Многоэлементный преобразователь
Иллюстрации
Показать всеИспользование: для преобразования электрической энергии в механические колебания на частоте в акустическом диапазоне, а также для приема таких звуковых волн путем преобразования механической энергии в электрическую энергию. Сущность изобретения заключается в том, что многоэлементный электроакустический преобразователь содержит изгибную пластину; множество пьезоэлектрических дисков, причем упомянутые пьезоэлектрические диски размещены в планарной матрице на упомянутой изгибной пластине и присоединены к ней, причем каждый из упомянутых пьезоэлектрических дисков и изгибная пластина образуют двухслойный блок; и перегородочный слой, содержащий множество перегородок, образующих множество отверстий, причем упомянутый перегородочный слой присоединен к упомянутой изгибной пластине; причем каждый из упомянутого множества пьезоэлектрических дисков центрирован в каждом из упомянутого множества отверстий, а упомянутые перегородки образуют стенки множества двухслойных электроакустических элементов. Технический результат: повышение чувствительности по широкой полосе и акустической выходной мощности, а также обеспечение низкого профиля и малого веса преобразователя. 2 н. и 20 з.п. ф-лы, 38 ил.
Реферат
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
[001] Это изобретение относится к новому электроакустическому преобразователю, в частности, многоэлементному преобразователю, ультразвуковому передатчику, включающему в себя такой многоэлементный преобразователь, и способу изготовления такого электроакустического преобразователя.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
[002] Электроакустические преобразователи преобразуют электрическую энергию в механические колебания на частоте в акустическом диапазоне, например, в звуковом или ультразвуковом диапазоне и/или может принимать такие звуковые волны и преобразовывать механическую энергию в электрическую энергию. Такое преобразование может достигаться, например, пьезоэлектрическими устройствами. Пьезоэлектрические устройства могут иметь многослойную структуру, включающую в себя один или два пьезоэлектрических слоя и гибкий слой, способный вибрировать, который обычно выполнен из металла, но также может быть выполнен из неметаллического материала.
[003] Эффективность акустического передатчика является функцией эффективностей излучательного и механического преобразования устройства, и общая эффективность одноэлементного передатчика, имеющего один преобразователь, может быть низкой даже при высоком коэффициенте механического преобразования. Объединение нескольких преобразователей в матрицу позволяет преодолевать некоторые недостатки одноэлементного передатчика, в том числе, сконцентрировать доступную акустическую мощность в пучок, что приводит к увеличению уровня источника. Decarpigny, J.N. et al., ʺThe design of low-frequency underwater acoustic projectors: Present status and future trends,ʺ IEEE J. Oceanic Eng., vol. 16, no. 1, pp. 107-122, January, 1991; Wilson, O.B., ʺIntroduction to Theory and Design of Sonar Transducersʺ, at 159, Peninsula Publishing, Los Altos, CA, 1988. Матрицы также позволяют повышать отношение сигнал-шум и чувствительность. Для данного акустического сигнала матрица может генерировать более высокие напряжения, когда блоки соединены последовательно, и может генерировать более сильные токи, когда блоки соединены параллельно. Abbott, W.L., ʺPerformance testing of sonar transducersʺ, Sound and Vibration, vol. 19, no. 12, p. 8, 1985. Тем не менее, взаимодействия между отдельными элементами плотно упакованных матриц могут приводить к различию в акустической нагрузке на каждом преобразовательном элементе в зависимости от их местоположения в массиве, что может приводить к изменениям в объемной скорости каждого элемента в массиве. Sherman, C.H., ʺAnalysis of acoustic interactions in transducer arrays,ʺ IEEE Trans. Sonics and Ultrasonics, SU-13, no. 1, p. 9-15, 1966. Это может приводить к значительным изменениям в объемной интенсивности каждого элемента массива. Таким образом, несмотря на повышение мощности и отношения сигнал-шум, которые может обеспечивать матрица преобразователей, взаимодействия между элементами матрицы могут фактически снижать акустическую выходную мощность; в предельных случаях отдельные элементы матрицы могут иметь отрицательное сопротивление излучения и фактически поглощать акустическую мощность. Такие взаимодействия могут быть особенно проблематичными, когда преобразовательные элементы малы по сравнению с длиной волны излучаемого поля и когда они имеют высокую эффективность.
