Идентификация нелинейной системы для обнаружения объекта в системе для беспроводной передачи энергии
Иллюстрации
Показать всеИспользование: в области электротехники. Технический результат – повышение эффективности и надежности передачи энергии. Способ обнаружения, находится ли инородный объект рядом с передающей катушкой в системе для беспроводной передачи энергии (WPTS), включает этапы, согласно которым: подают псевдослучайный сигнал на передающую катушку, во время подачи псевдослучайного сигнала на передающую катушку регистрируют один или большее количество сигналов, выработанных в системе для беспроводной передачи энергии, в ответ на поданный псевдослучайный сигнал, путем использования одного или большего количества зарегистрированных сигналов генерируют модель системы для электрических характеристик системы для беспроводной передачи энергии. Используют сгенерированную модель системы в сочетании с сохраненными обучающими данными для определения, находится ли объект, имеющий характеристики, распознаваемые из сохраненных обучающих данных как характеристика инородного объекта, рядом с передающей катушкой. 2 н. и 24 з.п. ф-лы, 21 ил.
Реферат
[0001] В настоящей заявке заявлено преимущество по предварительной заявке США №61/738,786, поданной 18 декабря 2012, которая полностью включена в настоящую заявку посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ
[0002] Варианты реализации настоящего изобретения в целом относятся к беспроводной передаче энергии для систем зарядки и/или питания, таких, которые могут быть использованы помимо прочего в электрических транспортных средствах и переносных устройствах.
УРОВЕНЬ ТЕХНИКИ
[0003] С возобновлением интереса к электромобилям наблюдается появление новых разработок в технологии изготовления батарей, быстрых способов зарядки и беспроводной передачи энергии в качестве удобного способа для подзарядки батарей. Способы беспроводной быстрой зарядки становятся все более соответствующими для экологически чистых электромобилей как способ увеличения дальности, ограниченной современной технологией изготовления батарей. Таким образом, батареи можно подзаряжать во время движения от катушек, встроенных в дорожное полотно, перед светофорами, в местах стоянки автомобилей во время совершения покупок или в ресторанах для автомобилистов.
[0004] Беспроводная передача энергии имеет длинную историю, начинающуюся, вероятно, с опытов Теслы. В настоящее время эта технология используется повсюду, например, в зубных щетках, сотовых телефонах, портативных компьютерах, и даже рассматривается в качестве альтернативного источника питания для общего использования в домах, например, для осветительных приборов, часов и т.п. В большей части случаев применения беспроводная передача энергии применяется для зарядки батарей, которые используют в качестве временного хранилища энергии между беспроводной системой для зарядки и устройством. С появлением усовершенствованных технологий изготовления батарей, таких как литий-ионные ячейки, стала возможной зарядка батареи намного быстрее, чем прежде, с использованием беспроводных скоростных зарядных устройств. Для достижения полного признания эти беспроводные скоростные зарядные устройства должны быть эффективными и надежными, что является основной целью некоторых случаев применения, описанных в настоящей заявке.
[0005] Известны различные типы беспроводной передачи энергии. Настоящее изобретение основано на резонансной индуктивной зарядке (RIC), не смотря на то, что большая часть того, что описано выше также может быть применено к другим типам беспроводных способов зарядки. В резонансной индуктивной зарядке, как можно понять из названия, используется высокодобротные настроенные катушки и конденсаторы, и энергия передается от катушки к катушке посредством магнитных полей. Резонансная индуктивная зарядка отличается от способов дальнего поля, включающих, например, СВЧ поля, которые требуют использования сложных электронных схем, и способов ближнего поля, которые действуют только в пределах части длины волны при использовании резонансной индуктивной зарядки. В случае резонансной индуктивной зарядки выяснилось, что между катушками может быть передано значительно большее количество энергии на расстояниях, превышающих несколько диаметров катушки. Использование магнитного поля вместо распространяющегося в радиальном направлении электромагнитного поле также представляет уменьшенный потенциальный вред для здоровья человека.
