помещают открытый конец транспортировочного контейнера над фильтрационной колонкой, зацепляют фильтрационную колонку с транспортировочным контейнером и отсоединяют фильтрационную колонку от крышки приемника; и (f) временно запечатывают транспортировочный контейнер съемным покрытием. Содержащая образец текучая среда может содержать, например, лизат, содержащий собранный экстракт текучей среды организма пациента. В том случае, если контейнер для сбора образца содержит шприц, этап пропускания объема через фильтрационную колонку может включать в себя этап, на котором прикладывают давления вручную к поршню шприца, согласно одному варианту осуществления, или присоединяют вентиляционное отверстие крышки приемника к источнику вакуума, а затем прикладывают отрицательное давление к фильтрационной колонке с использованием источника вакуума, согласно другому варианту осуществления.

Согласно определенным вариантам осуществления, собранный образец на субстрате можно дополнительно обрабатывать после этапа(d) посредством пропускания одного или более объемов текучей среды, такой как дегидратирующая промывочная текучая среда, например, этанол, через фильтрационную колонку перед осуществлением этапа (e). Кроме того, в транспортировочном контейнере может содержаться влагопоглотитель. Образец, обезвоженный и поддерживаемый в сухом состоянии посредством влагопоглотителя, можно транспортировать в нерегулируемых климатических условиях окружающей среды, и он может сохранять устойчивость вплоть до 4 недель перед дополнительной обработкой после завершения этапа (f). Такой способ может оказаться особенно полезным для обработки нуклеиновых кислот, собранных в имеющих минимальное оборудование медицинских учреждениях, таких как небольшие, удаленные и/или расположенные на периферии клиники, и для транспортировки собранных образцов в имеющую лучшее оборудование центральную лабораторию для дополнительного анализа собранных образцов в целях обнаружения заболевания, например, для обнаружения латентного туберкулеза.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1A иллюстрирует вид сверху примерной крышки приемника согласно варианту осуществления одного аспекта настоящего изобретения.

Фиг.1B иллюстрирует общий вид сбоку примерной крышки приемника на фиг.1A.

Фиг.1C иллюстрирует вид поперечного сечения примерной крышки приемника на фиг.1A.

Фиг.2A иллюстрирует примерную фильтрационную колонку для присоединения к примерной крышке приемника на фиг.1.

Фиг.2B иллюстрирует поперечное сечение примерной фильтрационной колонки на фиг.2A.

Фиг.3 иллюстрирует вид в разборе фильтрационной колонки на фиг.2A и крышки приемника на фиг.1, показывая их соединение друг с другом.

Фиг.4 иллюстрирует крышку приемника на фиг.1A, прикрепленную к примерному приемнику.

Фиг.5 иллюстрирует примерную конструкцию вакуумной камеры для содержания множества примерных приемников на фиг.4.

Фиг.6A иллюстрирует нижний участок примерного транспортировочного контейнера.

Фиг.6B иллюстрирует, как примерный транспортировочный контейнер на фиг.6A помещается над примерной фильтрационной колонкой для ее отвинчивания от примерной крышки приемника на фиг.1A.

Фиг.6C иллюстрирует изображение поперечного сечения верхний участок примерного транспортировочного контейнера.

Фиг.6D иллюстрирует изображение нижнего участка поперечного сечения примерного транспортировочного контейнера на фиг.6A, который запечатывает верхний участок примерного транспортировочного контейнера на фиг.6C.

Фиг.6E иллюстрирует общее изображение запечатанного транспортировочного контейнера на фиг.6D.

Фиг.7A иллюстрирует лизирующий контейнер, содержащий лизирующий раствор в водной форме.

Фиг.7B иллюстрирует лизирующий контейнер на фиг.7A, содержащий лизирующий раствор в высушенной форме.

