Получение вирусоподобных частиц в растениях

Иллюстрации

Показать все

Изобретение относится к биотехнологии. Предложен способ получения вирусоподобных частиц (VLP) в растении, который включает введение нуклеиновой кислоты, содержащей регуляторную область, активную в растении, и функционально связанную с химерной нуклеотидной последовательностью, в растение или часть растения, последующую инкубацию растения или его части в условиях, обеспечивающих экспрессию нуклеиновой кислоты с получением VLP. Также предложены вирусоподобная частица (VLP), полученная указанным способом, композиция и клетка растения, ее содержащие. Химерная нуклеотидная последовательность кодирует последовательно эктодомен из вирусного тримерного поверхностного белка, полученного из вирусов семейства Retroviridae, Rhabdoviridae, Coronaviridae или Filoviridae, слитый с трансмембранным доменом и цитоплазматическим хвостовым доменом (ТМ/CT) гемагглютинина вируса гриппа. Предложенная VLP содержит химерные вирусные поверхностные белки и липиды, полученные из растения. Предложенный способ позволяет получать в растении вирусоподобные частицы, содержащие вирусные поверхностные белки, для применения полученных VLP в качестве вакцины. 8 н. и 10 з.п. ф-лы, 70 ил., 5 табл., 12 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

[0001] Настоящее изобретение относится к получению химерных вирусных белков в растениях. Конкретнее, настоящее изобретение также относится к получению в растениях вирусоподобных частиц, содержащих химерные вирусные белки.

УРОВЕНЬ ТЕХНИКИ

[0002] Вакцинация обеспечивает защиту от заболевания, вызванного похожим агентом, индуцируя у субъекта выработку механизмов защиты до инфекции. Обычно это достигается посредством применения живых ослабленных или цельных инактивированных форм инфекционных агентов в качестве иммуногенов. Чтобы избежать опасностей, связанных с использованием цельного вируса (такого как убитые или ослабленные вирусы) в качестве вакцины, были созданы вакцины на основе рекомбинантных вирусных белков, например субъединиц. Как пептидные, так и субъединичные вакцины подвержены ряду потенциальных ограничений. Субъединичные вакцины могут обладать слабой иммуногенностью, вследствие неправильного сворачивания, плохой презентацией антигена или различиями в углеводном и липидном составе. Основная проблема заключается в трудности обеспечения того, чтобы конформация сконструированных белков имитировала конформацию антигенов в их природном окружении. Для усиления иммунного ответа должны использоваться подходящие адъюванты и, в случае пептидов, белки-носители. Кроме того, данные вакцины вызывают, в первую очередь, гуморальные реакции и, следовательно, могут не приводить к выработке эффективного иммунного ответа. Субъединичные вакцины часто оказываются неэффективными в случае заболеваний, для которых может быть показано, что защиту обеспечивает цельный инактивированный вирус.

[0003] Вирусоподобные частицы (virus-like particles (VLP)) являются потенциальными кандидатами для включения в иммуногенные композиции. VLP очень похожи на зрелые вирионы, но они не содержат вирусный геномный материал. Таким образом, VLP не реплицируются в природе, что делает их безопасными для применения в качестве вакцины. Кроме того, VLP могут быть сконструированы так, чтобы экспрессировались вирусные гликопротеины на поверхности VLP, что является их наиболее нативной физиологической конфигурацией. Кроме того, поскольку VLP напоминают интактные вирионы и являются поливалентными структурами, образованными из частиц, VLP могут быть эффективнее в том, что касается индукции нейтрализующих антител к гликопротеину, чем антигены, представляющие собой растворимые белки оболочки.

[0004] VLP для более чем тридцати различных вирусов были получены в системах, использующих клетки насекомых и млекопитающих в целях их применения в качестве вакцин (Noad, R. and Roy, P., 2003, Trends Microbiol 11: 438-44). Несколько исследований показали, что рекомбинантные белки вируса гриппа самоорганизуются в VLP в клеточной культуре при использовании плазмид экспрессии млекопитающих или бакуловирусных векторов (например, Gomez-Puertas et al., 1999, J. Gen. Virol, 80, 1635-1645; Neumann et al., 2000, J. Virol., 74, 547-551; Latham and Galarza, 2001, J. Virol., 75, 6154-6165).

[0005] Gomez-Puertas et al. (1999, J. Gen. Virol., 80, 1635-1645) показали, что эффективное образование VLP гриппа зависит от уровней экспрессии вирусных белков. Neumann et al. (2000, J. Virol., 74, 547-551) разработали систему на основе плазмиды экспрессии млекопитающих для получения инфекционных частиц, похожих на вирус гриппа, с использованием только клонированной кДНК. Latham and Galarza (2001, J. Virol., 75, 6154-6165) сообщили об образовании VLP гриппа в клетках насекомого, инфицированных рекомбинантным бакуловирусом, при совместной экспрессии генов НА, NA, M1 и М2. Данное исследование продемонстрировало, что белки вириона гриппа самоорганизуются при совместной экспрессии в эукариотических клетках и что матриксный белок M1 необходим для продукции VLP.

[0006] В некоторых системах экспрессии, включая бакуловирус, вирус коровьей оспы, клетки дрозофилы (DS-2), клетки Vero и дрожжевые сферобласты, экспрессия Pr55gag из вируса иммунодефицита человека (human immunodeficiency virus (HIV)) приводит к сборке и высвобождению вирусоподобных частиц (VLP), похожих по морфологии на незрелые вирионы HIV (обзор Demi et al., 2005, Molecular Immunology 42: 259-277).