[0006] Общий тип катушек, используемых для резонансной индуктивной зарядки, имеет форму диска с одиночной спиральной намоткой, выполненной в плоскости. На фиг. 1 показана типичная схема резонансной индуктивной зарядки, на которой катушки L1 и L2 являются передающей и приемной катушками соответственно, изготовленными в форме дисковой катушки. Поскольку такая конструкция подобна трансформатору, электрические характеристики катушек могут быть описаны параметрами, такими как сопротивление катушек, самоиндукция и взаимная индукция. Взаимная индукция определяет, какая часть поля, генерируемого одной катушкой, пересекает другую катушку (катушки), что в значительной степени зависит от геометрии, с которой катушки ориентированы относительно друг друга, включая расстояние и ориентацию. При уменьшении связи передается меньше энергии, в то время как потери мощности на омический нагрев остаются теми же самыми или увеличиваются, и, следовательно, уменьшается эффективность.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
[0007] В общем, согласно одному аспекту по меньшей мере одно из изобретений представляет способ обнаружения, находится ли инородный объект рядом с передающей катушкой в системе для беспроводной передачи энергии (WPTS). Способ включает этапы, согласно которым: подают псевдослучайный сигнал на передающую катушку, во время подачи псевдослучайного сигнала на передающую катушку регистрируют один или большее количество сигналов, выработанных в системе для беспроводной передачи энергии в ответ на поданный псевдослучайный сигнал, путем использования одного или большего количества зарегистрированных сигналов генерируют модель динамической системы для отдельного аспекта системы для беспроводной передачи энергии и используют сгенерированную модель динамической системы в сочетании с сохраненными обучающими данными для определения, находится ли объект, имеющий характеристики, распознаваемые из сохраненных обучающих данных как характеристика инородного объекта, рядом с передающей катушкой.
[0008] Другие варианты реализации содержат один или большее количество следующих признаков. Способ также включает, если объект, имеющий характеристики, распознаваемые из сохраненных обучающих данных как характеристика инородного объекта, определен как находящийся рядом с передающей катушкой, генерирование управляющего сигнала, указывающего, что беспроводная зарядка должна быть прекращена, и/или на завершение беспроводной зарядки приемной системой. Один или большее количество сигналов содержат сигнал тока передающей катушки, и они также могут содержать сигнал напряжения передающей катушки. Использование сгенерированной модели динамической системы включает сравнение информации, содержащейся в сгенерированной модели динамической системы, с выведенной опытным путем сохраненной информацией, которая указывает на присутствие рядом инородного объекта. Генерирование модели динамической системы включает использование идентификации системы для согласования выбранной модели с данными, выведенным из одного или большего количества зарегистрированных сигналов. Выбранной моделью является винеровская система. Выбранная модель имеет динамическую линейную часть и статическую нелинейную часть. Сгенерированная модель динамической системы содержит представление временной области или представление частотной области.
[0009] Другие варианты реализации содержат один или большее количество следующих признаков. Сохраненные обучающие данные представлены сохраненной фильтр-функцией, причем использование сгенерированной модели динамической системы в сочетании с сохраненными обучающими данными включает обработку сгенерированной модели динамической системы для генерирования выходного сигнала, при этом выходной сигнал указывает, находится ли объект, имеющий характеристики, распознаваемые из сохраненных обучающих данных как приемная катушка, рядом с передающей катушкой, и причем обработка модели динамической системы включает применение фильтр-функции. Один или большее количество сигналов, сгенерированных в системе для беспроводной передачи энергии, содержит сигнал тока передающей катушки. Генерирование модели динамической системы включает использование зарегистрированного сигнала тока передающей катушки в качестве модели динамической системы. Фильтр-функция является нелинейной фильтр-функцией, которая выведена из измерений, выполненных на испытательной системе, содержащей испытательную передающую катушку и испытательные объекты, расположенные на различных разделяющих расстояниях друг от друга. Способ также включает, если объект, имеющий характеристики, распознаваемые из сохраненных обучающих данных как характеристика инородного объекта, определен как находящийся рядом с передающей катушкой, генерирование управляющего сигнала, указывающего, что беспроводная зарядка должна быть прекращена. Способ дополнительно включает, если объект, имеющий характеристики, распознаваемые из сохраненных обучающих данных как характеристика инородного объекта, определен как находящийся рядом с передающей катушкой, завершение беспроводной зарядки приемной системы.
