Композиция покрытия
Иллюстрации
Показать всеИзобретение относится к композициям покрытий контейнера для пищевых продуктов и/или напитков и контейнеру для пищевых продуктов. Композиция содержит сложнополиэфирный материал, где сложнополиэфирный материал содержит продукт реакции двухстадийного способа. Двухстадийный способ включает: первую стадию, включающую получение форполимера сложного полиэфира посредством контактирования (а) 1,2-пропандиола, (b) терефталевой кислоты, и вторую стадию, включающую контактирование форполимера сложного полиэфира и (с) агента повышения молекулярной массы. Сложнополиэфирный материал имеет среднечисловую молекулярную массу (Mn) по меньшей мере 6100 Да и температуру стеклования (Tg) по меньшей мере 80°С. По меньшей мере часть контейнера покрыта композицией для покрытия, содержащей сложнополиэфирный материал. Изобретение позволяет получить покрытия с превосходной адгезией к подложке, безопасные при контакте с пищевыми продуктами, стойкостью к истиранию, устойчивостью в кислой среде в условиях стерилизации. 2 н. и 12 з.п. ф-лы, 6 табл., 15 пр.
Реферат
Настоящее изобретение относится к композициям покрытий, в частности, к композициям покрытий для использования в контейнерах для пищевых продуктов и/или напитков.
Самые разнообразные покрытия использовались для нанесения на контейнеры для пищевых продуктов и/или напитков. Композиции покрытий должны иметь определенные свойства, такие как возможность нанесения с высокой скоростью, превосходная адгезия к подложке, безопасность при контакте с пищевым продуктом, а также обладать свойствами после отверждения, которые подходят для их целевого использования.
Многие композиции покрытий, используемые в настоящее время для контейнеров для пищевых продуктов и напитков, содержат эпоксидные смолы. Такие эпоксидные смолы обычно образуются из простых полиглицидиловых эфиров бисфенола А (ВРА). ВРА воспринимается как вещество вредное для здоровья человека, и поэтому желательно исключать его из покрытий для упаковочных контейнеров для пищевых продуктов и/или напитков. Производные ВРА, такие как простые диглицидиловые эфиры бисфенола А (BADGE), эпоксидные новолачные смолы и полиолы, полученные из ВРА и бисфенола F (BPF), также представляют проблему. Таким образом, существует потребность в композициях покрытий контейнеров для пищевых продуктов и напитков, которые не содержат ВРА, BADGE и/или других производных, но сохраняют описанные выше требуемые свойства.
Смолы сложных полиэфиров, полученные в результате реакции поликонденсации полиолов и поликислот, хорошо известны в лакокрасочной промышленности. Линейные и разветвленные сложные полиэфиры широко используются в композициях покрытий. Желательно, чтобы сложные полиэфиры, используемые в композициях покрытия для упаковок, имели высокую температуру стеклования (Tg). Как правило, сложные полиэфиры с высокой Tg синтезируют из циклических, полициклических и ароматических полиолов. Однако многие из этих сложных полиэфиров не совместимы с компактированием продуктов питания. Альтернативные сложные полиэфиры, такие как полиэтилентерефталат (ПЭТ) и полиэтиленнафталат (ПЭН), которые синтезируют из алифатических полиолов, используются в твердой форме для термопластов и пленок.
Задачи настоящего изобретения заключаются в обеспечении одного или нескольких решений указанных выше или других проблем.
В соответствии с первым аспектом настоящего изобретения предлагается композиция для покрытия контейнера для пищевых продуктов и/или напитков, содержащая сложнополиэфирный материал, при этом сложнополиэфирный материал содержит продукт реакции двухстадийного способа, причем двухстадийный способ включает:
первую стадию, включающую получение форполимера сложного полиэфира с помощью контактирования
(a) 1,2-пропандиола,
(b) терефталевой кислоты, и
вторую стадию, включающую контактирование форполимера сложного полиэфира и
(c) агента повышения молекулярной массы,
отличающаяся тем, что сложнополиэфирный материал имеет среднечисловую молекулярную массу (Mn) по меньшей мере 6100 Да и температуру стеклования (Tg) по меньшей мере 80°С.
Под «агентом повышения молекулярной массы» авторы изобретения понимают вещество, которое повышает среднечисловую молекулярную массу (Mn) сложнополиэфирного материала.
Агентом повышения молекулярной массы может быть любое подходящее соединение, способное увеличивать Mn сложнополиэфирного материала. Агент повышения молекулярной массы содержит поликислоту, полиол или их сочетание.
В некоторых вариантах осуществления агент повышения молекулярной массы содержит поликислоту. Термин «поликислота» и аналогичные термины, употребляемые в настоящем документе, относятся к соединению, имеющему две или более группы карбоновой кислоты, например, две, три или четыре кислотные группы, и включает сложный эфир поликислоты (где одна или более кислотная группа этерифицирована) или ангидрид.