[004] Электроакустические преобразователи можно использовать в громкоговорителях, микрофонах и ультразвуковых приемопередатчиках. В области медицинских устройств такие преобразователи можно использовать совместно с имплантируемыми резонансными датчиками, например, пассивными резонансными датчиками с ультразвуковым возбуждением, как описано, например, в патентах США № 7134341, выданном Girmonsky, 5619997, выданном Kaplan, и 5989190, выданном Kaplan. В таких системах, электроакустический преобразователь является внешним блоком, который генерирует ультразвуковые волны в качестве входного сигнала на имплантированный датчик, и может принимать от имплантированного датчика ультразвуковые сигналы, которые представляют информацию об измеряемой величине, регистрируемой датчиком, преобразуя эти сигналы в электрические сигналы для переработки в считываемый пользователем формат.
[005] Коммерчески доступные ультразвуковые излучающие устройства, имеющие электроакустические преобразователи, обычно велики и громоздки при недостаточной чувствительности к передаче и ширине полосы для оптимального использования с имплантированными датчиками. Высокая чувствительность к передаче и широкая полоса являются желательными характеристиками, поскольку они обеспечивают более точную и эффективную связь между внешним блоком и имплантированным датчиком. Другие физические характеристики, например, низкий профиль и малый вес, также являются желательными характеристиками в таких применениях, поскольку преобразователь может присоединяться к или носиться на или в теле человека. Таким образом, в уровне техники требуется электроакустический преобразователь, имеющий такие преимущественные физические характеристики.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[006] Настоящее изобретение относится к электроакустическому преобразовательному устройству и производственному процессу. Электроакустическое преобразовательное устройство по изобретению представляет собой акустический передатчик, который содержит множество электроакустических элементов, размещенных в практически плоскопанельной матрице. Каждый преобразовательный компонент устройства является элементом, который содержит «двойной слой», содержащий активный элемент и инертное основание. Активный элемент предпочтительно является пьезоэлектрическим диском. Инертное основание представляет собой изгибную пластину, которая предпочтительно является проводящей и может быть металлизирована с одной стороны. В частности, каждый элемент преобразовательного устройства по изобретению может включать в себя пьезоэлектрический диск, присоединенный к изгибной пластине и подключенный к электрическим проводам, для формирования пьезоэлектрического двухслойного блока.
[007] Перегородочный слой содержит слой материала, образующий множество отверстий, положение, форма и диаметр которых соответствуют элементам. Высота перегородочного слоя задает глубину полости элемента. Перегородки, также именуемые здесь стенками, разделяют соседние элементы.
[008] Преобразовательное устройство по изобретению имеет первую сторону, которая обращена к телу или окружающей среде, куда нужно передавать ультразвуковые волны, и также может именоваться «фронтальной стороной» устройства. Первая сторона в необязательном порядке включает в себя согласующий слой, который имеет поверхность, которая приходит в контакт, например, с телом. Преобразовательное устройство имеет вторую сторону, которая в некоторых вариантах осуществления содержит поддерживающий слой, присоединенный к перегородочному слою. Поддерживающий слой может обеспечивать механическую опору и ограничение пластины. Не ограничиваясь теорией, масса поддерживающего слоя может облегчать поглощение энергии, излучаемой к задней стороне преобразователя. Снижение обратно излучаемой энергии повышает эффективность устройства в том, что ультразвуковая энергия предполагается направленной и будет направляться к фронтальной стороне устройства. Масса поддерживающего слоя может помогать увеличивать ширину полосы частот отклика давления, передаваемого к фронтальной стороне устройства.
[009] Материалы и конструкция преобразовательного устройства делают возможным, чтобы акустический передатчик достиг более высокой чувствительности к передаче по более широкой полосе звуковой частоты, преимущественно поддерживая более низкий профиль и меньший вес, чем традиционные электроакустические преобразователи, имеющие такую же площадь поверхности.
[010] Преобразовательное устройство имеет широкий диапазон применений. Поскольку электроакустическое преобразовательное устройство сравнительно мало и имеет низкую планарную жесткость, оно особенно полезно, когда желателен тесный контакт с кожей, поскольку ультразвуковые волны могут эффективно передаваться в тело. Помимо таких применений, как устройство медицинской диагностики, преобразовательное устройство по изобретению также может иметь гражданское или военное подводное применение, например, подводная навигация с помощью сонара с синтезированной апертурой (SAR), глубинное зондирование, картографирование океана и подводная связь.