[0007] Белок оболочки gp160 HIV может быть встроен в VLP, полученные из Gag. Однако встраивается только ограниченное число белков оболочки, несмотря на высокий уровень экспрессии Pr55gag. Wang et al. показали, что замена трансмембранного домена и цитоплазматических "хвостовых" доменов (ТМ/СТ) белка оболочки HIV таковыми другого белка вирусной оболочки, включая гемагглютинин (НА) вируса гриппа, приводит к увеличению встраивания белка оболочки в VLP, полученные из Pr55gag (Journal of Virology, 2007, 81: 10869-10878). Было также показано, что химерный белок оболочки HIV, содержащий ТМ/СТ белка НА, встраивается в VLP, полученные из белка M1 вируса гриппа, при совместной экспрессии в клетках насекомых с использованием системы экспрессии на основе бакуловируса (WO 2008/005777).

[0008] Проникновение вируса гриппа в клетку зависит от НА-зависимого рецептор-опосредованного эндоцитоза. Инфекционный цикл вируса гриппа инициируется присоединением поверхностного белка НА вириона к клеточному рецептору, содержащему сиаловую кислоту (гликопротеины и гликолипиды). Белок нейраминидаза (NA) служит посредником в процессинге рецепторов сиаловой кислоты. В кислых компартментах интернализированных эндосом, содержащих вирион гриппа, белок НА претерпевает конформационные изменения, которые приводят к слиянию вирусной и клеточной мембран, декапсидации вируса и опосредованному белком М2 высвобождению белков M1 из связанных с нуклеокапсидом рибонуклеопротеинов (RNP), которые мигрируют в ядро клетки для синтеза вирусной РНК. Latham and Galarza (2001, J. Virol., 75, 6154-6165) сообщили об образовании VLP гриппа в клетках насекомого, инфицированных рекомбинантным бакуловирусом, при коэкспрессии генов НА, NA, M1 и М2. Помимо этого, Gomez-Puertas et al. (2000, J Virol. 74, 11538-11547) полагают, что, в дополнение к гемагглютинину (НА), матриксный белок (M1) вируса гриппа является существенным для VLP, отпочковывающихся от клеток насекомых. Однако Chen et al. (2007, J. Virol. 81, 7111-7123) считают, что, возможно M1 не требуется для образования VLP.

[0009] Наиболее охарактеризованные механизмы отпочковывания вирусов используют вакуолярный путь сортировки белков (vacuolar protein sorting (VPS)) в качестве пути хозяина (см. Chen and Lamb, Virology 372, 2008). Как было показано, многие оболочечные вирусы взаимодействуют с белками VPS-пути, требующими действия белковых комплексов эндосомного сортировочного комплекса, необходимого для транспорта (endosomal sorting complex required for transport (ESCRT)) (см. таблицу I в публикации Chen and Lamb 2008). "Поздний" домен белка, который взаимодействует с белками VPS-пути, обнаружен в сердцевинных и матриксных белках вирусов, и, следовательно, для VPS-зависимого отпочковывания необходимо присутствие матриксных или сердцевинных белков. Для отпочковывания требуется пальмитоилирование цитоплазматического хвостового домена белка НА вируса гриппа, но данный механизм не до конца понятен, и в нем могут быть задействованы другие домены поверхностных белков. Минимальные условия, обеспечивающие отпочковывание, остаются неизвестными, и не исключено участие эктодомена в данном процессе. Кроме того, VPS-путь в растениях еще мало изучен (см. Schellmann S., and Pimpl P., Current Op Plant Biol 12:670-676, 2009).

[0010] Известно, что отпочковывание вируса гриппа является независимым от VPS-пути. Отпочковывание вируса гриппа включает в себя путь с участием белка Rab11 (Bruce et al., J. Virol 84:5848-5859, 2010). Белки Rab представляют собой находящиеся на поверхности транспортных везикул внутри клеток и связанные с мембраной липидным якорем GTP-азы, которые участвуют в образовании везикул из донорного компартмента, транспорте, стыковке и слиянии с акцепторным компартментом (Vazquez-Martinez and Malagon Frontiers in Endocrinology 2:1-9, 2011). Компоненты пути с участием белка Rab11 были идентифицированы в растениях. Однако, эволюция компонентов путей направленного транспорта в растениях привела к нескольким специфическим особенностям эндомембранной системы растений, включая, например, большую и специализированную вакуоль, быстрое движение стопок Гольджи и уникальную организацию эндосомных компартментов, а также к повышенному числу Rab GTP-аз (Rojo Ε., and Deneke J., Plant Phys 147:1493-1503, 2008). Отпочковывание вирусоподобной частицы гриппа или вируса гриппа зависит от Rab11 (Bruce et. al., J. Virol 84:5848-5859, 2010), но белок или белковый домен, который взаимодействует с Rab11 или Rab11-связанными белками, не идентифицирован. Однако минимальный домен или домены белка НА, которые могли бы обеспечивать процесс отпочковывания и продукции VLP, остаются неизвестными.