[0010] В общем, согласно другому аспекту по меньшей мере одно из изобретений представляет систему для беспроводной передачи энергии. Система содержит: передающую катушку; схему передатчика энергии, соединенную с передающей катушкой; схему датчика, соединенную с передающей катушкой; и электронное управляющее устройство для управления схемой передатчика энергии и схемой датчика, причем указанное электронное управляющее устройство содержит запоминающее устройство для сохранения обучающих данных и процессорную систему, запрограммированную для: вызова подачи схемой передатчика энергии псевдослучайного сигнала на передающую катушку; во время подачи псевдослучайного сигнала на передающую катушку - вызова регистрации схемой датчика одного или большего количества сигналов, выработанных в системе для беспроводной передачи энергии в ответ на поданный псевдослучайный сигнал; путем использования одного или большего количества зарегистрированных сигналов - генерирования модели динамической системы для отдельного аспекта системы для беспроводной передачи энергии; и использования сгенерированной модели динамической системы в сочетании с сохраненными обучающими данными для определения, находится ли объект, имеющий характеристики, распознаваемые из сохраненных обучающих данных как характеристика инородного объекта, рядом с передающей катушкой.
[0011] Другие варианты реализации содержат один или большее количество следующих признаков. Один или большее количество сигналы содержат сигнал тока и сигнал напряжения передающей катушки.
[0012] Другие варианты реализации содержат один или большее количество следующих признаков. Сохраненные обучающие данные представлены сохраненной фильтр-функцией, причем процессорная система запрограммирована для использования сгенерированной модели динамической системы в сочетании с сохраненными обучающими данными путем обработки сгенерированной модели динамической системы фильтр-функцией для генерирования выходного сигнала, при этом выходной сигнал указывает, находится ли объект, имеющий характеристики, распознаваемые из сохраненных обучающих данных как приемная катушка, рядом с передающей катушкой. Система для беспроводной передачи энергии по п. 22, в которой один или большее количество сигналов, выработанных в системе для беспроводной передачи энергии, содержат сигнал тока передающей катушки. Моделью динамической системы является зарегистрированный сигнал тока передающей катушки.
[0013] Подробности одного или большего количества вариантов реализации настоящего изобретения показаны на сопроводительных чертежах и сформулированы в описании, приведенном ниже. Другие признаки, объекты и преимущества настоящего изобретения будут очевидны из описания, чертежей и пунктов приложенной формулы.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0014] На фиг. 1 показана схема передачи электроэнергии с использованием передающей катушки L1 и приемной катушки L2.
[0015] На фиг. 2 показан типичный график электрического импеданса настроенной катушки в свободном пространстве и в связанном состоянии с соседней идентичной катушкой.
[0016] На фиг. 3 показаны импедансные спектры катушки передатчика для двух катушек, разнесенных друг от друга на различные расстояния.
[0017] На фиг. 4 показан спектр мощности катушки передатчика, соответствующий импедансным спектрам катушки, показанным на фиг. 3.
[0018] На фиг. 5 показана оптимальная частота для двух катушек в зависимости от разделительного расстояния между ними.
[0019] На фиг. 6 показана принципиальная схема винеровской системы.
[0020] На фиг. 7 показана принципиальная схема системы Гаммерштейна.
[0021] На фиг. 8 показана принципиальная схема системы для беспроводной передачи энергии, содержащей передающую и приемную катушки.
[0022] На фиг. 9 показана блок-схема алгоритма для предварительного обучения электронного управляющего устройства передатчика энергии в системе для беспроводной передачи энергии для обнаружения системы для беспроводного приема энергии.
[0023] На фиг. 10 показана блок-схема алгоритма, реализованного электронным управляющим устройством передатчика энергии для обнаружения присутствия системы для беспроводного приема энергии.
