Получение pсмах при двойном соединении

Иллюстрации

Показать все

Изобретение относится к беспроводной связи. Техническим результатом является возможность определения мощности передачи конечного устройства при двойном соединении. Описан способ функционирования конечного устройства в сети беспроводной связи, при этом конечное устройство выполнено с возможностью двойного соединения, а указанный способ включает в себя этап, на котором определяют общую настроенную максимальную выходную мощность PCMAX конечного устройства на основе уровня синхронизации. Также описаны соответствующие другие устройства и способы. 3 н. и 2 з.п. ф-лы, 13 ил., 2 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение касается технологии беспроводной связи, в частности, в контексте двойного соединения.

Уровень техники

При двойном соединении (DC) UE (которое также может быть названо конечным устройством) может обслуживаться двумя или более узлами сети, которые могут быть названы главным/основным eNB (MeNB) и вторичным eNB (SeNB), или первичным и вторичным, или якорем и ускорителем, и каждый из которых можно рассматривать как обеспечивающий одну «ногу» двойного соединения. UE может быть сконфигурировано для использования PCC (первичная компонентная несущая) или первичной ячейки (PCell) как от MeNB, так и от SeNB. PCell от MeNB и SeNB называют, соответственно, PCell и PSCell (первичная вторичная ячейка). PCell и PSCell обычно управляют конечным устройством или UE независимо друг от друга. Конечное устройство или UE также может быть сконфигурировано для использования одной или нескольких SCC (вторичная компонентная несущая; вторичные ячейки объединения несущих, связанные с первичной ячейкой, такой как PCell или PSCell) от каждой из MeNB и SeNB. Соответствующие вторичные обслуживающие ячейки, обслуживаемые MeNB и SeNB, могут быть названы SCell. Конечное устройство или UE обычно содержит отдельные TX/RX (устройство передачи/устройство приема) для каждого соединения с MeNB и SeNB, соответственно для связанных группы главных ячеек и группы вторичных ячеек. Это позволяет MeNB и SeNB независимо конфигурировать/управлять/планировать ресурсы для конечного устройства или UE с помощью одной или нескольких процедур, например, отслеживания (RLM) линии радиосвязи, DRX цикл и так далее для их соответствующих PCell и PSCell.

Как в состояниях одиночного соединения, конечное устройство может подвергаться ограничениям (например, из-за регулирования и/или ограничениям, определенным в стандартах), касающимся мощности передачи в ячейках (группе ячеек) или несущих (группе несущих), связанных с каждой ногой двойного соединения.

Раскрытие сущности изобретения

Задача настоящего изобретения заключается в том, чтобы предложить подходы, позволяющие определять мощность передачи конечного устройства при двойном соединении.

Краткое описание чертежей

Чертежи представлены только для иллюстрации и не ограничивают подходы только показанными вариантами осуществления изобретения. На чертежах:

фиг. 1 - вид, показывающий сценарий развертывания двойного соединения;

фиг. 2 - вид, показывающий примеры максимальной разницы времен приема в синхронизированном и несинхронизированном режиме двойного соединения;

фиг. 3(а) - (c) - виды, показывающие разные уровни несогласованности по времени между подкадрами, соответственно, в MCG и SCG;

фиг. 4(a) и (b) - виды, показывающие примеры объединения подкадров в пары;

фиг. 5 - вид, показывающий пример конечного устройства;

фиг. 6 - вид, показывающий пример узла сети;

фиг. 7 - вид, показывающий пример способа работы конечного устройства;

фиг. 8 - вид, показывающий пример одного конечного устройства;

фиг. 9 - вид, показывающий пример способа работы узла сети; и

фиг. 10 - вид, показывающий пример узла сети.

Осуществление изобретения

Далее термины UE или пользовательское устройство могут быть взаимозаменяемо использованы с термином конечное устройство; термин eNodeB может быть взаимозаменяемо использован с термином узел сети; и наоборот. Ссылки на подпункты относятся к спецификациям 3GPP/LTE.

На фиг. 1 показан сценарий развертывания двойного соединения.