[011] Одним неограничительным примером применения преобразователя по изобретению является использование имплантируемых ультразвуковых датчиков, в частности, пассивных резонансных датчиков с ультразвуковым возбуждением. Такие пассивные резонансные датчики с ультразвуковым возбуждением включают в себя резонансный элемент, например, мембрану, и работают без прямого электрического входного сигнала. Резонансный элемент имплантированного датчика возбуждается ультразвуковой энергией извне тела, резонирует на частоте, которая изменяется как функция физиологической переменной окружающей среды измерения, и возвращает ультразвуковые сигналы, из которых можно вычислить эту резонансную частоту. Примеры пассивных резонансных датчиков с ультразвуковым возбуждением, которые можно использовать с настоящим изобретением, описаны в патентах США №№ 5619997, 5989190, 6083165, 6331163, 7415883 и 8162839, выданных Kaplan, и в патенте США № 7134341, выданном Girmonsky и др., которые включены в данное описание по ссылке в полном объеме. Поскольку он способен работать с высокой чувствительностью к передаче на всем протяжении полос рабочих частот таких датчиков, электроакустическое преобразовательное устройство по настоящему изобретению особенно пригодно для опрашивания имплантированного пассивного резонансного датчика с ультразвуковым возбуждением.
[012] Акустический передатчик из настоящей заявки можно использовать для генерации из электрических сигналов ультразвуковых волн, которые поступают на удаленно расположенный, например, имплантированный, резонансный датчик, в том числе, ультразвуковые сигналы низкой частоты для возбуждения резонансного элемента датчика, например, вибрирующей мембраны, возбуждающим ультразвуковым пучком. Преобразовательное устройство также может излучать высокочастотные несущие волны на датчик и/или принимать ультразвуковые сигналы, например, отраженные или модулированные сигналы, от датчика и преобразовывать их в электрические сигналы для считывания выходного сигнала датчика. Акустическое устройство может иметь широкое акустическое поле или узкое акустическое поле. Конструкция преобразовательного устройства, обеспечивающая широкое акустическое поле, позволяет осуществлять ультразвуковое возбуждение по большой площади. Широкое акустическое поле желательно, например, при использовании способа доплеровского сдвига для обнаружения резонанса и для определения резонансной частоты резонансного датчика с ультразвуковым возбуждением, например, как подробно описано в патенте США № 7134341, выданном Girmonsky. Конструкция преобразователя, обеспечивающая узкое акустическое поле, полезна, когда желательно направлять возбуждающее поле в конкретном направлении.
[013] Таким образом, задачей изобретения является обеспечение легкого электроакустического преобразователя, имеющего низкий профиль, а также высокую чувствительность, широкую полосу частот и широкое акустическое поле.
[014] Преобразователь также можно сконструировать так, чтобы он имел более сфокусированное и, таким образом, более управляемое возбуждающее поле. Поэтому, задачей изобретения также является обеспечение легкого электроакустического преобразователя, имеющего низкий профиль, высокую чувствительность, широкую полосу частот и узкое акустическое поле.
[015] Задачей изобретения также является обеспечение многоэлементного преобразователя, имеющего более одного рабочего диапазона, в частности, многочастотного преобразователя. Разные диапазоны частот могут использоваться независимо или совместно.
[016] Настоящее изобретение также относится к процессу изготовления электроакустического преобразователя, который предусматривает изготовление узла изгибной пластины, отдельного узла пьезоэлектрического диска для множества элементов, а затем соединение двух узлов друг с другом.
[017] Еще одной задачей изобретения является обеспечение способа изготовления электроакустических преобразователя, имеющего низкий профиль, высокую чувствительность и широкое акустическое поле.
[018] Еще одной задачей изобретения является обеспечение способа изготовления электроакустических преобразователя, имеющих низкий профиль, высокую чувствительность и узкое акустическое поле.
[019] Совокупный эффект планарной матрицы элементов в соответствии с изобретением дает преобразовательному устройству преимущество более высокой чувствительности при работе в более широкой полосе по сравнению с одноэлементными преобразователями. Конструкция преобразователя также обеспечивает низкопрофильное и легкое устройство с гибкой конструкцией, сравнительно недорогое в макетировании. Преобразователь, отвечающий изобретению, может быть сконструирован для обеспечения надлежащих напряженности поля, ширины и частоты поля или комбинации частот для различных применений.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[020] Настоящее изобретение можно лучше понять из нижеследующего подробного описания, приведенного со ссылкой на чертежи, в которых:
[021] Фиг. 1A-1C демонстрируют слои варианта осуществления многоэлементного преобразователя согласно изобретению, в виде в перспективе сверху.