Фиг.8A иллюстрирует кривые амплификации количественной полимеразной цепной реакции с обратной транскрипцией (ОТ-кПЦР) и количественной полимеразной цепной реакции (кПЦР) для фрагментов гена человека B2M, PPIA и гена TB IS6110 парами праймеров HB2M11, HPPIA11 и IS6110 для экстрактов плазмы человека от доноров, включая контрольную здоровую группу (КЗ) и группу с латентной туберкулезной инфекцией (ЛТБИ), соответственно.

Фиг.8B иллюстрирует кривые плавления ампликонов для фрагментов гена человека B2M, PPIA и гена TB IS6110 парами праймеров HB2M11, HPPIA11 и IS6110 для экстрактов плазмы человека от доноров групп КЗ и ЛТБИ, соответственно.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Согласно одному аспекту настоящего изобретения, предлагается система для сбора образца нуклеиновой кислоты. Примерная система содержит приемник, такой как приемник 400 на фиг.4, который образует внутренний объем. Хотя здесь представлена примерная геометрия, настоящее изобретение не ограничивается какими-либо конкретными размерами и формами приемника. Приемник имеет съемную крышку 101, такую как крышка согласно примерному варианту осуществления, которая проиллюстрирована на фиг.1A-1C и имеет внутреннюю сторону 107, обращенную к внутреннему объему приемника, и внешнюю сторону 102, обращенную от внутреннего объема. Фиг.1A иллюстрирует внешнюю сторону крышки. Крышка имеет вентиляционное отверстие 105, такое как имеющее охватываемое конусное соединение Люэра в сообщении между внутренней стороной и внешней стороной через канал 106, и отверстие 103 для соединения с образцом в сообщении между внутренней стороной и внешней стороной через канал 104. Отверстие для соединения с образцом содержит первый блокировочный компонент, такой как винтовое соединение 120 Люэра, чтобы запирать с возможностью высвобождения отверстие для соединения с образцом с взаимодействующим вторым блокировочным компонентом транспортировочного контейнера для образца (не проиллюстрировано), такому как шприц. Оба отверстия 120 и 105 можно легко открывать или закрывать, используя имеющие соединения Люэра крышки или пробки (не проиллюстрировано). Когда направленное вниз давление прилагается к поршню шприца, присоединенного к отверстию 120 для обеспечения движения жидкости, отверстие 105 открывается, позволяя вытесненному воздуху выходить из приемника 400. Когда для обеспечения движения жидкости используется вакуум от присоединенного источника (который также может представлять собой шприц), отверстие 105 присоединяется к этому источнику вакуума. Внутренняя сторона крышки содержит соединительный интерфейс 108 в сообщении по текучей среде с отверстием 103 для соединения с образцом. Крышка может иметь внутреннюю резьбу 110, посредством которой крышка навинчивается на приемник, имеющий наружную резьбу (не проиллюстрировано), хотя можно использовать любое функциональное соединение между крышкой и приемником.

Фильтрационная колонка, внутри которой находится твердофазная экстракционная матрица, такая как мембрана на основе геля диоксида кремния, спеченный пористый стеклоцемент или стекловолоконная фильтровальная бумага, такая как примерная фильтрационная колонка 200, которая проиллюстрирована на фиг.2A и 2B, выполнена с возможностью для съемного присоединения к соединительному интерфейсу крышки приемника. Например, как проиллюстрировано на фиг.1C, соединительный интерфейс 108 может иметь внутреннюю резьбу 109, которая совмещается с наружной резьбой 220 на фильтрационной колонке 200. Фильтрационная колонка имеет открытые концы 202 и 204 и расположенный между ними внутренний канал 206, в котором содержится субстрат 212 для сбора нуклеиновой кислоты. Фильтрационная колонка может также называться термином «полый элемент», потому что она выполнена с возможностью пропускания через нее текучей среды без удерживания в ней текучей среды так, как текучая среда удерживается в приемнике или сосуде. Субстрат фильтрационной колонки 212 может прилегать к пористому стеклоцементу 214, и удерживающее кольцо 210 может создавать фрикционное соединение с внутренним участком колонки для удерживания субстрата и стеклоцемента в положении, прилегающем к шейке фильтрационной колонки.