Более конкретно, двойное соединение (DC) является режимом работы конечного устройства или UE, в частности в режиме RRC_CONNECTED, в котором конечное устройство или UE сконфигурировано для использования группы (MCG) главных ячеек и группы (SCG) вторичных ячеек. Группа (CG) ячеек представляет собой группу обслуживающих ячеек, связанных или с MeNB или с SeNB. MCG и SCG определены следующим образом.

Группа (MCG) главных ячеек представляет собой группу обслуживающих ячеек, связанных с MeNB, которая состоит из PCell и, при желании, одной или нескольких SCell.

Группа (SCG) вторичных ячеек представляет собой группу обслуживающих ячеек, связанных с SeNB, которая состоит из pSCell (первичная SСell) и, при желании, одной или нескольких SCell.

Можно рассматривать два типа режимов работы, при этом первый реализован в 3GPP EUTRA, версия 12, а другой - в более поздней версии этого стандарта.

Синхронизированная работа: Время для нисходящего канала для MeNB и SeNB синхронизировано примерно до половины OFDM символа (примерно ±33 мкс). Это означает, что конечное устройство или UE, поддерживающее синхронизированную DC работу, должно быть способно принимать сигналы от MCG и SCG в рамках ±33 мкс. Более конкретно, при синхронизированной DC работе разность (Δτ) времен между сигналами, принятыми UE из MeNB (то есть, от обслуживающих ячеек в MCG) и SeNB (то есть, от обслуживающих ячеек в SCG), должна находиться в рамках первого предельного значения (Γ1) или первого порогового значения (например, в рамках ±33 мкс).

Несинхронизированная работа: Время для нисходящего канала для MeNB и SeNB синхронизировано до половины подкадра (±500 мкс). Это означает, что UE, поддерживающее несинхронизированную DC работу, должно быть способно принимать сигналы от MCG и SCG в рамках ±500 мкс. Более конкретно, при несинхронизированной DC работе, «Δτ» должна быть в рамках второго предельного значения (Γ2) или второго порогового значения (например, в рамках ±500 мкс, где |Γ2| > |Γ1|. В некоторых вариантах осуществления изобретения, DC работу можно рассматривать как несинхронизированную, при условии, что «Δτ» находится за рамками Γ1. Также в некоторых вариантах осуществления изобретения, DC работу можно рассматривать как несинхронизированную, если «Δτ» может быть произвольным значением.

На фиг. 2 показаны максимальные разницы времен приема в синхронизированном и несинхронизированном режимах двойного соединения.

Далее рассмотрено управление электропитанием для восходящего канала. Управление электропитанием для восходящего канала играет важную роль в управлении радиоресурсами, которое применяется в большинстве современных систем связи. Оно балансирует потребности поддержания качества линии и потребности минимизации взаимных помех для других пользователей системы и максимизации времени работы аккумуляторной батареи конечного устройства.

В LTE цель управления электропитанием заключается в определении средней мощности на SC-FDMA символ и его применяют как для общего канала, так и для выделенного канала (PUCCH/PUSCH/SRS). Объединенное управление электропитанием без обратной связи и с обратной связью может быть определено следующим образом.

Управление электропитанием без обратной связи: конечное устройство или UE вычисляет базовую заданную точку без обратной связи на основе оценки потерь в тракте и управляемого eNodeB полустатичного базового уровня (P0), который содержит номинальный уровень мощности, общий для всех UE и конечных устройств в ячейке, и смещения, зависящего от конечного устройства или UE.

Управление электропитанием с обратной связью: узел сети или eNodeB обновляет динамическую регулировку относительно заданной точки; конечное устройство или UE регулирует мощность передачи на основе команд, например, на основе TPC (управление мощностью передачи) команд, переданных узлом сети/eNodeB. Также возможно соединить управление электропитанием со схемой модуляции и кодирования, используемой для передачи по восходящему каналу.