[0011] В растениях белок Pr55gag из HIV накапливается на крайне низком уровне, если он не сконструирован для накопления в хлоропластах (Meyers et al., 2008, ВМС Biotechnology 8:53; Scotti et al., 2010, Planta 229: 1109-1122). Накопление в хлоропласте, однако, несовместимо с встраиванием правильно свернутого белка оболочки HIV, поскольку созревание и сворачивание последнего требует посттрансляционных модификаций, специфичных для пути секреции. Rybicki et al. (2010, Plant Biotechnology Journal 8: 620-637) отмечает, что "…кажется, что никому не удалось успешно экспрессировать целый белок gp160 Env HIV или даже большую часть белка в растениях с приемлемым выходом…".

[0012] Вирус бешенства (rabies virus (RV)) относится к семейству Rhabdoviridae. Как и большинство членов данного семейства, RV представляет собой вирус, содержащий однонитевую несегментированную РНК отрицательной полярности, геном которого кодирует пять вирусных белков: РНК-зависимую РНК-полимеразу (L); нуклеопротеин (N); фосфорилированный белок (Р); матриксный белок (М), расположенный на внутренней стороне белковой оболочки вируса; и гликопротеин (G) внешней поверхности. Dietzschold В et al. (1991), Crit. Rev. Immunol. 10: 427-439.

[0013] Получение культуральных вакцин против бешенства сводится к выращиванию инактивированных штаммов вируса в клеточных культурах. Данные вакцины содержат вирус, выращенный в клеточных культурах. Существующие биотехнологические подходы направлены на экспрессирование гена белка оболочки вируса бешенства с целью разработки безопасного рекомбинантного белка, который может быть применен в качестве активной вакцины. Стабильная экспрессия гликопротеина вируса бешенства была показана в клетках яичника китайского хомячка (Burger et al., 1991). Был получен полноразмерный гликозилированный белок с молекулярной массой 67 К, который мигрировал совместно с G-белком, выделенным из инфицированных вирусом клеток.

[0014] В документе WO/1993/001833 раскрыто получение вирусоподобных частиц (VLP) в системе экспрессии на основе бакуловируса, содержащей РНК-геном, включающий в себя 3ʹ-домен и "домен-наполнитель" (filler domain), окруженные оболочкой из белка M вируса бешенства и белка M1 вируса бешенства. VLP также включает в себя липидную оболочку белка G вируса бешенства.

[0015] Вирус ветряной оспы (Varicella Zoster virus (VZV)), также известный как вирус герпеса человека 3-го типа (ВГЧ-3), является членом подсемейства альфагерпесвирусов вирусного семейства герпесвирусов (Herpesviridae). VLP, экспрессирующие гликопротеины или белки оболочки, были ранее получены из разных членов семейства герпесвирусов. Легкие частицы (L-частицы), состоящие из оболочечных белков оболочки, были получены из клеток, инфицированных либо вирусом простого герпеса типа 1 (herpes simplex virus type 1 (HSV-1)), лошадиным вирусом герпеса типа 1 (equine herpesvirus type 1 (EHV-1)) либо вирусом псевдобешенства (McLauchlan and Rixon (1992) J. Gen. Virol. 73: 269-276; патент США №5,384,122). Другой тип VLP, названный pre-viral DNA replication enveloped particles (PREP), удалось получить из клеток, инфицированных HSV-1 в присутствии ингибиторов репликации вирусной ДНК. PREP напоминали структурно L-частицы, но отличались по составу белка (Dargan et al. (1995) J. Virol. 69: 4924-4932; патент США №5,994,116). Гибридные VLP, экспрессирующие фрагменты белка gE из VZV, были получены технологией с использованием белка p1, кодируемого ретротранспозоном Ту дрожжей (Garcia-Valcarcel et al. (1997) Vaccine 15: 709-719; Welsh et al. (1999) J. Med. Virol. 59: 78-83; патент США №6,060,064). В заявке США 2011/0008838 описаны химерные VLP, которые содержат, по меньшей мере, один белок VZV, но не содержат белок Ту дрожжей. Химерные VLP содержат вирусный сердцевинный белок, такой как белок M1 вируса гриппа или белок M ньюкаслской болезни, и, по меньшей мере, один белок вируса ветряной оспы (VZV).

[0016] Распространение эволюционно нового коронавируса (CoV) вызвало глобальную угрозу пандемии тяжелого острого респираторного синдрома (ТОРС, severe acute respiratory syndrome (SARS)) в 2003 году (Kuiken, T. et al., 2003, Lancet 362: 263-270). Как и другие коронавирусы, SARS-CoV морфологически представляет собой покрытые оболочкой частицы с типичными периферийными образованиями, называемыми "короны" или "шипы", окружающими поверхность вирусной сердцевины (Ksiazek, Т.G. et al., 2003, N Engl J Med 348: 1953-1966; Lin, Y. et al., 2004, Antivir Ther 9: 287-289). Сердцевину частицы коронавируса окружает слой липидной оболочки, содержащий, в основном, три мембранных белка, а именно, наиболее обильно представленный белок M (мембранный (membrane)), небольшой белок Ε (оболочечный (envelope)) и белок S (белок шипа (spike)). Гомотримеры белка S совместно образуют вышеупомянутую корону, которая участвует в связывании вируса с рецепторами хозяина, слиянии мембран при проникновении вируса, распространении от клетки к клетке и тканевом тропизме коронавирусов.