Субстрат 212 может содержать связывающую матрицу колонки, представляющую собой твердую матрицу, которая позволяет текучей среде проходить через матрицу. Согласно определенным аспектам, матрица имеет высокую пористость, так, чтобы максимально увеличивалась площадь поверхности, на которую воздействуют буферные растворы, и в результате этого максимально увеличивается емкость матрицы. Матрица может быть выполнена из разнообразных материалов. Согласно определенным конкретным вариантам осуществления, связующая матрица может представлять собой материал на основе диоксида кремния (состоящий, главным образом, из SiO2), такой как стекловолокно, кварцевые шарики, силикагель, спеченный пористый стеклоцемент и т.д. Известны многочисленные промышленные источники матрицы на основе диоксида кремния, такие как, например, стекловолоконные фильтры типов GF/A, GF/B, GF/C, GF/D и GF/F, которые производит компания Whatman (штат Нью-Джерси, США). Такие фильтры известны, в частности, для использования в очистке молекул нуклеиновых кислот. Согласно другим вариантам осуществления, можно использовать разнообразные твердые матрицы, такие как ионообменные, аффинные и поверхностно модифицированные матрицы, подходящие для экстракции и разделения определенных биомолекул. Связующая матрица может представлять собой любой материал, в который могут быть внедрены частицы или волокна материала, связывающего нуклеиновые кислоты. Матричный материал, как правило, является проницаемым для жидкостей так, что образец может проходить через матрицу, и при этом нуклеиновые кислоты вступают в контакт и связываются материалом, связывающим нуклеиновые кислоты, а другие компоненты образца могут выходить из матрицы. Связующая матрица может содержать любой несущий материал известный в технике, включающий материалы, выбранные из группы, которые составляют силикатные материалы, силикагель, стекло, цеолит, оксид алюминия, диоксид титана, диоксид циркония, каолин, гелеобразный диоксид кремния, магнитные частицы, спеченный пористый стеклоцемент, а также керамические или полимерные несущие материалы. Связывающий нуклеиновые кислоты материал может представлять собой любой материал, который связывает нуклеиновые кислоты (образуя, как правило, нековалентные связи) в определенных условиях, причем другие вещества в образце не связываются в данных условиях. Как правило, связывание нуклеиновых кислот является обратимым, и, таким образом, нуклеиновые кислоты могут впоследствии повторно элюироваться с материала посредством изменения условий.

Согласно одному варианту осуществления, колонка 200 может быть аналогичной по своей геометрической форме колонке Mobicol, которую поставляет компания Boca Scientific (штат Флорида, США), или она может представлять собой специально модифицированную или специально изготовленную разновидность этой колонки. Конструкцию, имеющую такую геометрическую форму, можно подвергать центрифугированию на микроцентрифуге, а также можно изготавливать образцы большого объема, которые легко обрабатываются посредством шприца. Пористый стеклоцемент 214 может содержать инертную пластмассу, имеющую поры с размерами от 10 до 90 мкм. Твердая экстракционная матрица (субстрат) может содержать фильтровальную бумагу GF/D от компании Whatman (штат Нью-Джерси, США), такую как бумага, получаемая вырезанием из фильтровальной бумаги дисков, размер которых соответствует внутреннему диаметру колонки. Два или более слоев фильтр дисков можно помещать поверх стеклоцемента. Опорное кольцо от компании Ring-Store (штат Вашингтон, США), такое как кольцо, изготовленное из политетрафторэтилена (PTFE), такого как тефлон (Teflon®), или пластмассы, такой как полиэтилен (PE) или полипропилен (PP), можно помещать поверх фильтровальных дисков (как видно на фиг.2A) для предотвращения движения фильтровальных дисков.