[022] Фиг. 2A - схематическая иллюстрация одного пьезоэлектрического элемента, показанного в разрезе, в соответствии с изобретением.
[023] Фиг. 2B - схематическая иллюстрация другого пьезоэлектрического элемента, показанного в разрезе, в соответствии с изобретением.
[024] Фиг. 2C - схематическая иллюстрация другого пьезоэлектрического элемента, показанного в разрезе, в соответствии с изобретением.
[025] Фиг. 3 - схематическая иллюстрация двух соседних пьезоэлектрических элементов, согласно изобретению, показанных в разрезе, в соответствии с изобретением.
[026] Фиг. 4 демонстрирует чувствительность к передаче для одного пьезоэлектрического элемента как функцию частоты для различных материалов ЦТС.
[027] Фиг. 5 демонстрирует чувствительность к передаче для одного пьезоэлектрического элемента как функцию отношения диаметра диска к диаметру пластины.
[028] Фиг. 6A демонстрирует чувствительность к передаче для одного пьезоэлектрического элемента как функцию шага.
[029] Фиг. 6B демонстрирует корреляцию между шагом и чувствительностью к передаче для одного пьезоэлектрического элемента.
[030] Фиг. 7 демонстрирует вариант осуществления конфигурации элементов в виде сплошного диска для многоэлементного преобразователя согласно изобретению.
[031] Фиг. 8A и 8B демонстрируют варианты осуществления конфигурации элементов в виде диска с центральным отверстием (проемом) для многоэлементного преобразователя согласно изобретению, причем вариант осуществления, представленный на фиг. 8B, имеет больший диаметр диска и, таким образом, больше элементов, чем вариант осуществления, представленный на фиг. 8A.
[032] Фиг. 9 демонстрирует картины пучка на разных частотах для варианта осуществления электроакустической конструкции, подобной показанной на фиг. 7.
[033] фиг. 10 демонстрирует картины пучка на разных частотах для варианта осуществления электроакустической конструкции, подобного показанному на фиг. 8A.
[034] Фиг. 11 демонстрирует картины пучка на разных частотах для другого варианта осуществления электроакустической конструкции, подобной показанной на фиг. 8B.
[035] Фиг. 12 - график чувствительности к передаче для варианта осуществления элемента, имеющего высокие перегородки, выполненные из латуни, для использования в преобразовательном устройстве в соответствии с изобретением.
[036] Фиг. 13A - график чувствительности к передаче для варианта осуществления элемента, имеющего поддерживающий слой более толстый, чем перегородочный слой, для использования в преобразовательном устройстве в соответствии с изобретением, в котором перегородочный и поддерживающий слои выполнены из одного и того же материала, латуни.
[037] Фиг. 13B - график чувствительности к передаче для варианта осуществления элемента, имеющего поддерживающий слой более толстый, чем перегородочный слой, для использования в преобразовательном устройстве в соответствии с изобретением, в котором перегородочный и поддерживающий слои выполнены из разных материалов, латуни и вольфрам-эпоксидного композита.
[038] Фиг. 13C - график чувствительности к передаче для варианта осуществления элемента, имеющей поддерживающий слой более толстый, чем перегородочный слой, для использования в преобразовательном устройстве в соответствии с изобретением, в котором перегородочный и поддерживающий слои выполнены из одного и того же материала, вольфрам-эпоксидного композита.
[039] Фиг. 13D - график чувствительности к передаче для варианта осуществления элемента, имеющего поддерживающий слой более толстый, чем перегородочный слой, для использования в преобразовательном устройстве в соответствии с изобретением, в котором перегородочный и поддерживающий слои выполнены из разных материалов, вольфрам-эпоксидного композита и латунного композита.
[040] Фиг. 14A-P демонстрируют вариант осуществления способа изготовления многоэлементного преобразователя согласно изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[041] Настоящее изобретение предусматривает многоэлементный электроакустический преобразователь и способ изготовления такого преобразователя. Электроакустическое преобразовательное устройство по изобретению является практически плоским, содержащим множество элементов в плоскости. Преобразовательный компонент содержит элемент, и каждый элемент может содержать двухслойный блок. В частности, матрица пьезоэлектрических дисков может быть присоединена к изгибной пластине, образуя мозаику в плоскости для обеспечения матрицы двухслойных блоков (элементов). Электрический сигнал, поступающий на пьезоэлектрические диски, может подаваться по проводам. Электроакустические элементы преобразуют электрические сигналы в ультразвуковые акустические сигналы, и эти сигналы могут направленно излучаться с минимальной потерей энергии благодаря конструкции устройства. Совокупный эффект множества элементов позволяет преобразовательному устройству достигать высокой чувствительности к передаче в широкой полосе для обеспечения широкого акустического поля. Матрица также позволяет обеспечить конструкции, усиливающие свойства направленности, что позволяет концентрировать пучок акустической мощности.