[0024] На фиг. 11 показана блок-схема алгоритма для создания нелинейного фильтра для использования в электронном управляющем устройстве передатчика энергии для обнаружения присутствия системы для беспроводного приема энергии.
[0025] На фиг. 12 показана блок-схема алгоритма, реализованного электронным управляющим устройством передатчика энергии для использования нелинейного фильтра, показанного на фиг. 11, для обнаружения присутствия системы для беспроводного приема энергии.
[0026] На фиг. 13 показана блок-схема алгоритма, реализованного электронным управляющим устройством передатчика энергии, для автоматического регулирования частоты сигнала для беспроводной передачи энергии.
[0027] На фиг. 14А показана блок-схема алгоритма для создания нелинейного фильтра для использования в электронном управляющем устройства передатчика энергии, для автоматического регулирования частоты сигнала для беспроводной передачи энергии.
[0028] На фиг. 14В показана блок-схема алгоритма, реализованного электронным управляющим устройством передатчика энергии для использования нелинейного фильтра, показанного на фиг. 14А, для автоматического регулирования частоты сигнала для беспроводной передачи энергии.
[0029] На фиг. 15 показана блок-схема алгоритма, реализованного по меньшей мере частично электронным управляющим устройством передатчика энергии, для регулирования волновой формы сигнала для беспроводной передачи энергии.
[0030] На фиг. 16А-16В показана блок-схема алгоритма для предварительного обучения электронного управляющего устройства передатчика энергии в системе для беспроводной передачи энергии для обнаружения инородных объектов.
[0031] На фиг. 17 показана блок-схема алгоритма, реализованного электронным управляющим устройством передатчика энергии, для обнаружения инородных объектов.
[0032] На фиг. 18А показана блок-схема алгоритма для создания нелинейного фильтра для использования в электронном управляющем устройстве передатчика энергии для обнаружения присутствия инородного объекта.
[0033] На фиг. 18В показана блок-схема алгоритма, реализованного электронным управляющим устройством передатчика энергии, для использования нелинейного фильтра, показанного на фиг. 18А, для обнаружения присутствия инородного объекта.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
[0034] Перед представлением подробностей различных вариантов реализации сначала будут описаны некоторые из проблем, которые решены этими вариантами реализации.
[0035] На фиг. 2 приведен типичный график электрического импеданса настроенной катушки, которая, например, может соответствовать передающей катушке в системе для беспроводной передачи энергии. Импеданс идеального конденсатора, включенного последовательно с катушкой индуктивности, имеет "нулевой" нуль на резонансной или собственной частоте, как показывает кривая С. Когда вторую настроенную катушку (катушку индуктивности и конденсатор, соединенные параллельно), называемую приемной катушкой, приводят в непосредственную близость к передающей катушке, импеданс на собственной частоте увеличивается в значительной степени, как показывает кривая А. Кривая, обозначенная как В, показывает импеданс системы с двумя катушками, когда приемная катушка также содержит резистивную нагрузку в своей цепи, на которой рассеивается электроэнергия, генерируемая во внешнем контуре. Нетрудно понять, что измерение импеданса, для которого требуется доступ только к двум клеммам передающей катушки, могло предоставить очень удобный инструмент для получения сведений о работе схемы.
[0036] Как показывает кривая на фиг. 2, знаменательно явление, происходящее, когда указанные две катушки приведены в непосредственную близость друг к другу, называется дроблением частоты. Когда передающая катушка и приемная катушка сближаются, могут наблюдаться две или большее количество частот при оптимальной передаче мощности локально в частотной области. Иными словами, наблюдаются два минимума, по одному на каждой стороне от собственной частоты. (Подробное описание этого явления приведено в: Alanson Р. Sample and Joshua R. Smith, Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer, 2010 IEEE; and Huang, X.L, et al., Resonant Frequency Splitting Analysis and Optimization of Wireless Power Transfer System, PIERS Proceedings, Russia, August 2012).