Открыватель и транспортировочный контейнер, такой как примерный контейнер 650, который проиллюстрирован в полностью собранной конфигурации на фиг.6E, содержит нижний участок 600 и ответный ей верхний участок 610. Соответствующие нижний участок и верхний участок образуют объем, выполненный с возможностью вмещения фильтрационной колонки в целях транспортировки. Нижний участок 600 транспортировочного контейнера имеет открытый верх и выполнен с возможностью высвобождаемого зацепления с фильтрационной колонкой для ее отсоединения от соединительного интерфейса крышки приемника. Например, фильтрационная колонка может иметь выступ 222 проиллюстрированный на фиг.2A, который соединяется с выемкой 602 на фиг.6A. Закрытый транспортировочный контейнер запечатывается по отношению к окружающей среде, что предотвращает загрязнение и увлажнение, которые могут вызывать ускоренное разложение (гидролиз) нуклеиновой кислоты, в частности, РНК. Закрытый транспортировочный контейнер может дополнительно содержать предварительно упакованный в него влагопоглотитель, который создает или сохраняет состояние сухости (обезвоживание), такой как гель диоксида кремния в форме гранул или шариков, такой как влагопоглотитель 612 в верхнем участке контейнера, проиллюстрированной на фиг.6C и 6D. Положение влагопоглотителя может также находиться в нижнем участке контейнера и не ограничивается какой-либо определенной позицией или конфигурацией. Влагопоглотитель может содержать любой подходящий материал, известный в уровне техники для создания и сохранения обезвоживания, в том числе, но не ограничиваясь этим, монтмориллонитовая глина, хлорид лития, активированный оксид алюминия, алюмосиликат щелочного металла, брикеты DQ11, силикагель, молекулярное сито, сульфат кальция или оксид кальция. Влагопоглотитель может содержать индикатор влаги, цвет которого постепенно изменяется, когда он переходит из безводного (сухого) в гидратированное (влажное) состояние, такой как известный индикатор для некоторых видов силикагеля.

Хотя проиллюстрировано отверстие для соединения с образцом, имеющее фитинг с фиксатором Люэра, выступающий из внешней стороны крышки, настоящее изобретение не ограничивается блокировочным соединением какого-либо определенного типа или какой-либо определенной конфигурацией отверстия для соединения с образцом. Хотя какой-либо тип блокировочного соединения между отверстием для соединения с образцом и контейнером для образца является предпочтительным, может присутствовать блокирование с высвобождением любого типа. Контейнер для переноса образцов не проиллюстрирован на чертеже, но может представлять собой стандартный шприц, имеющий соответствующий фитинг с фиксатором Люэра. Таким образом, согласно примерному способу, шприц соединяется с крышкой приемника, и поршень шприца нажимается, воздействуя на раствор, который содержит нуклеиновую кислоту в присутствии связующих реагентов, таких как хаотропные реагенты, а также спирт и пропускается через фильтрационную колонку. Таким образом, нуклеиновая кислота удерживается на фильтре 212, в то время как фильтрат проходит в приемник 400. Как отмечено выше, поршень шприца можно нажимать вручную, когда отверстие 105 является открытым, или можно присоединять источник вакуума к отверстию 105 таким образом, что вакуум вызывает нажатие поршня шприца, чтобы раствор выходил из шприца.

Хаотропные реагенты являются хорошо известными в уровне техники как вещества, которые изменяют вторичную, третичную и/или четвертичную структуру белков или нуклеиновых кислот, но не влияют по меньшей мере на их первичную структуру. Соответствующие примеры представляют собой тиоцианат гуанидиния, гидрохлорид гуанидиния, NaI, KI, тиоцианат натрия или сочетания этих веществ. Хаотропные реагенты нарушают упорядоченную структуру жидкой воды и заставляют ДНК или РНК из этого водного раствора прикрепляться к поверхности стекла. В некоторых условиях включение спирта, такого как этанол или изопропиловый спирт, способствует связыванию НК с поверхностью. Вещества, такие как NaCl, KCl или CaCl2, могут присутствовать в растворе, чтобы модифицировать ионную силу. Свойство связывания ДНК и РНК в хаотропных условиях со стеклянными поверхностями используется для выделения их из раствора, содержащего другие биологические материалы. Связывание со стеклянной поверхностью является обратимым так, что, например, если концентрация хаотропных реагентов уменьшается, или хаотропные реагенты полностью удаляются, то ДНК или РНК можно повторно элюировать.