(1)

Здесь, P0 представляет управляющее значение для части без обратной связи, α является параметром, находящимся между 0 и 1, а PL представляет собой корректировку на потери в тракте. Далее рассмотрено управление электропитанием для восходящего канала для PUSCH и PUCCH. Управление электропитанием для восходящего канала используют как для PUSCH, так и для PUCCH. Цель заключается в обеспечении того, что UE или конечное устройство или мобильное конечное устройство передает с достаточно большой, но не слишком большой мощностью, так как последнее увеличит взаимные помехи с другими пользователями в сети, а также уменьшит время работы аккумуляторной батареи конечного устройства. В обоих случаях, в общем, может быть использован параметризованный механизм без обратной связи, объединенный с механизмом с обратной связью. Приближенно, часть без обратной связи используют для установки точки работы, относительно которой работает компонента с обратной связью. Могут быть использованы разные параметры (цели и «факторы частичной компенсации») для пользователя и плоскости управления.

Более конкретно, для PUSCH конечное устройство устанавливает выходную мощность в соответствии со следующей формулой

[дБм],

где является максимальной мощностью передачи для мобильного конечного устройства, является количеством назначенных блоков ресурсов, и управляют целевой принятой мощностью, является оценкой потерь в тракте, является элементом, компенсирующим формат транспортировки и является смещением, зависящим от UE, или «корректировкой с обратной связью» (функция может представлять или абсолютные или накопленные смещения). Индекс пробегает компонентные несущие и имеет отношение к случаям объединения несущих.

Управление электропитанием с обратной связью может работать в двух разных режимах: или в накопленном или в абсолютном. Оба режима основаны на TPC (управление мощностью передачи), которое может быть представлено командой, являющейся частью управляющей сигнализации нисходящего канала. При использовании абсолютного управления электропитанием, функция корректировки с обратной связью сбрасывается каждый раз при приеме новой команды управления электропитанием. При использовании накопленного управления электропитанием, команда управления электропитанием является корректировкой разницы по отношению к предыдущей накопленной корректировке с обратной связью.

Команду накопленного управления электропитанием определяют следующим образом:

,

где представляет команду TPC, принятую в подкадре до текущего подкадра и является накопленным значением управления электропитанием.

Абсолютное управление электропитанием не содержит памяти, так что может считать справедливым.

Управление электропитанием для PUCCH, в принципе, обладает теми же настраиваемыми параметрами, за исключением того, что PUCCH обладает только полной компенсацией потерь в тракте, то есть покрывает только случай .

Ниже описана настроенная мощность PCMAX передачи. Настроенная мощность PCMAX передачи может быть определена следующим образом. UE может установить настроенную максимальную выходную мощность PCMAX,c для обслуживающей ячейки c. Настроенную максимальную выходную мощность PCMAX,c устанавливают в следующих границах:

PCMAX_L,c ≤ PCMAX,c ≤ PCMAX_H,c, где

PCMAX_L,c = MIN {PEMAX,c – ΔTC,c, PPowerClass – MAX(MPRc + A-MPRc + ΔTIB,c + ΔTC,c, PMPRc)}

PCMAX_H,c = MIN {PEMAX,c, PPowerClass}

где

- PEMAX,c является значением, заданным IE P-Max для обслуживающей ячейки c;

- PPowerClass является максимальной мощностью UE, указанной в стандарте, без учета допуска, указанного в этом стандарте;

- MPRc и A-MPRc для обслуживающей ячейки c определены, соответственно, в подпункте 6.2.3 и подпункте 6.2.4;

- ΔTIB,c является дополнительным допуском для обслуживающей ячейки c, как определено в Таблице 6.2.5-2; в противном случае ΔTIB,c = 0 дБ;

- ΔTC,c = 1.5 дБ, когда применимо Замечание 2 из Таблицы 6.2.2-1;

- ΔTC,c = 0 дБ, когда не применимо Замечание 2 из Таблицы 6.2.2-1.

P-MPRc является разрешенным уменьшением максимальной выходной мощности для

a) обеспечения соответствия соответствующим требованиям по поглощению электромагнитной энергии и учета требований по нежелательным излучениям/защите в случае одновременных передач с помощью нескольких RAT для сценариев, не охваченных спецификациями 3GPP RAN;

б) обеспечения соответствия соответствующим требованиям по поглощению электромагнитной энергии в случае использования служб обнаружения близости устройств, чтобы учесть такие требования, которые предписывают снижение максимальной выходной мощности.