[042] Преимущества использования планарной матрицы двухслойных преобразовательных компонентов для многоэлементного преобразователя по изобретению включают в себя высокую чувствительность, возможность широкой полосы, низкий профиль, малый вес, недорогое макетирование для конкретных применений и гибкую конструкцию преобразователя. Преимущественная широкая полоса по настоящему изобретению обеспечивает амплитудную характеристику передачи, которая обеспечивает эффективную акустическую передачу в широком диапазоне частот.
[043] В частности, двухслойный преобразовательный компонент преобразователя по изобретению может содержать инертное основание и пьезоэлектрический элемент. Двухслойная матрица делится на множество элементов перегородочным слоем, содержащим перегородки, которые образуют множество отверстий, причем каждое отверстие образует полость элемента. Перегородки также именуются здесь стенками. Каждый элемент имеет свой собственный диаметр, определяемый перегородками, и каждый элемент работает независимо, но множество элементов может возбуждаться параллельно. Перегородочный слой также может иметь вертикальную высоту, которая способствует прямому излучению акустической энергии из двухслойного преобразовательного компонента.
[044] Пьезоэлектрические элементы многоэлементного преобразователя по изобретению могут иметь любую поворотно-симметричную форму (симметрию относительно оси, заданной центром элемента). В одном варианте осуществления элементы имеют одинаковые форму и размер. В одном варианте осуществления элементы являются круглыми. В другом варианте осуществления элементы являются шестиугольными. В еще одном варианте осуществления элементы являются квадратными. Диаметр каждого элемента между перегородками может иметь размер, позволяющий получить требуемую частоту. В некоторых вариантах осуществления, диаметр каждого элемента может составлять примерно 4-10 мм, например, 6 мм или 7 мм. Элементы могут образовывать мозаику таким образом, чтобы обеспечивать одинаковое расстояние от центра любого элемента до центра любого соседнего элемента, например, шестиугольную мозаичную структуру. В одном варианте осуществления распределение элементов может обеспечивать наибольшую плотность упаковки множества элементов на преобразовательном диске, т.е. минимальное расстояние между элементами. Минимизация ширины перегородок для уменьшения шага (расстояния между центрами соседних элементов) может обеспечивать увеличение полосы рабочих частот преобразовательного устройства, имеющего данный диаметр. Когда элементы являются шестиугольными, каждая перегородка может иметь одинаковую ширину. Таким образом, не ограничиваясь теорией, преобразователь по изобретению может быть сконструирован с плотностью элементов, которая обеспечивает требуемую мощность или плотность мощности на единицу площади.
[045] Преобразовательное устройство может дополнительно включать в себя согласующий слой на первой стороне матрицы и поддерживающий слой на второй стороне матрицы.
[046] Преобразовательное устройство, предпочтительно, включает в себя согласующий слой. Согласующий слой располагается на первой стороне преобразовательного устройства, а именно, «фронтальной стороне» преобразователя, где ультразвуковые волны излучаются из устройства и принимаются из окружающей среды, тогда как поддерживающий слой располагается на второй стороне преобразовательного устройства. Согласующий слой прозрачен для ультразвуковых волн и, предпочтительно, выполнен из материала, который минимизирует рассогласования акустического импеданса, когда акустические волны пересекают поверхности раздела между окружающей средой, согласующим слоем и изгибной пластиной. Другими словами, акустический импеданс согласующего слоя не должен сильно отличаться от акустического импеданса окружающей среды и изгибной пластины для минимизации отражения или преломления акустических волн и также минимизации неблагоприятного влияния на прочность, например, потери акустической энергии, и частоту акустических волн. Когда преобразовательное устройство используется с имплантированным датчиком как часть внешнего блока, например, для возбуждения датчика и, в необязательном порядке, для приема сигналов от датчика или для определения положения датчика, предпочтительно, чтобы материал согласующего слоя имел приблизительно такой же акустический импеданс, как у мягких тканей тела. Таким образом, например, в таких применениях согласующий слой может иметь акустический импеданс, близкий к акустическому импедансу одного или более из воды, ткани и крови, например, в диапазоне 1,5-1,54 Мрейл. Определение акустического импеданса окружающей среды, в которой предполагается использовать преобразователь, известно в техники. Применительно к медицинской диагностике, согласующий слой может иметь прямой контакт с кожей. Соответственно, согласующий слой может содержать мягкий полимерный материал и может быть биологически совместимым с поверхностью тела, которая предназначена для контакта.