Таким образом, система для сбора образца может дополнительно содержать вакуумную камеру 500, такую как камера, проиллюстрированная на фиг.5. Вакуумная камера выполнена с возможностью присоединения к источнику вакуума, например, через соединительное отверстие 530, которое находится в сообщении с внутренним объемом вакуумной камеры посредством канала 540. Внешняя поверхность вакуумной камеры 500 имеет множество ячеек 520, причем каждая ячейка выполнена с возможностью для приема одного из приемников 400. Многочисленные отверстия для соединения с вакуумом 510 находятся в сообщении с внутренним участком камеры и выполнены с возможностью присоединения к вентиляционному отверстию 105 крышки приемника 101 посредством гибкого трубопровода (не проиллюстрировано). Таким образом, например, многочисленные ячейки могут быть заполнены приемниками, причем каждая крышка приемника присоединяется к одному из вакуумных отверстий 510, и, вакуум, таким образом, обеспечивает, что содержащая образец текучая среда в многочисленных транспортировочных контейнерах образцов фильтруется через множество фильтрационных колонок и попадает во множество приемников. Хотя проиллюстрирована вакуумная камера, имеющая множество ячеек, вакуумная камера может иметь только одну ячейку, или больше или меньше ячеек, чем проиллюстрировано на чертеже. Вакуумные отверстия на вакуумной камере могут иметь съемные крышки или клапаны так, что камера может использоваться с меньшим числом, чем все вакуумные отверстия, присоединенные к приемникам в ячейках для приемников.

Система для сбора образца может дополнительно содержать лизирующий контейнер (фиг.7A и 7B), содержащий предварительно изготовленные лизирующие реагенты, и первый шприц, которым переносится жидкий образец (сыворотка, плазма) в лизирующий контейнер, и второй шприц, которым переносится лизат в экстракционное устройство. Каждый шприц предпочтительно содержит металлическую или пластмассовую иглу, которая является безопасной (затупленной) и имеет достаточную длину, чтобы достигать нижний участок соответствующего контейнера, из которого текучая среда извлекается с использованием данного шприца, а также имеет достаточно большой внутренний диаметр (ID) для обеспечения относительно быстрого потока жидкости. Лизирующие реагенты могут содержать, например, по меньшей мере следующие: неионное поверхностно-активное вещество, такое как Triton X-100 или BJ58, или сочетание неионного поверхностно-активного вещества и анионного поверхностно-активного вещества, такого как лауроилсаркозинат натрия, протеаза, такая как протеиназа K, соль или хаотропный реагент, такой как хлорид лития, гуанидин, тиоцианат гуанидиния, мочевина, восстанавливающий реагент, такой как дитиотреитол (DTT), хелатообразующее вещество, такое как этилендиаминтетрауксусная кислота (EDTA), и буферное вещество, такое как трис(гидроксиметил)аминометан (Tris). Хорошо известные гуанидин и тиоцианат гуанидиния проявляют сильную ингибиторную активность по отношению к дезоксирибонуклеазе и рибонуклеазе в молярной концентрации. Лизирующие реагенты могут присутствовать в растворе или в высушенной (дегидратированной) форме, полученной, например, посредством лиофилизации (сублимационной сушки), или образовывать покрытие посредством распыления внутри лизирующего контейнера.