UE должно применять P-MPRc для обслуживающей ячейки c только для упомянутых выше случаев. Для проводимой UE проверки совместимости P-MPR должна равняться 0 дБ.

P-MPRc была введена в формулу для PCMAX,c, чтобы UE могло передавать на eNB доступную максимальную выходную мощность передачи. Эта информация может быть использована eNB для принятия решений по планированию.

P-MPRc может влиять на максимальную эффективность восходящего канала для выбранного тракта передачи по UL.

Для каждого подкадра, PCMAX_L,c для обслуживающей ячейки c оценивают в расчете на один интервал с учетом минимального значения в ходе передачи (передач) в рамках интервала; далее минимальную PCMAX_L,c за два интервала применяют ко всему подкадру. PPowerClass не должно превышаться UE в любом периоде времени.

Измеренная настроенная максимальная выходная мощность PUMAX,c должна находиться в следующих границах:

PCMAX_L,c – MAX{TL, T(PCMAX_L,c)} ≤ PUMAX,c ≤ PCMAX_H,c + T(PCMAX_H,c),

где T(PCMAX,c) определяется приведенной ниже таблицей допусков и отдельно применяется к PCMAX_L,c и PCMAX_H,c, а TL является абсолютным значением нижней границы допуска в Таблице 6.2.2-1 для соответствующей рабочей полосы.

Таблица 6.2.5-1. Допуск PCMAX(дБм)

PCMAX,c (дБм) Допуск T(PCMAX,c) (дБ)
23 < PCMAX,c ≤ 33 2,0
21 ≤ PCMAX,c ≤ 23 2,0
20 ≤ PCMAX,c ≤ 21 2,5
19 ≤ PCMAX,c ≤ 20 3,5
18 ≤ PCMAX,c ≤ 19 4,0
13 ≤ PCMAX,c ≤ 18 5,0
8 ≤ PCMAX,c ≤ 13 6,0
-40 ≤ PCMAX,c ≤ 8 7,0

Для конечного устройства или UE, которое поддерживает конфигурации объединения несущих между полосами, когда восходящий канал назначен одной полосе E-UTRA, ΔTIB,c определяют для подходящих полос в Таблице 6.2.5-2.

Существующие определения PCMAX покрывают только случай синхронизированных нескольких несущих, то есть когда две или более несущих UL синхронизированы по времени или их разности времен передачи обычно очень малы, например, находятся в рамках длины CP. Тем не менее, разность (Δµ) времен в UL между CC в CA из-за независимых усовершенствованных временных команд (например, pTAG и sTAG) может стать большой. Максимальная разрешенная разность времен в UL может быть ограничена примерно 32,5 мкс, как определено в разделе 7.9, TS 36.133 V12.5.0.

UE при CA или при синхронизированной DC работе по-прежнему может осуществлять управление электропитанием для UL на основе существующего параметра PCMAX, даже если максимальная разность времен в UL доходит до 32,5 мкс или составляет величину такого порядка.

Тем не менее, при несинронизированной DC работе, когда при приеме разность (Δτ) времен составляет порядка ±500 мкс, UE может понадобиться передать сигналы с помощью CC, принадлежащих SCG и MCG, за пределами существующего временного окна передачи, составляющего 32,5 мкс. Например, величина Δµ может составлять 500 мкс или даже больше из-за независимых TA команд, которые UE должно применить к UL CC (то есть, TA1 к CC в MCG и TA2 к CC в SCG). Текущие требования по управлению электропитанием, в том числе способ, в котором UE получает PCMAX для CC, не подходит, когда времена передачи по UL для СС смещаются за пределы 32,5 мкс.

Описаны способы работы сети беспроводной связи и узлов и конечных устройств для несинхронизированного двойного соединения, в том числе:

(1) способы для определения пар подкадров для вычислений при двойном соединении;

(2) способы для определения вычислений PCMAX на основе подкадров и интервалов;

(3) способы для улучшения определений PCMAX на основе управления со стороны сети;

(4) способы для приспосабливания первых и вторых способов или схем для получения PCMAX в зависимости от того, конфигурировано ли UE для несинхронизированной или синхронизированной DC работы.