[0037] На фиг. 3 показан типичный график импеданса передающей катушки на различных расстояниях от приемной катушки. Поскольку катушки постепенно сближаются, пик импеданса на собственной частоте увеличивается, и эти две частоты, в которых минимумы импеданса наблюдаются с обеих сторон этого положения, все больше отдаляются по частоте друг от друга. На основании этих импедансных спектров могут быть вычислены энергетические спектры, указывающие, сколько энергии приходит в катушку. На фиг. 4 показаны соответствующие энергетические спектры. Как видно из чертежей, мощность является максимальной на двух частотах, расстояние между которыми все более уменьшается в зависимости от разнесения этих двух катушек вплоть до слияния двух пиков для всех практических целей при увеличенных разнесениях (слияния на собственной частоте системы).
[0038] На фиг. 5 представлены свойственные различным беспроводным системам оптимальные частоты, при которых происходит максимальная передача энергии, в зависимости от относительного разделительного расстояния между указанными двумя катушками с учетом диаметров катушек. Как показано на чертеже, если расстояние между катушками меньше чем примерно половина диаметра катушек, имеются две частоты, на которых наблюдается максимальная передача энергии. При фиксированной конфигурации легко выбрать оптимальную частоту генератора для передачи энергии. Однако в динамической ситуации, когда катушки перемещаются относительно друг друга, и расстояния между катушками является неизвестным, поддерживание оптимальной передачи энергии становится затруднительным.
[0039] Обычно задача состоит в максимизации передачи электроэнергии в нагрузку. В лабораторных условиях могут быть присоединены измерительные выводы для измерения энергии, генерируемой схемой, в передатчике и измерения энергии, поступающей в нагрузку. Затем, путем использования качающейся частоты можно периодически измерять отношение принятой мощности к переданной мощности для обнаружения частоты, на которой происходит пиковая передача электроэнергии, и соответствующим образом регулировать частоту генератора. Обнаружение оптимальной частоты может быть выполнено с использованием некоторых алгоритмов, разработанных в теории оптимизации. Однако по причине дробления частоты и возможного существования двух локальных оптимальных частот, должны быть использованы способы, включающие стохастическую минимизацию. При нахождении оптимума оптимальная частота может быть отслежена в режиме реального времени с повышенной скоростью путем локальных поисков.
[0040] Однако в реальных случаях применениях, таких как автомобили, перемещающиеся относительно друг друга или над передающими катушками, отсутствует возможность непосредственного измерения энергии, рассеянной в нагрузке. Автоматическая настройка частоты может быть достигнута посредством направленных ответвителей, расположенных, например, между передающей и приемной катушками, для измерения падающей и отраженной энергии (см. Sample и Smith). Другой способ может включать беспроводную передачу необходимых измерений, таких как измерение электрического тока в нагрузке, напряжения и мощности, от приемника к передатчику. Это может быть осуществлено путем передачи модулированного сигнала от приемной катушки на передающую катушку с использованием различных частотных диапазонов, на которые не влияет передача энергии. Согласно другому варианту реализации могут быть использованы другие способы передачи информации назад к передатчику, такие как оптические или акустические сигналы. Для передачи таких сигналов в катушки для передачи энергии могут быть встроены вспомогательные катушки.
[0041] Как показали Sample и Smith, способ моделирования может быть использован для определения зависимости переданной энергии от положения и ориентации катушек. В этом случае датчики положения, которые регистрируют расстояние между этими двумя катушками и их ориентацию, могут быть использованы для идентифицирования оптимальной частоту при передаче энергии.
[0042] Система для передачи электроэнергии, показанная на фиг. 1, содержит несколько нелинейных элементов, таких как выпрямители и вторичный преобразователь. Если бы система была линейной, для быстрой идентификации системы и извлечения из нее оптимальных параметров могли бы использоваться некоторые способы, описанные в инженерно-технической литературе. Однако, если такие способы использовались бы для выяснения, каким образом указанные возмущения в переданном сигнале будут влиять на сигнал, наблюдаемый в нагрузке, они, вероятно, оказались бы безрезультатными или дали неточные результаты из-за присутствия в цепи твердотельных нелинейных элементов, таких как выпрямительные диоды.