[0017] Системы экспрессии на основе бакуловируса были использованы для получения SARS-VLP (Но, Y. et al., 2004, Biochem Biophys Res Commun 318: 833-838; Mortola, Ε. and Roy, P., 2004, FEBS Lett 576: 174-178). Однако, в силу внутренних различий между клетками насекомых и клетками млекопитающих, VLP, собиравшиеся в клетках насекомого (SF9), имели диаметр, равный 110 нм, что намного превышает диаметр аутентичных вирионов SARS-CoV, составляющий 78 нм (Lin, Y. et al., 2004, см. выше, и Но, Y. et al., 2004, см. выше). Более того, иммуногенность SARS-VLP, полученных с помощью клеток насекомых, остается неисследованной. Другие исследователи также пытались использовать системы экспрессии в клетках млекопитающих для получения SARS-VLP (Huang, Y. et al., 2004, J Virol 78: 12557-65). Однако степень высвобождения VLP из клеток не является достаточной, и выход VLP не является удовлетворительным. Например, в документе WO/2005/035556 описывается система для получения SARS-CoV-вирусоподобных частиц (SARS-CoV-VLP), содержащих один или более рекомбинантных векторов, которые экспрессируют Е-белок SARS-CoV, М-белок SARS-CoV и S-белок SARS-CoV в клетках млекопитающих.

[0018] В любой системе образование VLP предъявляет определенные требования к структуре белков - само по себе изменение участков последовательности белка может не оказывать большого влияния на экспрессию полипептида, однако, структурные исследования, показывающие влияние таких изменений на образование VLP, отсутствуют. Взаимодействия различных областей и структур белка эволюционировали вместе с вирусом, так что подобные их изменения могут оказаться невозможны без потери способности к образованию VLP.

[0019] Для совершенствования VLP в качестве вакцин-кандидатов необходимо исследование других систем экспрессии, помимо клеток насекомых и млекопитающих. Следовательно, существует необходимость в оценке способности растительных систем экспрессии продуцировать химерные белковые VLP. В частности, необходимы определение минимального количества вирусных белков, способных собираться в VLP, а также оценка морфологии и иммуногенности таких VLP.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0020] Настоящее изобретение относится к получению химерных вирусных белков в растениях. Конкретнее, настоящее изобретение также относится к получению в растениях вирусоподобных частиц, содержащих химерные вирусные белки.

[0021] Настоящее изобретение относится к способу получения вирусоподобной частицы (VLP) в растении, содержащему

а) введение в растение или в часть растения нуклеиновой кислоты, содержащей регуляторную область, активную в растении и функционально связанную с химерной нуклеотидной последовательностью, кодирующей последовательно эктодомен из вирусного тримерного поверхностного белка или его фрагмент, слитый с трансмембранным доменом вируса гриппа и цитоплазматическим "хвостом" вируса гриппа, причем данный эктодомен взят от тримерного поверхностного белка вируса, не являющегося вирусом гриппа, и является гетерологичным по отношению к трансмембранному домену и цитоплазматическому "хвосту" вируса гриппа, и

б) инкубацию растения или части растения в условиях, обеспечивающих экспрессию нуклеиновой кислоты, с получением, таким образом, VLP.

[0022] Способ, описанный выше, может дополнительно содержать стадию (с) сбора растений и очистки VLP. Дополнительно, VLP могут не содержать вирусный матриксный белок или сердцевиннный белок.

[0023] Настоящее изобретение относится к способу, описанному выше, в котором эктодомен из вирусного тримерного поверхностного белка или его фрагмент может быть получен из вирусов семейства Retroviridae, Rhabdoviridae, Herpesviridae, Coronaviridae, Paramyxoviridae, Poxviridae или Filoviridae. Эктодомен из вирусного тримерного поверхностного белка может быть получен, например, из организмов, относящихся к родам Lentivirus, Lyssavirus, Varicellovirus, Coronavirus или Ebolaviras. Эктодомен из вирусного тримерного поверхностного белка может быть получен из, например, но не ограничиваясь ими, HIV, вируса бешенства, VZV, RSV, вируса SARS, вируса Эбола, вируса кори, вируса свинки, вируса ветряной оспы, цитомегаловируса, вируса Эбола/филовируса, вируса герпеса, вируса Эпштейна-Барра или вируса оспы. Вирусный тримерный поверхностный белок в его нативной форме может содержать эктодомен и трансмембранный домен/цитоплазматический хвост, как, например, но не ограничиваясь ими, F-белок (RSV, вирус кори, вирус паротита, вирус ньюкаслской болезни), S-белок (SARS), белок env (HIV), G-белок (вирус бешенства), оболочечный гликопротеин, включая Е, В, С, I, H (VZV, цитомегаловирус, вирус герпеса, вирус Эпштейна-Барра), гликопротеин GP (вирус Эбола, вирус Марбург), гемагглютинин (вирус натуральной оспы, вирус коровьей оспы).

[0024] Настоящее изобретение также включает в себя способ, описанный выше, в котором трансмембранный домен вируса гриппа и цитоплазматический "хвост" вируса гриппа получают из Н5 (A/Indonesia/05/2005) или белка Н3 (A/Brisbane/10/2007). Трансмембранный домен и цитоплазматический "хвост" могут содержать нуклеотидную последовательность, определенную в SEQ ID NO: 41 или в SEQ ID NO: 42.

[0025] Настоящее изобретение также относится к способу, описанному выше, в котором на стадии введения (стадия а) нуклеиновая кислота транзиентно экспрессируется в растении. Альтернативно, на стадии введения (стадия а) нуклеиновая кислота может постоянно экспрессироваться в растении.