(5) В одном варианте осуществления изобретения способ в UE, которое сконфигурировано при DC, включает в себя следующие этапы:

Получают информацию об уровне синхронизации, с каким UE сконфигурировано для работы при DC;

Если величина уровня синхронизации выше порогового значения (например, 200 мкс), то определяют, какой подкадр или временной интервал в паре, по меньшей мере, частично накладывающихся подкадров или интервалов, принадлежащий разным CG, то есть MCG и SCG, опережает по времени другой;

Вычисляют или получают PCMAX для каждой CG на основе, по меньшей мере, определенного опережающего подкадра или временного интервала;

Передают сигналы с помощью восходящего канала в каждой CG на основе вычисленного или полученного значения PCMAX для каждой CG.

В другом варианте осуществления изобретения способ в UE, которое сконфигурировано при DC, включает в себя следующие этапы:

- Получают информацию об уровне синхронизации, с каким UE сконфигурировано для работы при DC;

- Выбирают между первым способом и вторым способы вычисления или получения PCMAX на основе полученного уровня информации синхронизации;

- Вычисляют или получают PCMAX на основе выбранного способа;

- Передают сигналы с помощью восходящего канала в каждой CG на основе вычисленного или полученного значения PCMAX для каждой CG.

В этом описании определяют настроенную мощность передачи для схемы несинхронизированного двойного соединения. Более того, также предложено некоторое улучшение определения PCMAX.

Поведение конечного устройства или UE относительно PCMAX, подлежащего использованию для передачи сигналов по UL в каждой CG, хорошо определено и последовательно для всех UE.

Доступная выходная мощность UE может быть использована более эффективно.

В этом разделе присутствуют в основном описанные системы с двойными линиями (двойное соединение с одной MCG и одной SCG). В общем, описанные в настоящем документе решения могут быть легко применены в случаях нескольких соединений, например, когда присутствует более одной группы вторичных ячеек.

Может быть использован общий термин «узел сети», который может соответствовать любому типу радиоузла сети или любому узлу сети, который обменивается данными с UE и/или с другим узлом сети. Примерами узлов сети являются NodeB, MeNB, SeNB, узел сети, принадлежащий MCG или SCG, базовая станция (BS), радиоузел (MSR), удовлетворяющий нескольким стандартам, такой MSR BS, eNodeB, сетевой контроллер, контроллер (RNC) радиосети, контроллер (BSC) базовой станции, ретранслятор, управляющий узлом-донором ретранслятор, базовая станция (BTS) приемопередачи, точка (AP) доступа, точки передачи, узлы передачи, RRU, RRH, узлы в распределенной системе (DAS) антенн, узел (например, MSC, MME и так далее) опорной сети, O&M, OSS, SON, узел (например E-SMLC) позиционирования, MDT и так далее.

Может быть использован термин конечное устройство или пользовательское устройство (UE), которым может называться любого типа устройство беспроводной связи, обменивающееся данными с узлом сети и/или с другим конечным устройством или UE в системе сотовой связи или мобильной связи. Примерами конечных устройств или UE являются целевое устройство, UE типа устройство-устройство (D2D), UE машинного типа или UE, выполненное с возможностью связи машина-машина (M2M), PDA, PAD, планшет, конечные устройства, смартфон, оборудование (LEE), встроенное в ноутбук, оборудование (LME), установленное на ноутбуке, USB ключи и так далее.

Описаны способы работы конечного устройства или UE для определения пар подкадров и опорного подкадра.

Для двойного соединения могут быть справедливы:

1. SFN выравнивание (синхронизации с общим временным/частотным опорным элементом) может не быть возможной для MCG и SCG и/или

2. может присутствовать существенная или максимальная разница по времени приема между сигналами на уровне подкадров из MeNB (как примера главного узла сети) и SeNB (как примера вторичного узла сети); например, максимум составляет 500 мкс; это может приводить к несинхронности сигналов, принятых или переданных конечным устройством через MCG, которая связана с главным узлом сети, сигналами, принятыми или переданными конечным устройством через SCG, которая связана с вторичным узлом сети, при двойном соединении.