В некоторых предпочтительных вариантах осуществления поликислота включает дикислоту общей формулы (I)
где каждый R независимо представляет собой водород или алкильную, алкенильную, алкинильную или арильную группу; n равно 0 или 1; и где X представляет собой мостиковую группу, выбранную из алкиленовой группы, алкениленовой группы, алкиниленовой группы, ариленовой группы; где мостиком между -COOR группами является C1 или С2.
Подходящие примеры поликислотных агентов повышения молекулярной массы включают без ограничения одно или более из перечисленного: щавелевую кислоту, малоновую кислоту, янтарную кислоту, ортофталевую кислоту, изофталевую кислоту, малеиновую кислоту, фумаровую кислоту, итаконовую кислоту, метилмалоновую кислоту, этилмалоновую кислоту, пропилмалоновую кислоту, 2-метилянтарную кислоту, 2-этилянтарную кислоту, 2-пропилянтарную кислоту, транс-циклопентан-1,2-дикарбоновую кислоту, цис-циклопентан-1,2-дикарбоновую кислоту, транс-циклогексан-1,2-дикарбоновую кислоту, цис-циклогексан-1,2-дикарбоновую кислоту, 1,4-циклогександикарбоновую кислоту, 2,6-нафталиндикарбоновую кислоту, кислоты и ангидриды всех указанных выше кислот, и их сочетания. В некоторых вариантах осуществления поликислота содержит малеиновый ангидрид или итаконовую кислоту или их сочетание. Предпочтительно поликислота содержит малеиновый ангидрид.
Предпочтительно поликислота может быть дикислотой.
В некоторых вариантах осуществления агент повышения молекулярной массы может содержать полиол. Термин «полиол» и аналогичные термины, употребляемые в настоящем документе, относятся к соединению, имеющему две или более гидроксильные группы. В некоторых вариантах осуществления полиол может иметь две, три или четыре гидроксильные группы.
Предпочтительно полиол может включать триол. В некоторых вариантах осуществления гидроксильные группы полиола могут быть соединены С1-С3 алкиленовой группой. С1-С3 алкиленовая группа может быть замещенной или незамещенной. С1-С3 алкиленовая группа может быть необязательно замещена одной или более из следующих групп: галогеновой, гидроксильной, нитро-, меркапто-, амино-, алкильной, алкоксильной, арильной, сульфо- и сульфоксильной. С1-С3 алкиленовая группа может быть линейной или разветвленной. С1-С3 алкиленовая группа может быть насыщенной или ненасыщенной.
В некоторых вариантах осуществления может быть не более 3 атомов углерода, соединяющихся между гидроксильными группами.
Подходящие примеры полиольных агентов повышения молекулярной массы включают без ограничения одно или более из следующих веществ: этиленгликоль, неопентилгликоль, 1,3-пропандиол; бутан-1,3-диол, 2-метил-1,3-пропандиол, 2-этил-2-бутил-1,3-пропандиол, триметилолэтан, триметилолпропан, глицерин, пентаэритритол, и их сочетания. Предпочтительно полиол содержит триметилолпропан, глицерин или их сочетания.
Термин «алк» или «алкил», употребляемый в настоящем документе, если не определено иное, относится к насыщенным углеводородным радикалам, представляющим неразветвленные, разветвленные, циклические или полициклические звенья или их сочетания, и содержащим от 1 до 20 атомов углерода, предпочтительно от 1 до 10 атомов углерода, более предпочтительно от 1 до 8 атомов углерода, еще более предпочтительно от 1 до 6 атомов углерода, еще более предпочтительно от 1 до 4 атомов углерода. Эти радикалы могут быть необязательно замещены хлоро, бромо, иодо, циано, нитро, OR19, OC(O)R20, C(O)R21, C(O)OR22, NR23R24, C(O)NR25R26, SR27, C(O)SR27, C(S)NR25R26, арилом или Het, при этом R19-R27 независимо друг от друга представляют собой водород, арил или алкил, и/или прерываются одним или более атомом кислорода или серы, или силановой или диалкилсилоксановой группами. Примеры таких радикалов могут быть выбраны независимо из метила, этила, н-пропила, изопропила, н-бутила, изобутила, втор-бутила, трет-бутила, 2-метилбутила, изоамила, гексила, циклогексила, 3-метилпентила и тому подобного. Термин «алкилен», употребляемый в настоящем документе, относится к двухвалентному радикалу алкильной группы, как определено выше. Например, алкильная группа, такая как метил, которая может быть представлена как -СН3, становится метиленом, -СН2-, когда представлена как алкилен. Другие алкиленовые группы следует понимать соответственно.