[047] Поддерживающий слой может присоединяться к перегородочному слою - второй стороне устройства, эффективно «герметизируя» полости для формирования закрытых элементов. Преимущество включения поддерживающего слоя состоит в ограничении передачи акустической энергии от задней стороны устройства - в направлении, противоположном предназначенному направлению, что менее эффективно и может изменять ширину полосы устройства. Надлежащие материалы для поддерживающего слоя будет зависеть отчасти от используемых частот акустической энергии и общей структуры преобразователя.
[048] Преобразователь может быть выполнен с возможностью генерации и приема низкочастотных ультразвуковых волн или для немедицинских применений звуковых волн. Низкочастотные волны могут иметь частоту, например, в диапазоне примерно 30-200 кГц, примерно 20-160 кГц, примерно 30-100 кГц, примерно 50-100 кГц или примерно 20-80 кГц, или могут включать в себя частоты ниже 10 кГц или столь низкие, как требует конкретное применение. В общем случае, предпочтительно избегать слышимых частот в медицинских применениях для человека. Альтернативно, преобразователь может быть выполнен с возможностью генерации и приема высокочастотных ультразвуковых волн, например, в диапазоне примерно 1-10 МГц или примерно 1-50 МГц. Альтернативно, преобразователь может быть выполнен с возможностью генерации и приема комбинации ультразвуковых (или звуковых) волн низких и высоких частот, например, комбинаций в диапазоне от примерно 30 кГц до примерно 1 МГц или от примерно 20 кГц до примерно 10 МГц.
[049] Было обнаружено, что многоэлементная конструкция по изобретению обеспечивает более высокую чувствительность к передаче по сравнению с традиционными электроакустическими преобразователями с такой же площадью поверхности. Например, многоэлементная конструкция, при использовании в диапазоне частот примерно 30-200 кГц, особенно пригодна для использования с пассивным резонансным датчиком с ультразвуковым возбуждением.
[050] Устройство/способ согласно изобретению рассматривается и объясняется ниже со ссылкой на прилагаемые чертежи. Заметим, что чертежи обеспечены для понимания примеров настоящего изобретения и для схематической демонстрации конкретных вариантов осуществления настоящего изобретения. Специалисты в области техники могут рассмотреть другие аналогичные примеры, также укладывающиеся в объем изобретения. Чертежи не призваны ограничивать объем настоящего изобретения, заданный в нижеследующей формуле изобретения.
[051] Как показано на фиг. 1A-1C в виде в перспективе снизу, преобразовательное устройство имеет в качестве своих существенных элементов изгибную пластину 11, множество пьезоэлектрических элементов, пьезоэлектрические диски 12a-12c, расположенные в планарной матрице на изгибной пластине 11, и перегородочный слой 13. Матрица двухслойных элементов - активные пьезоэлектрические диски 12a-12c, присоединенные к инертной изгибной пластине - содержит преобразовательный компонент устройства.
[052] Как показано на фиг. 1A, изгибная пластина 11 распространяется на всю площадь преобразователя. В частности, изгибная пластина 11, показанная на фиг. 1A, является инертным основанием, к которому присоединена матрица пьезоэлектрических дисков 12a-12c. Фиг. 1B.