Как показано на фиг. 3, существует три возможности несогласованности границ подкадров между принятыми или переданными сигналами из MCG и SCG в UE из-за разницы во времени, а именно:

(1) когда несогласованность меньше максимума, равного, например, 500 мкс (в более широком смысле, сюда относится синхронизированный случай),

(2) когда несогласованность больше максимума, равного, например, 500 мкс (это касается начала подкадров во временной области), и

(3) когда несогласованность точно равна максимуму, равному, например, 500 мкс (это чисто теоретический случай, с очень малой вероятностью, равной порядка 0,2%).

Благодаря этим различным возможностям несогласованности границ подкадров, UE нужно получить PCMAX для несинхронизированной DC работы на основе правила и/или информации, принятой, по меньшей мере, от одного из узлов сети. Конечное устройство или UE при несинронизированной DC работе будет использовать полученное значение PCMAX для передачи по UL и/или для осуществления управления электропитанием для UL. Эти принципы, которые выработаны в предыдущих разделах, также могут быть применены при несинхронизированной DC работе для любого значения «Δτ». Также, в общем, они могут быть использованы для любого типа DC работы.

Для определения PCMAX для двойного соединения, могут быть идентифицированы два подкадра, по одному для MCG и SCG, для сравнению друг с другом.

На фиг. 3 показаны различные уровни несогласованности по времени между подкадрами в MCG и SCG.

На основе иллюстраций на фиг. 3, может быть трудно найти пары подкадров, которые должны быть рассмотрены для определения PCMAX.

В общем, пары подкадров могут содержать два опорных подкадра (по одному в MCG и SCG), которые нужно рассматривать вместе для определения PCMAX. В случае фиг. На фиг. 3(a), подкадр i в MCG и подкадр j в SCG образуют пару подкадров. Аналогично, подкадр i в MCG и подкадр j-1 в SCG образуют пару подкадров на фиг. На фиг. 3(b). Для составления пары подкадров UE рассматривает подкадры в MCG и SCG, в которых накладываются друг на друга интервалы 1 (то есть, первые временные интервалы в подкадрах). Таким образом, при составлении пары подкадров всегда рассматривают начала подкадров. В общем, может быть определена пара подкадров для сравнения, эта пара содержит подкадр из MCG и/или подкадр в соответствии с MCG и подкадр из SCG и/или подкадр в соответствии с SCG. Может быть выбран интервал 1 одного из подкадров MCG или SCG. Может быть выбран связанный подкадр из пары подкадров другой группы (соответственно, SCG или MCG), для которого интервал 1 накладывается на выбранный интервал 1. Выбранный интервал 1 может быть выбран из группы ячеек (MCG или SCG), опережающей по времени. Для сравнения могут быть рассмотрены части подкадров, накладывающихся на выбранный интервал 1.

На основе этих рассуждений, PCMAX может быть получена на основе следующих принципов:

1. Подкадры в одной CG, которые накладываются на подкадры в другой CG в соответствующем интервале 1, должны быть объединены в пары в CG.

2. Опережающую CG всегда берут в качестве опорного подкадра, то есть подкадра, которой опережает по времени другой подкадр в паре подкадров. Опорный подкадр может быть подкадром, для которого конечное устройство/UE применяет PCMAX, вычисленную в расчете на конечное устройство/UE. Это объяснено на примере ниже.

а. Если подкадр p и подкадр q являются парой подкадров, соответственно, между MCG и SCG, то

I. если MCG опережает, то подкадр p в MCG и подкадры q-1 и q в SCG рассматривают для определения PCMAX, то есть для получения значения PCMAX.

II. если SCG опережает, то подкадры p и p-1 в MCG и подкадр q в SCG рассматривают для определения PCMAX, то есть для получения значения PCMAX.

Способы в UE для определения PCMAX путем вычисления на основе подкадров рассмотрены ниже. Для несинхронизированного двойного соединения могут быть рассмотрены следующие подкадры.

Таблица 1

CG MCG опережает SCG опережает
MCG p p-1,p
SCG q-1,q Q
Опорный подкадр p Q

В Таблице 1 показан номер подкадра в паре подкадров и опорный подкадр для определения PCMAX. В ней коротко подведен итог для пар подкадров из примеров, показанных на фиг. 4 (а) и (b). В первом случае (то есть MCG опережает), p-ый подкадр в MCG является опорным подкадром, а во втором случае (то есть, SCG опережает), q-ый подкадр в SCG является опорным подкадром. Опорным подкадром является подкадр, в котором применяют вычисленную в расчете на UE мощность PCMAX.