Термин «алкенил», употребляемый в настоящем документе, относится к углеводородным радикалам, имеющим одну или несколько, в подходящем случае до 4, двойных связей, представляющим неразветвленные, разветвленные, циклические или полициклические звенья или их сочетания, и содержащим от 2 до 18 атомов углерода, предпочтительно от 2 до 10 атомов углерода, более предпочтительно от 2 до 8 атомов углерода, еще более предпочтительно от 2 до 6 атомов углерода, еще более предпочтительно от 2 до 4 атомов углерода. Эти радикалы могут быть необязательно замещены гидроксилом, хлоро, бромо, иодо, циано, нитро, OR19, OC(O)R20, C(O)R21, C(O)OR22, NR23R24, C(O)NR25R26, SR27, C(O)SR27, C(S)NR25R26 или арилом, при этом R19-R27 независимо друг от друга представляют собой водород, арил или алкил, и/или прерываются одним или более атомом кислорода или серы, или силановой или диалкилсилоксановой группами. Примеры таких радикалов, могут быть выбраны независимо из алкенильной группы и включают винил, аллил, изопропенил, пентенил, гексенил, гептенил, циклопропенил, циклобутенил, циклопентенил, циклогексенил, 1-пропенил, 2-бутенил, 2-метил-2-бутенил, изопренил, фарнезил, геранил, геранилгеранил и тому подобное. Термин «алкенилен», употребляемый в настоящем документе, относится к двухвалентному радикалу алкенильной группы, как определено выше. Например, алкенильная группа, такая как этенил, которая может быть представлена как -СН=СН2, становится этениленом, -СН=СН-, когда представлена как алкенилен. Другие алкениленовые группы следует понимать соответственно.
Термин «алкинил», употребляемый в настоящем документе, относится к углеводородным радикалам, имеющим одну или несколько, в подходящем случае до 4, тройных связей, представляющим неразветвленные, разветвленные, циклические или полициклические звенья или их сочетания и имеющим от 2 до 18 атомов углерода, предпочтительно от 2 до 10 атомов углерода, более предпочтительно от 2 до 8 атомов углерода, еще более предпочтительно от 2 до 6 атомов углерода, еще более предпочтительно от 2 до 4 атомов углерода. Эти радикалы могут быть необязательно замещены гидрокси, хлоро, бромо, иодо, циано, нитро, OR19, OC(O)R20, C(O)R21, C(O)OR22, NR23R24, C(O)NR25R26, SR27, C(O)SR27, C(S)NR25R26 или арилом, при этом R19-R27 независимо друг от друга представляют собой водород, арил или низший алкил, и/или прерываются одним или более атомом кислорода или серы, или силановой или диалкилсилоксановой группами. Примеры таких радикалов могут быть выбраны независимо из алкинильных радикалов и включают этинил, пропинил, пропаргил, бутинил, пентинил, гексинил и тому подобное. Термин «алкинилен», употребляемый в настоящем документе, относится к двухвалентному радикалу алкинильной группы, как определено выше. Например, алкинильная группа, такая как этинил, которая может быть представлена как -C≡СН, становится этиниленом, -С≡С-, когда представлена как алкинилен. Другие алкиниленовые группы следует понимать соответственно.
Термин «арил», употребляемый в настоящем документе, относится к органическому радикалу, полученному из ароматического углеводорода с помощью удаления одного водорода, и включает любое моноциклическое, бициклическое или полициклическое углеродное кольцо, содержащее до 7 членов в каждом кольце, где, по меньшей мере, одно кольцо является ароматическим. Эти радикалы могут быть необязательно замещены гидрокси, хлоро, бромо, иодо, циано, нитро, OR19, OC(O)R20, C(O)R21, C(O)OR22, NR23R24, C(O)NR25R26, SR27, C(O)SR27, C(S)NR25R26 или арилом, при этом R19-R27 независимо друг от друга представляют собой водород, арил или низший алкил, и/или прерываются одним или более атомом кислорода или серы, или силановой или диалкилкремниевой группами. Примеры таких радикалов могут быть выбраны независимо из фенила, п-толила, 4-метоксифенила, 4-(трет-бутокси)фенила, 3-метил-4-метоксифенила, 4-фторфенила, 4-хлорфенила, 3-нитрофенила, 3-аминофенила, 3-ацетамидофенила, 4-ацетамидофенила, 2-метил-3-ацетамидофенила, 2-метил-3-аминофенила, 3-метил-4-аминофенила, 2-амино-3-метилфенила, 2,4-диметил-3-аминофенила, 4-гидроксифенила, 3-метил-4-гидроксифенила, 1-нафтила, 2-нафтила, 3-амино-1-нафтила, 2-метил-3-амино-1-нафтила, 6-амино-2-нафтила, 4,6-диметокси-2-нафтила, тетрагидронафтила, инданила, бифенила, фенантрила, антрила или аценафтила и тому подобного. Термин «арилен», употребляемый в настоящем документе, относится к двухвалентному радикалу арильной группы, как определено выше. Например, арильная группа, такая как фенил, которая может быть представлена как -Ph, становится фениленом, -Ph-, когда представлена как арилен. Другие ариленовые группы следует понимать соответственно.