[0026] Настоящее изобретение также включает в себя способ, описанный выше, в котором на стадии введения (стадия а) в растение вводят одну или более чем одну дополнительную нуклеиновую кислоту, выбранную из группы нуклеотидных последовательностей, кодирующих один или более чем один белок, относящийся к шаперонам, белковым протонным каналам, ингибиторам протеаз или их комбинации.

[0027] Настоящее изобретение относится к VLP, получаемой способом, описанным выше. Химерный вирусный тримерный поверхностный белок из VLP может содержать специфические для растений N-гликаны или модифицированные N-гликаны. VLP может также содержать один или более чем один липид, полученный из растения.

[0028] Настоящее изобретение относится к композиции, содержащей эффективную дозу VLP, как описано выше, для индукции иммунного ответа, и фармацевтически приемлемый носитель.

[0029] Настоящее изобретение относится к получению химерного вирусного тримерного поверхностного белка из вирусов семейства Retroviridae, Rhabdoviridae, Herpesviridae, Coronaviridae или Filoviridae и к получению вирусоподобных частиц, содержащих данный химерный вирусный тримерный поверхностный белок, в растениях.

[0030] Дополнительно, настоящее изобретение относится к получению в растениях химерного вирусного тримерного поверхностного белка вируса иммунодефицита человека (HIV), вируса бешенства, вируса ветряной оспы (VZV), вируса тяжелого острого респираторного синдрома (SARS) или вируса Эбола. Настоящее изобретение относится к получению в растениях химерных вирусоподобных частиц HIV, бешенства, VZV, SARS и Эбола.

[0031] В соответствии с настоящим изобретением предлагается способ получения в растении химерных VLP HIV, бешенства, VZV, SARS или Эбола, содержащий введение в растение или в часть растения нуклеиновой кислоты, кодирующей химерный вирусный белок HIV, вируса бешенства, VZV, SARS или вируса Эбола, функционально связанной с регуляторной областью, активной в растении, и инкубацию растения или части растения в условиях, обеспечивающих экспрессию нуклеиновой кислоты, с получением, таким образом, химерных VLP HIV, бешенства, VZV, SARS или Эбола.

[0032] Настоящее изобретение дополнительно относится к VLP, содержащей химерный белок HIV, вируса бешенства, VZV, SARS или вируса Эбола. Такая VLP может быть получена способом, предусмотренным настоящим изобретением. VLP HIV, бешенства, VZV, SARS или Эбола может быть также получена в растении.

[0033] Химерные VLP или VLP, полученные из белков, происходящих из HIV, вируса бешенства, VZV, SARS или вируса Эбола, в соответствии с настоящим изобретением не содержат белок M1. Белок M1, как известно, связывает РНК, которая может рассматриваться как загрязнение препарата VLP. Присутствие РНК является нежелательным при получении разрешения надзорных органов на антигенный (VLP) продукт, поэтому отсутствие РНК в препарате химерных VLP может рассматриваться как преимущество.

[0034] Хотя нативный белок Env HIV плохо накапливается в растениях, химерный белок Env HIV, слитый с трансмембранным (ТМ) и цитоплазматическим хвостовым (СТ) доменами белка НА вируса гриппа, накапливается с высоким содержанием и почкуется с образованием VLP HIV в растениях в отсутствие сердцевинного белка или матриксного белка.

[0035] Данная сущность изобретения не обязательно описывает все признаки настоящего изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0036] Данные и другие признаки настоящего изобретения станут более очевидными из приведенного ниже описания, содержащего ссылки на прилагаемые чертежи, где:

[0037] На фигуре 1 представлены несколько нуклеотидных и аминокислотных последовательностей и экспрессионные кассеты для HIV в соответствии с различными вариантами осуществления настоящего изобретения. SEQ ID NO: 1: Консенсусная последовательность нуклеиновой кислоты HIV ConS ΔCFI (Последовательность, кодирующая нативный сигнальный пептид, выделена жирным шрифтом, последовательности, кодирующие нативные трансмембранный и цитоплазматический домены, подчеркнуты). На фигуре 1А представлена консенсусная последовательность нуклеиновой кислоты (SEQ ID NO: 1) ConS ΔCFI из HIV (последовательность, кодирующая нативный сигнальный пептид, выделена жирным шрифтом, последовательности, кодирующие нативные трансмембранный и цитоплазматический домен, подчеркнуты). На фигуре 1В представлена нуклеотидная последовательность олигонуклеотида IF-ApaI-SpPDI.c (SEQ ID NO: 2). На фигуре 1С представлена нуклеотидная последовательность олигонуклеотида SpPDI-HIV gp145.r (SEQ ID NO: 3). На фигуре 1D представлена нуклеотидная последовательность олигонуклеотида IF-SpPDI-gp145.c (SEQ ID NO: 4). На фигуре 1E представлена нуклеотидная последовательность олигонуклеотида WtdTm-gp145.r (SEQ ID NO: 5). На фигуре 1F представлена нуклеотидная последовательность (SEQ ID NO: 6) экспрессионной кассеты номер 995, от PacI (выше (по ходу транскрипции) промотора) до AscI (непосредственно после (по ходу транскрипции) терминатора NOS). Удаленный сайт рестрикции SbfI выделен жирным шрифтом. Последовательность PDISP-HIV ConS ΔCFI подчеркнута. На фигуре 1G представлена аминокислотная последовательность PDISP-HIV ConS ΔCFI (SEQ ID NO: 7). На фигуре 1H представлено схематическое изображение конструкции номер 995.