Общая настроенная максимальная выходная мощность PCMAX может быть установлена в следующих границах.

,

где

Здесь упомянутую выше PCMAX применяют к опорным подкадрам, то есть к p-ому и q-ому подкадрами, когда, соответственно, MCG опережает и SCG опережает. PCMAX_L,a(b) и PCMAX_H,a(b) являются, соответственно, нижним и верхним пределами PCMAX,c для CG a на подкадре b.

PCMAX_L,a(b) определяют следующим образом:

где , , и другие параметры в приведенной выше формуле определены для обслуживающей ячейки c в CG a для подкадра b.

Аналогично, PCMAX_H,a(b) определяют следующим образом:

.

Когда PCMAX определена, измеренная настроенная максимальная выходная мощность PUMAX может быть определена в расчете на UE для опорного подкадра.

Способы в UE для определения PCMAX путем вычисления на основе интервалов описаны ниже. В одном варианте вычисления PCMAX могут быть выполнены на основе интервалов вместо уровня подкадров. Здесь, принципы, описанные выше для вычисления PCMAX на основе уровня подкадров также применяются для вычисления PCMAX на основе интервалов. Вычисленная или полученная PCMAX будет применена UE для передачи по UL также для опорного подкадра, которым является подкадр, содержащий первый интервал опережающей CG.

На фиг. 3 показаны примеры вычислений PCMAX в расчете на один интервал.

Как показано на фиг. 3, PCMAX_L может быть определена следующим образом:

.

Аналогично, PCMAX_H может быть определена следующим образом:

.

В обеих приведенных выше формулах PCMAX_L,a(b,c) и PCMAX_H,a(b,c) обозначают нижний и верхний пределы PCMAX для CG a в подкадре b и интервале c.

Ниже описаны способы в UE улучшения определений PCMAX.

В системе LTE версия 12, MeNB обеспечивает управление для UE, касающееся отношения мощности PCMAX, которая должна быть назначена для передачи сигналов на MeNB, и оставшейся мощности для передачи сигналов на SeNB.

Например, MeNB может конфигурировать конечное устройство или UE с помощью одного или нескольких параметров и через сигнализацию более высокого слоя с целью передачи мощности до определенного предела в каждой CG, такого как U% и V% общей величины мощности передачи UE, соответственно, для MCG и SCG. Здесь, U + V = 100.

UE сконфигурировано с помощью отношения PCMAX в разных CG или аналогичных параметров (например, U, V и так далее, как указано выше) для передачи в MCG и SCG, независимо от того, работает ли UE в синхронизированном DC сценарии или несинхронизированном DC сценарии.

В этом случае PCMAX в каждой CG дополнительно вычисляют или получают или приспосабливают с учетом отношения PCMAX или аналогичных параметров. Далее UE осуществляет передачу с использованием полученного значения PCMAX в каждой CG.

Дополнительное приспособление PCMAX в ответ на полученное отношение PCMAX в различных CG или аналогичных параметров осуществляет UE, независимо от того, сконфигурировано ли UE для синхронизированной DC работы или для несинхронизированной DC работы. Дальнейшее приспособление PCMAX описано ниже.

α может представлять собой отношение для PMeNB и PSeNB (настроенная максимальная мощность, соответственно, для MeNB и SeNB; в частности для передачи по UL с помощью конечного устройства/UE), где

PMeNB = αPPowerClass,

PSeNB = (1-α)PPowerClass,

и α может быть любым значением между 0 и 1 (в соответствии с U и V, как упомянуто ранее). PPowerClass, в общем, может касаться доступной/допустимой мощности для конечного устройства или UE заданного класса, как определено в соответствующем стандарте.