Для исключения двусмысленного толкования указание на алкил, алкенил, алкинил, арил или аралкил в сложных группах в настоящем документе следует понимать соответствующим образом, например, указание на алкил в аминоалкиле или алк в алкоксиле следует понимать как указанные выше алк или алкил и т.д.
Под «терефталевой кислотой» подразумевается терефталевая кислота, ее сложный эфир или соль. Терефталевая кислота (b) может использоваться в любой подходящей форме. Специалисту в данной области должно быть хорошо известно, что терефталевая кислота часто предоставляется в форме, которая также содержит изофталевую кислоту в качестве примеси. Однако, в одном варианте осуществления терефталевая кислота может быть получена в форме, которая в основном не содержит изофталевой кислоты. Под выражением «в основном не содержит» авторы изобретения подразумевают терефталевую кислоту, которая содержит менее 5% масс., изофталевой кислоты, предпочтительно менее примерно 2% масс., изофталевой кислоты, более предпочтительно менее 0,05% масс., изофталевой кислоты. В некоторых вариантах осуществления терефталевая кислота может содержать примерно 0% масс., изофталевой кислоты.
В некоторых вариантах осуществления терефталевая кислота может быть в виде сложного диэфира. Подходящие примеры сложной диэфирной формы терефталевой кислоты включают без ограничения одно или более из следующих веществ: диметилтерефталат, диаллилтерефталат, дифенилтерефталат и их сочетания.
Сложнополиэфирный материал может иметь любое подходящее молярное отношение компонентов (а) : (b) и (а)+(b) : (с). В некоторых вариантах осуществления молярное отношение (а) : (b) может находиться в диапазоне от 5:1 до 1:5, например, от 2:1 до 1:2, или даже от примерно 1:1 до 1:2. Предпочтительно молярное отношение (а) : (b) в сложнополиэфирном материале может составлять примерно 1:1. В некоторых вариантах осуществления молярное отношение (а)+(b) : (с) может находиться в диапазоне от примерно 100:1 до 1:1, например, от примерно 80:1 до 5:1. В качестве неограничивающего примера, когда компонент (с) является поликислотой, молярное отношение (а)+(b) : (с) может составлять примерно 25:1. В качестве дополнительного неограничивающего примера, когда компонент (с) является полиолом, молярное отношение а)+(b) : (с) может составлять примерно 80:1.
В некоторых вариантах осуществления значение Tg может составлять по меньшей мере примерно 80°С. В некоторых вариантах осуществления значение Tg может быть до примерно 100°С, предпочтительно до примерно 120°С, или даже до примерно 150°С. Предпочтительно сложнополиэфирный материал может иметь Tg от примерно 80°С до 150°С, более предпочтительно сложнополиэфирный материал может иметь Tg от примерно 80°С до 120°С.
Tg сложнополиэфирного материала может быть измерена с помощью любого подходящего способа. Способы измерения Tg должны быть хорошо известны специалисту в данной области техники. Предпочтительно, Tg определяют в соответствии с ASTM D6604-00(2013) («Standard Practice for Glass Transition Temperatures of Hydrocarbon Resins by Differential Scanning Calorimetry». Дифференциальная сканирующая калориметрия (ДСК) теплового потока, поддоны для проб: алюминий, сравнение: пустая кювета, калибровка: индий и ртуть, масса образца: 10 мг, скорость нагревания: 20°С/мин).
В некоторых вариантах осуществления сложнополиэфирный материал может иметь Mn по меньшей мере примерно 6100 Дальтон (Да = г/моль), предпочтительно по меньшей мере примерно 6250 Да, более предпочтительно по меньшей мере 6500 Да, например, по меньшей мере 7000 Да или даже по меньшей мере примерно 8000 Да. В некоторых вариантах осуществления сложнополиэфирный материал может иметь Mn до примерно 50000 Да, предпочтительно до примерно 30000 Да или даже до примерно 20000 Да. Предпочтительно сложнополиэфирный материал может иметь Mn от примерно 6100 Да до примерно 50000 Да, предпочтительно от примерно 6250 Да до примерно 50000 Да, например, от примерно 6500 Да до 50000 Да, например, от примерно 7000 Да до 50000 Да, или даже от примерно 8000 Да до 50000 Да. Предпочтительно сложнополиэфирный материал может иметь Mn от примерно 6100 Да до примерно 20000 Да, предпочтительно от примерно 6250 Да до примерно 30000 Да, например, от примерно 6500 Да до 30000 Да, например, от примерно 7000 Да до 30000 Да, или даже от примерно 8000 Да до 30000 Да. Предпочтительно сложнополиэфирный материал может иметь Mn от примерно 6100 Да до примерно 20000 Да, предпочтительно от примерно 6250 Да до примерно 20000 Да, Например, от примерно 6500 Да до 20000 Да, например, от примерно 7000 Да до 20000 Да, или даже от примерно 8000 Да до 20000 Да.