[0038] На фигуре 2 представлены несколько нуклеотидных и аминокислотных последовательностей и экспрессионные кассеты для HIV в соответствии с различными вариантами осуществления настоящего изобретения. На фигуре 2А представлена нуклеотидная последовательность олигонуклеотида IF-H3dTm+gp145.r (SEQ ID NO: 8). На фигуре 2В представлена нуклеотидная последовательность олигонуклеотида Gp145+H3dTm.c (SEQ ID NO: 9). На фигуре 2С представлена нуклеотидная последовательность олигонуклеотида H3dTm.r (SEQ ID NO: 10). На фигуре 2D представлена нуклеотидная последовательность (SEQ ID NO: 11) экспрессионной кассеты номер 997, от PacI (выше (по ходу транскрипции) промотора) до AscI (непосредственно после (по ходу транскрипции) терминатора NOS). Удаленный сайт рестрикции SbfI выделен жирным шрифтом. Последовательность PDISP-HIV Con S ΔCFI-A/Brisbane/10/2007 Н3 ТМ+СТ подчеркнута. На фигуре 2Е представлена последовательность аминокислот PDISP-HIV ConS ΔCFI-A/Brisbane/10/2007 Н3 ТМ+СТ (SEQ ID NO: 12). На фигуре 2F представлено схематическое изображение конструкции номер 997.

[0039] На фигуре 3 представлены несколько нуклеотидных и аминокислотных последовательностей и экспрессионные кассеты для HIV в соответствии с различными вариантами осуществления настоящего изобретения. На фигуре 3А представлена нуклеотидная последовательность олигонуклеотида IF-H5dTm+gp145.r (SEQ ID NO: 13). На фигуре 3В представлена нуклеотидная последовательность олигонуклеотида Gp145+H5dTm.c (SEQ ID NO: 14). На фигуре 3С представлена нуклеотидная последовательность олигонуклеотида IF-H5dTm.r (SEQ ID NO: 15). На фигуре 3D представлена нуклеотидная последовательность (SEQ ID NO: 16) экспрессионной кассеты номер 999, от PacI (выше (по ходу транскрипции) промотора) до AscI (непосредственно после (по ходу транскрипции) терминатора NOS). Удаленный сайт рестрикции SbfI выделен жирным шрифтом. Последовательность PDISP-HIV ConS ACFI-A/Indonesia/5/2005 Н5 ТМ+СТ подчеркнута. На фигуре 3Е представлена аминокислотная последовательность PDISP-HIV ConS ΔCFI-A/Indonesia/5/2005 Н5 ТМ+СТ (SEQ ID NO: 17). На фигуре 3F представлено схематическое изображение конструкции номер 999.

[0040] На фигуре 4 представлены аминокислотная последовательность и несколько кассет экспрессии для р19 в соответствии с различными вариантами осуществления настоящего изобретения. На фигуре 4А представлена нуклеотидная последовательность (SEQ ID NO: 18) экспрессионной кассеты номер 172, от XmaI (выше (по ходу транскрипции) промотора транскрипции гена пластоцианина) до EcoRI (непосредственно после (по ходу транскрипции) терминатора транскрипции гена пластоцианина). Последовательность нуклеиновой кислоты TBSV-P19 подчеркнута. На фигуре 4В представлена аминокислотная последовательность (SEQ ID NO: 19) супрессора "сайленсинга" TBSV-P19. На фигуре 4С представлено схематическое изображение конструкции номер 172.

[0041] На фигуре 5 представлено схематическое изображение химерных генов Env HIV, экспрессированных, как описано в данном документе.

[0042] На фигуре 6 представлен вестерн-блот-анализ экспрессии белка Env HIV в агроинфильтрированных листьях Nicotiana benthamiana. Дорожки 1-4, рекомбинантный gp160 (ab68171) HIV-1, в количестве 100, 50, 10 и 5 нг, соответственно, в 20 мкг белков листьев, экстрагированных из мнимо-инфильтрированных растений (положительный контроль). Дорожка 5, 20 мкг белков, экстрагированных из мнимо-инфильтрированных растений (отрицательный контроль). Дорожки 6-8, белки, экстрагированные из AGL1/995-инфильтрированных листьев (в количестве 20 мкг, 10 мкг и 2 мкг, соответственно, дополненные 20 мкг белков листьев, экстрагированных из мнимо-инфильтрированных растений). Дорожки 9 и 10, белки, экстрагированные из AGL1/997-инфильтрированных листьев (в количестве 20 мкг и 10 мкг, соответственно, дополненные 20 мкг белков листьев, экстрагированных из мнимо-инфильтрированных растений). Дорожки 11 и 12, белки, экстрагированные из AGL1/999-инфильтрированных листьев (в количестве 20 мкг и 10 мкг, соответственно, дополненные 20 мкг белков листьев, экстрагированных из мнимо-инфильтрированных растений).