[053] В общем случае слои инертной изгибной пластины 11, 111 и пьезоэлектрического диска 12, 112 двойного слоя 20 (фиг. 2) будет иметь не только сходные механические характеристики, но и сходную толщину (высоту в вертикальном направлении). Таким образом, например, пьезоэлектрический диск толщиной 0,2 мм может быть соединен с изгибной пластиной толщиной 0,2 мм. Используемые здесь термины «высота» или «вертикальная высота» используются взаимозаменяемо с термином «толстый» или «толщина». В одном варианте осуществления механические характеристики изгибной пластины 11, 111 и пьезоэлектрический диск 12, 112 сходны в том, что модуль Юнга материалов изгибной пластины и пьезоэлектрического диска имеет один и тот же порядок величины для достижения низкого напряжения на границе раздела в ходе изгибной деформации всего преобразовательного устройства. Можно компенсировать различие в модуле Юнга, действуя по толщине, также именуемой здесь вертикальной высотой, двух слоев. Например, если изгибная пластина сформирована из нержавеющей стали, и пьезоэлектрический диск сформирован из PZT-5H, модуль Юнга равен 190 и 61 ГПа, соответственно. Чтобы иметь хорошо сбалансированную структуру, в одном варианте осуществления изгибная пластина и пьезоэлектрический диск каждого двойного слоя имеют сходные механические характеристики и вертикальную высоту, например, изгибная пластина может быть сформирована с толщиной, равной или приблизительно равной 140 мкм, а пьезоэлектрический диск может быть сформирован с толщиной, равной или приблизительно равной 200 мкм. В этом варианте осуществления изгибная пластина и пьезоэлектрический диск могут иметь одинаковый модуль Юнга. Изгибная пластина и пьезоэлектрические диски может иметь одну или более идентичных механических характеристик. В другом варианте осуществления изгибная пластина и пьезоэлектрический диск могут быть сформированы с одинаковой толщиной или вертикальной высотой 200 мкм. Предполагается, что изгибная пластина и пьезоэлектрический диск могут быть сформированы с множеством альтернативных размеров при условии, что поддерживается отношение 1 к 4 для модуля Юнга. Термин, сходный, как использовано в настоящем документе, охватывает любые размеры изгибной пластины и пьезоэлектрического диска при условии, что поддерживается отношение 1 к 4 для модуля Юнга.
[054] Изгибная пластина 11 может быть проводящей пластиной (например, металлизированной с по меньшей мере одной стороны) и может изготавливаться из любого материала, который широко используется совместно с пьезоэлектрическим материалом. При выборе материала для изгибной пластины следует рассматривать следующие критерии: проводимость, способность к приклеиванию к пьезоэлектрическим материалам, контроль толщины, стоимость и доступность. Таким образом, например, материал изгибной пластины должен быть способен надежно приклеиваться к материалу пьезоэлектрического диска, например, к керамикам, если пьезокерамический диск используется в двойном слое. Дополнительно, предпочтителен также материал, который обеспечивает точный контроль толщины. Иллюстративные, неограничительные примеры материалов, полезных для изгибной пластины согласно изобретению, включают в себя углеродистую сталь (например, углеродистую сталь марки 1.1274); нержавеющую сталь (например, нержавеющую сталь марки 1.4310); оксид алюминия (например, металлизированный оксид алюминия); стекло (например, металлизированное стекло); и кремний.
[055] Пьезоэлектрический диск 12 может изготавливаться из любого материала, который широко используется для его пьезоэлектрических эффектов. При выборе материала для пьезоэлектрического диска следует учитывать следующие критерии: механические характеристики (например, высокую пьезоэлектрическую постоянную d31, низкие механические потери, низкие электрические потери), электрические характеристики (проводимость), форму и размер, техническую надежность, стоимость и доступность. Неограничительные иллюстративные примеры материалов для пьезоэлектрических дисков включают в себя цирконат-титанат свинца (ЦТС), например, мягкие материалы ЦТС, например, PZT5A и PZT5H, и твердые материалы ЦТС, например, PZT4, PZT7A, PZT8. PZT5A описан, например, в Engineering Fundamentals, Inc. на www.efunda.com; PZT5H описан, например, в Heinonen, E., Juuti, J., and Leppavuori, S. Characterization and modelling of 3D piezoelectric ceramic structures with ATILA software. Journal of European Ceramic Society, 25, 2467-2470 (2005). Такие материалы доступны, например, от Boston Piezo Optics Inc., Беллингем, Массачусетс, США, где описаны свойства материалов на http://bostonpiezooptics.com/ceramic-materials-pzt. См. также Bar-Chaim, N., M. Brunstein, J. Grünberg, and A. Seidman, ʺElectric field dependence of the dielectric constant of PZT ferroelectric ceramics,ʺ J. Appl. Phys. 45, 2398 (1974); D. Berlincourt and H. H. A. Krueger, (revised by C. Near), PROPERTIES OF MORGAN ELECTRO CERAMIC CERAMICS, Technical Publication TP-226, Morgan Electro Ceramics, на http://www.morganelectroceramics.com/resources/technical-publications/; Berlincourt, D., ʺRecent Developments in Ferroelectric Transducer Materials,ʺ Transactions of the IRE Professional Group on Ultrasonic Engineering, Vol. 4, Issue: 1, pp. 53-65, Aug. 1956; Berlincourt, D.; B. Jaffe, H. Jaffe, H.H.A. Krueger, ʺTransducer Properties of Lead Titanate Zirconate Ceramics,ʺ IRE Transactions on Ultrasonic Engineering, Volume: 7, Issue: 1, pp. 1-6, Feb. 1960; Jaffe, H., D.A., Berlincourt, ʺPiezoelectric transducer materials,ʺ Proceedings of the IEEE, Volume: 53, Issue 10, pp. 1372-1386, Oct. 1965; Lamberti, N., M. Pappalardo, ʺA general approximated two-dimensional model for piezoelectric array elements,ʺ IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 42, Issue: 2, pp. 243-252, Mar. 1995.