Авторами настоящего изобретения неожиданно и с преимуществом было обнаружено, что сложнополиэфирный материал настоящего изобретения имеет высокую Mn при одновременном сохранении более высокой Tg, чем можно было бы обычно ожидать. Преимущество этого заключается в том, что композиция покрытия по настоящему изобретению имеет улучшенные характеристики пленкообразования.
Среднечисловая молекулярная масса может быть измерена с помощью любого подходящего способа. Способы измерения среднечисловой молекулярной массы должны быть хорошо известны специалисту в данной области техники. Соответственно, Mn может быть определена с помощью гель-проникающей хроматографии с использованием полистирольного стандарта в соответствии с ASTM D6579-11 («Standard Practice for Molecular Weight Averages and Molecular Weight Distribution of Hydrocarbon, Rosin and Terpene Resins by Size Exclusion Chromatography»). УФ детектор: 254 нм, растворитель: нестабилизированный ТГФ, маркер времени выдерживания: толуол, концентрация образца: 2 мг/мл).
Специалисту в данной области техники будет ясно, что способы для измерения среднечисловой молекулярной массы также могут использоваться для измерения средневесовой молекулярной массы.
Сложнополиэфирный материал может иметь любую подходящую средневесовую молекулярную массу (Mw). В некоторых вариантах осуществления сложнополиэфирный материал может иметь Mw по меньшей мере примерно 6100 Да, предпочтительно по меньшей мере 8000 Да, например, по меньшей мере примерно 10000 Да или даже примерно 15000 Да. В некоторых вариантах осуществления сложнополиэфирный материал может иметь Mw до примерно 50000 Да, предпочтительно примерно 100000 Да, например, примерно 150000 Да или даже до примерно 200000 Да. Предпочтительно сложнополиэфирный материал может иметь Mw от примерно 6100 Да до примерно 200000 Да, предпочтительно от примерно 8000 Да до примерно 200000 Да, например, от примерно 10000 Да до примерно 200000 Да, или даже от примерно 15000 Да до примерно 200000 Да; Предпочтительно сложнополиэфирный материал может иметь Mw от примерно 6100 Да до примерно 150000 Да, предпочтительно от примерно 8000 Да до примерно 150000 Да, например, от примерно 10000 Да до примерно 150000 Да, или даже от примерно 15000 Да до примерно 150000 Да. Предпочтительно сложнополиэфирный материал может иметь Mw от примерно 6100 Да до примерно 100000 Да, предпочтительно от примерно 8000 Да до примерно 100000 Да, например, от примерно 10000 Да до примерно 100000 Да, или даже от примерно 15000 Да до примерно 100000 Да. Предпочтительно сложнополиэфирный материал может иметь Mw от примерно 6100 Да до примерно 50000 Да, предпочтительно от примерно 8000 Да до примерно 50000 Да, например, от примерно 10000 Да до примерно 50000 Да, или даже от примерно 15000 Да до примерно 50000 Да.
Предпочтительно Mw выше, чем Mn.
Способы измерения средневесовой молекулярной массы должны быть хорошо известны специалисту в данной области техники. Предпочтительно Mw может быть определена с помощью гель-проникающей хроматографии с использованием полистирольного стандарта.
Сложнополиэфирный материал в соответствии с настоящим изобретением предпочтительно имеет низкую степень разветвления. Сложнополиэфирные материалы в соответствии с настоящим изобретением могут быть по существу линейными или слаборазветвленными. Например, степень разветвления сложнополиэфирного материала может быть измерена коэффициентом полидисперсности указанного сложнополиэфирного материала. Коэффициент полидисперсности полимера определяется отношением Mw к Mn (Mw/Mn), где Mw является средневесовой молекулярной массой, и Mn является среднечисловой молекулярной массой. Предпочтительно коэффициент полидисперсности сложнополиэфирного материала настоящего изобретения составляет от примерно 1 до 20, предпочтительно от примерно 2 до 10.
В некоторых вариантах осуществления сложнополиэфирный материал может иметь молекулярную массу выше критической молекулярной массы зацепления указанного сложнополиэфирного материала.