[0043] На фигуре 7 представлена характеристика структур, полученных из HIV ConS ΔCFI эксклюзионной хроматографией. Белковые экстракты из листьев, инфильтрированных AGL1/999, способных производить химерный белок Env/H5, разделяли гель-фильтрацией на калиброванной колонке высокого разрешения S-500. (А) Содержание белка Env HIV в элюированных фракциях выявляли иммунодетекцией с использованием анти-gp120 антител. Дорожки 1-4, рекомбинантный gp160 (ab68171) из HIV-1, в количестве 100, 50, 10 и 5 нг, соответственно, в 20 мкг белков листьев, экстрагированных из мнимо-инфильтрированных растений (положительный контроль). Дорожка 5, 20 мкг белков, экстрагированных из мнимо-инфильтрированных растений (отрицательный контроль). Дорожка 6, 20 мкг белков, экстрагированных из AGL1/999-инфильтрированных листьев. Дорожки 7-18, элюированные фракции от 7-й до 18-й, полученные гель-фильтрационной хроматографией. (В) Относительное содержание белка в элюированных фракциях от 7-й до 18-й, полученных гель-фильтрационной хроматографией.

[0044] На фигуре 8 представлены несколько нуклеотидных и аминокислотных последовательностей и экспрессионные кассеты для вируса бешенства в соответствии с различными вариантами осуществления настоящего изобретения. На фигуре 8А представлено схематическое изображение конструкции 1074 (С-2X35S-гликопротеин G вируса бешенства (RabG)+трансмембранный домен и цитоплазматический "хвост" (ТМ+СТ) Н5 A/Indonesia/5/2005-NOS в векторе, содержащем ген ингибитора сайленсинга пластоцианин-Р19-пластоцианин). На фигуре 8В представлен праймер IF-RabG-S2+4.c (SEQ ID NO: 32). На фигуре 8С представлен праймер RabG+H5dTm.r (SEQ ID NO: 33). На фигуре 8D представлен синтезированный ген Rab G (соответствующий нуклеотидам 3317-4891 из последовательности с идентификационным номером EF206707 в базе данных Genbank (Genbank accession number EF206707); последовательность, кодирующая нативный сигнальный пептид, выделена жирным шрифтом, последовательности, кодирующие нативные трансмембранный и цитоплазматический домен, подчеркнуты; SEQ ID NO: 34). На фигуре 8Е представлен праймер IF-H5dTm.c (SEQ ID NO: 35). На фигуре 8F представлена конструкция 141 от левой до правой t-ДНК (подчеркнуто). Система экспрессии 2-X35S-CPMV-HT-PDISP-NOS с кассетой экспрессии ингибитора сайленсинга пластоцианин-Р19-пластоцианин (SEQ ID NO: 36). На фигуре 8G представлено схематическое изображение конструкции 141. Сайты действия рестрикционных ферментов SbfI и StuI, используемые для линеаризации плазмиды, отмечены на изображении. На фигуре 8Н представлена нуклеотидная последовательность для экспрессионной кассеты номер 1074 от промотора 2X35S до терминатора NOS. Последовательность PDISP Rab-G -A/Indonesia/5/2005 Н5 ТМ+СТ подчеркнута (SEQ ID NO: 37). На фигуре 8I представлена аминокислотная последовательность PDISP Rab-G-A/Indonesia/5/2005 Н5 ТМ+СТ (SEQ ID NO: 38). На фигуре 8J представлена нуклеотидная последовательность для конструкции 144 от левой до правой t-ДНК (подчеркнуто). 2-X35S-CPMV-HT-PDISP-NOS в системе экспрессии BeYDV+репликаза с кассетой экспрессии ингибитора сайленсинга пластоцианин-Р19-пластоцианин (SEQ ID NO: 39). На фигуре 8K представлено схематическое изображение конструкции 144. Сайты действия рестрикционных ферментов SbfI и StuI, используемые для линеаризации плазмиды, отмечены на изображении. На фигуре 8L приведена нуклеотидная последовательность экспрессионной кассеты номер 1094 в направлении справа налево BeYDV LIR. Последовательность PDISP Rab-G -A/Indonesia/5/2005 Н5 ТМ+СТ подчеркнута (SEQ ID NO: 40). На фигуре 8М представлено схематическое изображение конструкции номер 1094. На фигуре 8N Вестерн-блот биомасс. Представлены результаты иммуноблот-анализа экспрессии белка G вируса бешенства в растении. Белок G вируса бешенства экспрессировали в слиянии с PDI Sp (конструкция 1071), системой BeYDV + репликаза (rep), ТМ+СТ-доменом из H5A/Indo или их комбинацией. Более конкретно, конструкция 1074 представляет собой результат слияния белка G вируса бешенства с PDI Sp и ТМ+СТ-доменом из H5A/Indo. Конструкция 1094 представляет собой результат слияния белка G вируса бешенства с BeYDV + rep, PDI Sp и ТМ+СТ-доменом из H5A/Indo. Конструкция 1091 представляет собой результат слияния белка G вируса бешенства с PDI Sp и BeYDV + rep. На фигуре 8O представлены результаты иммуноблот-анализа фракций эксклюзионной хроматографии сконцентрированных и осветленных экстрактов белка, экспрессированных из конструкции 1074 и конструкции 1094.

[0045] На фигуре 9А представлены результаты иммуноблот-анализа очищенного белка G вируса бешенства, экспрессированного из конструкции 1074. На фигуре 9В представлено полученное с помощью просвечивающей электронной микроскопии изображение очищенной VLP, полученной в результате экспрессии конструкции 1074 (черная полоска соответветствует 100 нм).