Обозначая x = MeNB и y = SeNB, когда опережает MCG, PCMAX_L,x и PCMAX_L,y могут быть определены следующим образом:

(5.4-1)

Аналогично, когда опережает SCG, PCMAX_L,x и PCMAX_L,y могут быть определены следующим образом:

(5.4-2)

В случае синхронизированной DC работы подкадры UL как в MCG, так и в SCG, не опережают друг друга, а выровнены по времени или находятся в определенных пределах, например, 33 мкс. При синхронизированной DC работе приспособление PCMAX может быть основано на любом одном из двух приведенных выше правил (5.4-1 и 5.4-2).

Способ работы UE по приспособлению вычисления PCMAX на основе уровня синхронизации описан ниже. UE с поддержкой DC и/или конечное устройство, выполненное с возможностью DC, может быть сконфигурировано узлом сети (например, главным узлом сети) для работы с другим уровнем синхронизации. Например, UE, выполненное с возможностью работы как при несинхронизированном DC сценарии, так и при синхронизированном DC сценарии, может быть сконфигурировано узлом сети для несинхронизированной DC работы или для синхронизированной DC работы Узел сети может быть выполнен с возможностью конфигурации конечного устройства, которое может быть выполнено с возможностью DC и/или может образовывать двойное соединение с MCG и SCG, с помощью различных уровней синхронизации.

В еще одном варианте осуществления изобретения, конечное устройство или UE может выполнять первый способ и второй способ вычисления или получения PCMAX на основе уровня синхронизации, с которым UE сконфигурировано для работы при DC. Например, конечное устройство или UE:

может применять первый способ вычисления или получения PCMAX, когда конечное устройство или UE сконфигурировано для работы при синхронизированном DC, при этом первый способ является существующим способом, описанным выше для синхронизированной работы (то есть, раздел 6.2.5 из 3GPP TS 36.101) и

может применять второй способ вычисления или получения PCMAX, когда конечное устройство или UE сконфигурировано для работы при несинхронизированном DC, при этом второй способ является существующим способом, описанным в предыдущих разделах для несинхронизированной работы (или на основе подкадров или на основе интервалов).

Независимо от уровня синхронизации, конечное устройство или UE может дополнительно приспосабливать PCMAX в зависимости от полученного отношения PCMAX в разных CG или аналогичных параметров, как описано выше. Далее UE осуществляет передачу в каждой CG с использованием полученных значений PCMAX для каждой CG.

Для применения описанного в этом варианте осуществления изобретения способа, конечное устройство или UE, выполненное с возможностью DC, может осуществлять следующие минимальные этапы:

- получают информацию об уровне синхронизации, с которым UE сконфигурировано для работы при DC, при этом указанный уровень синхронизации содержит разности времен принятых сигналов от разных CG, например MCG и SCG (например, с помощью модуля получения из конечного устройства или UE);

- выбирают между первым способом и вторым способы вычисления или получения PCMAX на основе полученной информации (например, с помощью модуля выбора из конечного устройства или UE);

- вычисляют или получают PCMAX на основе выбранного способа (например, с помощью модуля вычислений из конечного устройства или UE); модуль выбора и модуль вычислений могут быть встроены в модуль определения с целью определения PCMAX. Это можно считать реализацией способа работы конечного устройства. Может быть рассмотрено конечное устройство, выполненное с возможностью осуществления этого способа.

В качестве альтернативы или дополнительно, может быть рассмотрен способ работы конечного устройства в сети беспроводной связи, при этом конечное устройство выполнено с возможностью двойного соединения. Конечное устройство может быть соединенно с главным узлом сети с помощью группы (MCG) главных ячеек и с вторичным узлом сети с помощью группы (SCG) вторичных ячеек. Способ может включать в себя следующее: получают, с помощью конечного устройства, информацию синхронизации, в частности информацию, касающуюся разности времен для сигналов от MCG и SCG. Этот способ может дополнительно включать в себя следующее: определяют PCMAX на основе информации синхронизации. Определение PCMAX на основе информации синхронизации может включать в себя следующее: выбирают способ определения PCMAX в зависимости от уровня синхронизации, в частности выбирают между первым и вторым способами, которые описаны в настоящем документе. Второй способ может быть способом, основанным на интервалах или подкадрах, как описано в настоящем документе. При желании или дополнительно, определение PCMAX может включать в себя следующ