«Критическая молекулярная масса» или «критическая молекулярная масса зацепления» и аналогичные термины, употребляемые в настоящем документе, относятся к молекулярной массе, при которой сложнополиэфирный материал становится достаточно большим для зацепления. Для исключения двусмысленного толкования, молекулярной массой может быть среднечисловая молекулярная масса или средневесовая молекулярная масса. Критическая молекулярная масса зацепления обычно определяется как молекулярная масса, при которой физические свойства, в частности, вязкость полимера, изменяются более быстро с молекулярной массой. Следует также отметить, что некоторые каучукоподобные эластичные свойства полимеров, такие как плато высокой эластичности, наблюдаются только выше критической молекулярной массы зацепления, как описано D.W. Van Krevelen и K Те Nijenhuis в «Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th Edition», издательство Elsevier, Амстердам, 2009, с. 400, и в приведенных там ссылках.
Как правило, критическая молекулярная масса зацепления определяется с помощью построения кривой зависимости логарифма вязкости расплава от логарифма молекулярной массы полимера. Как правило, с увеличением молекулярной массы график следует слегка вверх по наклонной линии. Однако, при достижении критической молекулярной массы зацепления пологая линия возрастает более круто. Это изменение может происходить в широком диапазоне молекулярной массы и может выглядеть как кривая, а не как отдельная точка. В связи с этим, критическая молекулярная масса зацепления может быть определена как точка на графике, в которой наклон изменяется от пологого к более крутому; для этого может потребоваться экстраполяции наклонов перед и после изменения, чтобы найти точку пересечения двух линий. Примеры графиков данного типа, показывающих критическую молекулярную массу зацепления, и таблица, приводящая компиляцию критических молекулярных масс зацепления для ряда полимеров, показаны в работе «Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th Edition», D.W. Van Krevelen и K Те Nijenhuis, опубликованной издательством Elsevier, Амстердам, 2009, с. 534-536, и в приведенных там ссылках.
Способы измерения вязкости расплава должны быть хорошо известны специалисту в данной области техники. Предпочтительно вязкость расплава может измеряться при высоких скоростях сдвига, например, при использовании конического реометра, типичными способами, описанными в стандартах, как например, ASTM D4287. Было обнаружено, что пленки, образованные из сложнополиэфирного материала по настоящему изобретению, имеющие молекулярную массу выше критической молекулярной массы зацепления указанного сложнополиэфирного материала, имеют превосходные характеристики пленкообразования.
Сложнополиэфирный материал по настоящему изобретению может иметь любое подходящее полное гидроксильное число (OHV). В некоторых вариантах осуществления сложнополиэфирный материал может иметь полное OHV от примерно 0 до 30 мг KOH/г. Сложнополиэфирный материал может иметь полное OHV от примерно 0 до 20 мг KOH/г, например, от примерно 5 до 10 мг KOH/г, предпочтительно от примерно 2 до 5 мг KOH/г. Предпочтительно полное OHV выражается на твердое вещество.
Сложнополиэфирный материал настоящего изобретения может иметь любое подходящее кислотное число (AV). Сложнополиэфирный материал может иметь AV от примерно 0; до 20 мг KOH/г, например, от примерно 5 до 10 мг KOH/г, предпочтительно от примерно 2 до 5 мг KOH/г. Предпочтительно AV выражается на твердое вещество.
В некоторых вариантах осуществления сложнополиэфирный материал по настоящему изобретению может быть получен в присутствии катализатора. Предпочтительно, катализатор может быть выбран, чтобы способствовать реакции компонентов при эстерификации и трансэстерификации. Подходящие примеры катализаторов для использования при получении сложнополиэфирного материала включают без ограничения одно или более из следующего: соединения металлов, такие как октоат олова, хлорид олова, бутилстанноновая кислота (оксид гидроксибутилолова), монобутилолово-трис-(2-этилгексаноат), дигидроксид хлорбутилолова, тетра-н-пропилтитанат, тетра-н-бутилтитанат, ацетат цинка; кислотные соединения, такие как фосфорная кислота, паратолуолсульфокислота, додецилбензолсульфокислота, и их сочетания. Катализатор, если присутствует, может использоваться в количестве от 0,001% до 1% по массе от общего количества полимерных компонентов, предпочтительно от 0,01% до 0,2% по массе от общего количества полимерных компонентов.
В одном варианте осуществления двухстадийного способа компоненты (а) и (b) приводятся в контакт друг с другом на первой стадии в первых условиях реакции, затем компонент (с) приводится в контакт с продуктами первой стадии на второй стадии во вторых условиях реакции.
Предпочтительно сложнополиэфирный материал может быть получен в двухстадийном способе, в котором агент повышения молекулярной массы содержит полиол или поликислоту.
Первые условия реакции могут включать температуру от примерно 90°С до 260°С, предпочтительно температуру от примерно 150°С до 250°С. Температура от примерно 90°С до 230°С, предпочтительно от примерно 150°С до 230°С, может поддерживаться в течение периода времени от примерно 1 часа до 100 часов, например, от 2 часов до 80 часов.