Образцы, представляющие собой водные текучие среды, такие как кровь, плазма, сыворотка, мокрота, слюна, моча, спинномозговая жидкость (СМЖ), плевральный выпот, перитонеальный выпот, синовиальная жидкость и т.д., можно непосредственно или с дополнительной водой вводить в лизирующий контейнер, используя пипетку или транспортировочный контейнер для образцов, такой как первый шприц, имеющий относительно длинную иглу (обсуждается выше, но не проиллюстрировано на чертеже). Когда водная текучая среда вводится в лизирующий контейнер, образец текучей среды смешивается с лизирующим раствором или повторно гидратирует высушенные лизирующие реагенты, образуя смесь полного образца и лизирующего буферного раствора. Предпочтительные образцы представляют собой плазма или сыворотка, и предпочтительные объемы собранной плазмы или сыворотки находятся в интервале от 1 до 20 мл, предпочтительнее по меньшей мере 2 мл, еще предпочтительнее от 2 до 10 мл и наиболее предпочтительно от 2 до 5 мл.

Другие образцы в высоковязкой форме или в полутвердой и твердой формах, такие как гной, клеточные суспензии и ткани, можно вводить в лизирующий контейнер с дополнительной водой в таком количестве, которое требуется для повторной гидратации высушенных лизирующих реагентов для поддерживания оптимального соотношения объема образца и лизирующего раствора.

Инкубация в процесс лизиса может ускоряться при повышенных температурах (составляющих более чем температура окружающей среды или комнатная температура) посредством помещения лизирующего контейнера в ванну с горячей водой или нагревательный блок. Повышенная температура для лизиса может составлять, например, от 50 до 65°C, когда в качестве лизирующего фермента присутствует протеиназа K. Период инкубации для завершения лизиса образца, как правило, находится в интервале от 5 мин до 4 ч или предпочтительнее в интервале от 10 до30 мин, но настоящее изобретение не ограничивается каким-либо конкретным периодом инкубации.

При завершении лизиса образца после короткого периода инкубации связующий и экстрагирующий раствор можно вводить в лизирующий контейнер, используя пипетку или шприц или осуществляя выливание из содержащего связующий и экстрагирующий раствор контейнера (не проиллюстрировано).

Полная смесь, содержащая лизирующие, связующие и экстрагирующие водный образец текучие среды, переносится в приемник через транспортировочный контейнер для образца, такой как шприц (не проиллюстрировано), для экстракционной обработки. Приемник служит в качестве контейнера для сбора отходов, в котором собираются все жидкие отходы от осуществляемых процессов экстракции и промывания.

Согласно предпочтительному варианту осуществления, после экстракции собранный образец можно подвергать дополнительной обработке, осуществляя следующие этапы:

1. Промывание промывочным буферным раствором для удаления загрязнений из биологических образцов и очистки солей от экстрагирующего и лизирующего буферного раствора, которые могли бы в других условиях препятствовать или задерживать последующие приложения. Согласно предпочтительному варианту осуществления, относительно большой объем можно использоваться на единственном этапе промывания. Предпочтительный объем может находиться в интервале от 1 до 10 мл, предпочтительнее от 1 до 5 мл или наиболее предпочтительно от 2 до 4 мл. С другой стороны, в стандартных процедурах обычно осуществляются два этапа промывания с использованием двух различных промывочных буферных растворов, причем объемы каждого из них составляют, как правило, менее чем 1 мл вследствие ограничений размера колонки, которые определяются размером центрифуги.

2. Промывание неводным дегидратитрующим веществом, представляющим собой, например, 100% этанол (предпочтительно) или 100% ацетон, для дополнительной очистки от примесей и дегидратации матрицы. Здесь также относительно большой объем используется для дегидратации матрицы в целях сохранения цНК. Предпочтительный объем этанола или ацетона в качестве промывочной жидкости находится в интервале от 1 до 10 мл, предпочтительнее по меньшей мере 2 мл или наиболее предпочтительно от 2 до 6 мл. С другой стороны, и в этом случае стандартные процедуры обычно осуществляют, используя менее чем 1 мл жидкости вследствие вышеупомянутых ограничений размера. В некоторых традиционных процедурах могут совершенно не использоваться этанол, ацетон или другие дегидратирующие промывочные жидкости.

Хотя на чертеже проиллюстрированы выступ на фильтрационной колонке и соответствующая выемка на транспортировочном к