[0046] На фигуре 10 представлены последовательности для приготовления конструкции А-2X35S-гликопротеин Ε вируса ветряной оспы (VZVgE)+TpaHCMeM6paHHbiñ домен и цитоплазматический "хвост" (ТМ+СТ) из Н5 A/Indonesia/5/2005-NOS (конструкция номер 946). На фигуре 10А приведен праймер IF-wtSp-VZVgE.c (SEQ ID NO 20); на фигуре 10В представлен праймер IF-H5dTm+VZVgE.r (SEQ ID NO: 21). На фигуре 10С представлен синтезированный ген gE VZV (SEQ ID NO: 22; соответствующая нуклеотидам 3477-5348 из последовательности с идентификационным номером AY013752.1 в базе данных Genbank) (последовательность, кодирующая нативный сигнальный пептид, выделена жирным шрифтом, последовательности, кодирующие нативные трансмембранный и цитоплазматический домен, подчеркнуты). На фигуре 10D приведен праймер для VZVgE+H5dTm.c (SEQ ID NO: 23). На фигуре 10E представлена экспрессионная кассета номер 946 (SEQ ID NO: 24) от PacI (выше (по ходу транскрипции) промотора) до AscI (непосредственно после (по ходу транскрипции) терминатора NOS). Последовательность VZV gE-A/Indonesia/5/2005 Н5 ТМ+СТ подчеркнута. На фигуре 10F приведена аминокислотная последовательность VZV gE-A/Indonesia/5/2005 Н5 ТМ+СТ (SEQ ID NO: 25). На фигуре 10G представлено схематическое изображение конструкции номер 946.

[0047] На фигуре 11А представлены результаты анализа методом иммуноблоттинга экспрессии белка Ε вируса ветряной оспы (VZV). Дорожки 1-5, рекомбинантный белок gE VZV, в количестве 500, 100, 50, 10 и 5 нг, соответственно (положительные контроли). Дорожка 6, экстракт из мнимо-инфильтрированных листьев (отрицательный контроль). Дорожки 7-9, рекомбинантный белок из конструкции 946, в количестве 20, 10 и 2 мкг экстракта, соответственно. Конструкция 946 содержит ген gE VZV с сигнальным пептидом дикого типа и ТМ+СТ-доменом из H5A/Indo. На фигуре 11В представлены результаты анализа методом иммуноблоттинга экспрессии во фракциях, полученных эксклюзионной хроматографией неочищенных экстрактов (конструкция 946).

[0048] На фигуре 12 представлено несколько нуклеотидных и аминокислотных последовательностей, а также экспрессионные кассеты для SARS в соответствии с различными вариантами осуществления настоящего изобретения. На фигуре 12А представлено схематическое изображение конструкции номер 916 (B-2X35S-гликопротеин S вируса тяжелого острого респираторного синдрома (SARS gS)+трансмембранный домен и цитоплазматический "хвост" (ТМ+СТ) из Н5 A/Indonesia/5/2005-NOS). На фигуре 12В приведен праймер IF-wtSp-SARSgS.c (SEQ ID NO: 26). На фигуре 12С приведен праймер IF-H5dTm+SARSgS.r (SEQ ID NO: 27). На фигуре 12D представлен синтезированный ген gS SARS (SEQ ID NO: 28; соответствующая нуклеотидам 21492-25259 из последовательности с идентификационным номером AY278741.1 в базе данных Genbank; последовательность, кодирующая нативный сигнальный пептид, выделена жирным шрифтом, последовательности, кодирующие нативные трансмембранный и цитоплазматический домен, подчеркнуты). На фигуре 12Е представлен праймер SARSgS+H5dTm.c SEQ ID NO: 29). На фигуре 12F представлена нуклеотидная последовательность экспрессионной кассеты номер 916 (SEQ ID NO: 30) от PacI (выше (по ходу транскрипции) промотора) до AscI (непосредственно после (по ходу транскрипции) терминатора NOS). Последовательность SARS gS-A/Indonesia/5/2005 Н5 ТМ+СТ подчеркнута. На фигуре 12G представлена аминокислотная последовательность SARS gS-A/Indonesia/5/2005 Н5 ТМ+СТ (SEQ ID NO: 31). На фигуре 12Н представлены результаты анализа методом иммуноблоттинга экспрессии белка S вируса тяжелого острого респираторного синдрома (SARS). Конструкция 916 содержит ген gS SARS дикого типа с сигнальным пептидом дикого типа и трансмембранным и цитоплазматическим доменом из H5A/Indo. Дорожка 1, экстракт из мнимо-инфильтрированных растений (отрицательные контроли). Дорожки 2-4, рекомбинантный белок из конструкции 916 (20, 10 и 5 мкг экстракта, соответственно).

[0049] На фигуре 13 представлены несколько нуклеотидных и аминокислотных последовательностей, а также экспрессионные кассеты для вируса Эбола в соответствии с различными вариантами осуществления настоящего изобретения. На фигуре 13А представлена нуклеотидная последовательность праймера IF-Opt_EboGP.s2+4c (SEQ ID NO: 43). На фигуре 13В представлена нуклеотидная последовательность праймера H5iTMCT+Opt_EboGP.r (SEQ ID NO: 44). На фигуре 13С представлена нуклеотидная последовательность оптимизированного синтезированного гена GP (соответствующая нуклеотидам 6039-8069 из последовательности с идентификационным номером AY354458 в базе данных Genbank для последовательности гена дикого типа. Последовательность (SEQ ID NO: 45) была оптимизирована в отношении использования кодонов и содержания GC, удаления критических сайтов сплайсинга, последовательностей Шайн-Дальгарно (Shine-Delgarno), РНК-дестабилизирующей последовательности и сайтов вхождения в прокариотические рибосомы; последовательность, кодирующа