Вторые условия реакции могут включать температуру от примерно 90°С до 260°С, предпочтительно температуру от примерно 150°С до 250°С. Температура от примерно 90°С до 230°С, предпочтительно от примерно 150°С до 230°С, может поддерживаться в течение периода времени от примерно 1 часа до 100 часов, например, от 2 часов до 80 часов.
Форполимер сложного полиэфира настоящего изобретения может иметь любую подходящую среднечисловую молекулярную массу (Mn). В некоторых вариантах осуществления форполимер сложного полиэфира может иметь Mn до примерно 5000 Дальтон (1 Да = 1 г/моль), предпочтительно до примерно 4000 Да, например, до примерно 3000 Да, или даже до примерно 2500 Да. В некоторых вариантах осуществления форполимер сложного полиэфира может иметь Mn по меньшей мере примерно 500 Да, предпочтительно по меньшей мере примерно 750 Да, например, по меньшей мере 1000 Да или даже по меньшей мере 1500 Да. В подходящем случае форполимер сложного полиэфира может иметь Mn от примерно 500 Да до примерно 5000 Да, предпочтительно от примерно 750 Да до примерно 5000 Да, например, от примерно 1000 Да до примерно 5000 Да, или даже от примерно 1500 Да до примерно 5000 Да. В подходящем случае форполимер сложного полиэфира может иметь Mn от примерно 500 Да до примерно 4000 Да, предпочтительно от примерно 750 Да до примерно 4000 Да, например, от примерно 1000 Да до примерно 4000 Да, или даже от примерно 1500 Да до примерно 4000 Да. В подходящем случае форполимер сложного полиэфира может иметь Mn от примерно 500 Да до примерно 3000 Да, предпочтительно от примерно 750 Да до примерно 3000 Да, например, от примерно 1000 Да до примерно 3000 Да, или даже от примерно 1500 Да до примерно 3000 Да. В подходящем случае форполимер сложного полиэфира может иметь Mn от примерно 500 Да до примерно 2500 Да, предпочтительно от примерно 750 Да до примерно 2500 Да, например, от примерно 1000 Да до примерно 2500 Да, или даже от примерно 1500 Да до примерно 2500 Да.
В соответствии со вторым аспектом настоящего изобретения предлагается композиция покрытия контейнера для пищевых продуктов и/или напитков, содержащая сложнополиэфирный материал, где сложнополиэфирный материал содержит продукт реакции двухстадийного способа, причем двухстадийный способ включает:
первую стадию, включающую получение форполимера сложного полиэфира с помощью контактирования
(a) 1,2-пропандиола,
(b) терефталевой кислоты, и
вторую стадию, включающую контактирование форполимера сложного полиэфира и
(c) агента повышения молекулярной массы,
отличающаяся тем, что сложнополиэфирный материал имеет среднечисловую молекулярную массу (Mn) по меньшей мере 6100 Да и температуру стеклования (Tg) по меньшей мере 80°С.
Композиция покрытия может дополнительно содержать один или большее число растворителей. Композиция покрытия может содержать один растворитель или смесь растворителей. Растворитель может содержать воду, органический растворитель, смесь воды и органического растворителя или смесь органических растворителей.
Органический растворитель предпочтительно имеет достаточную летучесть для практически полного испарения из композиции покрытия в ходе процесса отверждения. В качестве неограничивающего примера, процесс отверждения может осуществляться с помощью нагревания при 130-230°С в течение 1-15 минут.
Подходящие органические растворители включают без ограничения одно или более из следующих соединений: алифатические углеводороды, такие как уайт-спириты и нафта с высокой температурой вспышки; ароматические углеводороды, такие как бензол, толуол, ксилол и сольвент-нафта 100, 150, 200, доступные от Exxon-Mobil Chemical Company под торговым наименованием SOLVESSO; спирты, такие как этанол, н-пропанол, изопропанол и н-бутанол; кетоны, такие как ацетон, циклогексанон, метилизрбутилкетон, метил эти лкетон; сложные эфиры, такие как этилацетат, бутилацетат, н-гексилацетат; гликоли, такие как бутилгликоль; простые гликолевые эфиры, такие как метоксипропанол, монометиловый эфир этиленгликоля, монобутиловый эфир этиленгликоля; и их сочетания. Растворитель, если имеется, может предпочтительно быть использован в композиции покрытия в количестве от 10% масс., до 90% масс., например, от 20% масс., до 80% масс., или даже от 30% масс., до 70% масс., в расчете на общую массу твердого вещества композиции покрытия.
Сложнополиэфирный материал может быть растворен или диспергирован в указанном одном или более растворителе во время своего образования и/или после этого. Авторы настоящего изобретения с преимуществом обнаружили, что сложнополиэфирные материалы настоящего изобретения имеют хорошую растворимость в растворителях, обычно используемых в жидких покрытиях для упаковки.