[056] Перегородочный слой 13 присоединен к изгибной пластине 11 и содержит множество отверстий, которые соответствуют множеству элементов многоэлементного преобразователя, как показано на фиг. 1C. Материал перегородочного слоя 13, окружающий отверстия, образует перегородки или стенки между элементами, таким образом, образуя границы двухслойных электроакустических элементов. В наиболее эффективных вариантах осуществления отверстия имеют одинаковые размеры и равномерно разнесены. Как более подробно показано на фиг. 2 и 3, каждое отверстие задает полость 115a, 115b, ограниченную изгибной пластиной 111 и перегородками 113, причем перегородки образуют стенки элементов 10, 10a, 10b. Каждый пьезоэлектрический диск 12a-12c присоединен к изгибной пластине 11 (фиг. 1B) и располагается по центру отверстий перегородочного слоя 13 (фиг. 1C), т.е. в каждой полости. Каждый пьезоэлектрический диск 12a-12c, 112, 112a, 112b может иметь ту же форму, что и граница элемента 10, 10a, 10b, в котором он содержится, но меньшего диаметра, как показано на фиг. 2 и 3. С подключенными электрическими проводами пьезоэлектрический блок - элемент - может преобразовывать электрические сигналы в ультразвуковые волны и наоборот.
[057] Пьезоэлектрический элемент может приводить в действие изгибную пластину, заставляя ее изгибаться. В одном варианте осуществления пьезоэлектрический диск может быть пьезокерамической пластиной, аналогичной тем, которые используются в телефонных приемниках и зуммерах. Современная технология позволяет изготавливать такие пьезокерамические пластины толщиной примерно 0,1 мм. Полная толщина композитной двухслойной пластины может быть примерно 0,2 мм. Таким образом, при подаче напряжения, композитная пластина может иметь большую деформацию и низкую изгибную жесткость. Присутствие изгибной пластины препятствует радиальной вибрации пьезокерамики при пропускании переменного тока. Создаваемые таким образом асимметричные напряжения прилагаются к двухслойной пластине, заставляя ее изгибаться.
[058] Не ограничиваясь теорией, в первом приближении резонансную частоту изгибной пластины элемента можно задать в виде:
где t - толщина (вертикальная высота), dc - диаметр двойного слоя, - модуль Юнга, - коэффициент Пуассона, и - отношение веса к поверхности. Величины, указанные с верхним подчеркиванием, обозначают средние значения между значениями для пьезоэлектрического диска и изгибной пластины. Постоянная λ2 будет зависеть от резонансной моды и вида связи, применяемой для присоединения пьезоэлектрического диска к изгибной пластине. См. Caliano, G., A. Iula, N. Lamberti, M. Pappalardo, ʺA Piezoelectric Bimorph Static Pressure Sensor,ʺ Sensors & Actuators A, 46-47, pp. 176-178 (1995). Для первой изгибной моды, λ2 может изменяться от примерно 4,9, для пластины, поддерживаемой на границе, до примерно 10,2 для зажатой пластины.
[059] В одном варианте осуществления элементы многоэлементного преобразователя могут иметь разные рабочие диапазоны и могут использоваться разными кабелями и электронными устройствами. Такое расположение обеспечивает многочастотный преобразователь, который позволяет элементам каждого диапазона резонансных частот работать независимо или совместно друг с другом. Этот вариант осуществления могут иметь преимущество для определенных применений, например, акустической виброметрии, где две частоты, например, более низкая частота для возбуждения и более высокая частота для доплеровского опроса, обязательны. Два отдельных диапазона частот можно использовать из одного и того же источника с коаксиальным распространением через среды, таким образом, гарантируя,