Композиция покрытия по настоящему изобретению может содержать любое подходящее количество сложнополиэфирного материала. Композиции покрытия могут содержать от 1% масс., до 100% масс., предпочтительно от 20% масс., до 90% масс., например, от 30% масс., до 80% масс., или даже от 50% масс., до 75% масс., сложнополиэфирного материала в расчете на общую массу твердого вещества композиции покрытия.
В некоторых вариантах осуществления композиции покрытий также могут содержать сшивающий агент. Сшивающий агент может быть любым подходящим сшивающим агентом. Подходящие сшивающие агенты будут хорошо известны специалисту в данной области техники. Подходящие сшивающие агенты включают без ограничения одно или более из следующих соединений: фенольные смолы (или фенолформальдегидные смолы), аминопластовые смолы (или триазинформальдегидные смолы), аминосмолы, эпоксидные смолы, изоцианатные смолы, бета-гидрокси(алкил)амидные смолы, алкилированные карбаматные смолы, поликислоты, ангидриды, металлорганические кислотно-функциональные материалы, полиамины, полиамиды, и их сочетания. В некоторых вариантах осуществления сшивающий агент содержит фенольную смолу или аминопластовую смолу, или их сочетание. Неограничивающими примерами фенольных смол являются фенольные смолы, которые образуются в результате реакции фенола с формальдегидом. Неограничивающими примерами фенолов, которые могут использоваться для образования фенольных смол, являются фенол, бутилфенол, ксиленол и крезол. Общий способ получения фенольных смол описан в «The Chemistry and Application of Phenolic Resins or Phenolplasts», Vol. V, Part I, edited by Dr Oldring; John Wiley and Sons/Cita Technology Limited, London, 1997. Предпочтительно фенольные смолы являются смолами резольного типа. Под «резольным типом» авторы изобретения подразумевают смолы, образованные в присутствии основного (щелочного) катализатора и, необязательно, избытка формальдегида. Подходящие примеры коммерчески доступных фенольных смол включают без ограничения PHENODUR® PR285 и BR612, и смолы, продаваемые под товарным знаком BAKELITE®, такие как BAKELITE 6582 LB. Неограничивающими примерами аминопластовых смол являются смолы, полученные в результате реакции триазина, например, меламина или бензогуанамина, с формальдегидом. Предпочтительно, образующиеся в результате соединения могут быть этерифицированы спиртом, таким как метанол, этанол, бутанол, или их сочетаниями. Приготовление и использование аминопластовых смол описано в «The Chemistry and Applications of Amino Crosslinking Agents or Aminoplast», Vol. V, Part II, page 21 ff, edited by Dr Oldring; John Wiley and Sons/Cita Technology Limited, London, 1998. Подходящие примеры коммерчески доступных аминопластовых смол включают без ограничения аминопластовые смолы, продаваемые под товарным знаком MAPRENAL®, например, MAPRENAL® MF980, и аминопластовые смолы, продаваемые под товарным знаком CYMEL®, например, CYMEL 303 и CYMEL 1128, доступные от Cytec Industries. Предпочтительно сшивающий агент содержит фенольную смолу.
В некоторых вариантах осуществления композиция покрытия также может содержать катализатор. Может использоваться любой катализатор, обычно используемый для катализирования реакций сшивания между сложнополиэфирными материалами и сшивающими агентами, например, фенольными смолами. Подходящие катализаторы будут хорошо известны специалисту в данной области техники. Подходящие катализаторы включают без ограничения одно или более из следующих веществ: фосфорную кислоту; алкиларилсульфокислоты, такие как додецилбензолсульфокислота, метансульфокислота, паратолуолсульфокислота, динонилнафталиндисульфокислота, фенилфосфиновая кислота, и их сочетания. В некоторых вариантах осуществления катализатор может включать кислотный катализатор. Предпочтительно, катализатор может содержать фосфорную кислоту. Катализатор, если имеется, может использоваться в композиции покрытия в любом подходящем количестве. В некоторых вариантах осуществления катализатор, если имеется, может использоваться в количестве от 0,01% масс., до 10% масс., предпочтительно от примерно 0,1% масс., до 2% масс., в расчете на общую массу твердого вещества композиции покрытия.
Композиция покрытия по настоящему изобретению может необязательно содержать добавку или комбинацию добавок. Композиция покрытия может необязательно содержать любую подходящую добавку. Подходящие добавки будут хорошо известны специалисту в данной области техники. Примеры подходящих добавок включают без ограничения одно или более из следующих веществ: смазочные вещества, красители, пластификаторы, поверхностно-активные вещества, регуляторы текучести, тиксотропные агенты, наполнители, разбавители, органические растворители, и их сочетания.
Подходящие смазочные вещества должны быть хорошо известны специалисту в данной области техники. Примеры подходящих смазочных веществ включают б