[0043] Также выяснилось, что передача увеличенной электроэнергии может быть достигнута с использованием несинусоидальной переходной волновой формы. Такая форма имеет конкретное преимущество, поскольку для минимизации потерь мощности в электронике используются элементы переключения мощности или мощные полевые транзисторы (FET), которые вместо синусоидальных сигналов генерируют сигналы в форме импульсов или ступеней. Такие мощные элементы или транзисторы содержат интегрированные биполярные транзисторы с изолированным затвором (IGBT) и полевые транзисторы с гексагональными р-областями (HEXFET®), причем биполярные транзисторы с изолированным затвором обычно выполнены с возможностью переключения при повышенных напряжениях, а полевые транзисторы с гексагональными р-областями выполнены с возможностью переключения на повышенных частотах, например, на частотах до десятков МГц.
[0044] Создание систематического способа определения оптимальной формы такого сигнала в режиме реального времени при перемещении и вращении катушек относительно друг друга, представляет собой одну из задач, достигнутых способами, описанными ниже.
ИДЕНТИФИКАЦИЯ НЕЛИНЕЙНОЙ СИСТЕМЫ
[0045] По меньшей мере в некоторых из вариантов реализации, описанных в настоящей заявке используется идентификация нелинейной системы для достижения результатов, которые достигнуты. Таким образом, перед обсуждением подробностей различных вариантов реализации сначала будет представлен краткий обзор идентификации нелинейной системы.
[0046] Как известно из теоремы Фреше, любая стационарная по времени нелинейная динамическая система с конечной памятью может быть представлена с произвольной точностью рядами Вольтерра конечного порядка для всех входных сигналов, которые являются квадратично интегрируемыми в конечном интервале. Ряд Вольтерра подобен ряду Тейлора, за исключением того, что он может учитывать эффекты "памяти" устройств, таких как конденсаторы и катушки индуктивности. Ряд Вольтерра, который представляет собой функциональное расширение динамического нелинейного стационарного по времени оператора, является бесконечной суммой многомерных сверточных интегралов следующей формы:
[0047] С рядом Вольтерра тесно связан ряд Винера. В ряду Винера члены ортогонализированы для чисто случайного входного сигнала белого шума и легко идентифицируются с использованием, например, способов взаимной корреляции.
[0048] Коренберг (в Parallel Cascade Identification and Kernel Estimation for Nonlinear Systems, Annals of Biomedical Engineering, vol. 19, pp. 429-55 (1990)) расширил вышеуказанную теорему Фреше, доказав, что любая система с конечной памятью и дискретным временем, которая может быть представлена конечным рядом Вольтерра, также может быть представлена конечным рядом параллельных каскадов динамической линейной системы, сопровождаемой статической нелинейностью (т.е. каскадом систем Винера или систем натуральных логарифмов).
[0049] Одним примером модели динамической системы является винеровская система, показанная на фиг. 6. В такой системе динамическая линейная система, обозначенная как h(т), сопровождается статической нелинейной системой, обозначенной как N(•). Она также упоминается как LN (линейно-нелинейная) система. Динамическая линейная система должна быть неподвижной (стационарной по времени), устойчивой и безынерционной (не должна иметь память). Она отображает весь возможный и приемлемый набор входных функций по времени x(t) в выходную функцию по времени u(t). Статическая нелинейность отображает диапазон приемлемых действительных значений "u(t)" в действительные значения "y(t)" в пределах диапазона указанной функции. Эти два компонента, т.е. динамическая линейная часть и статическая нелинейность, могут быть представлены параметрически или непараметрически. Как правило, параметрическое представление охватывает некоторый тип символического выражения, включая параметры a0, a1,… an. Например, для представления статической нелинейности может быть использован многочлен, такой как приведенный ниже:
.
[0050] Винеровские системы представляют собой случаи класса моделей, известных как каскад или блочноструктурированные системы. Другие случаи каскада или блочноструктурированных систем включают: системы Гаммерштейна, такие как показанная на фиг. 7, в которых динамическая линейная система следует за статической нелинейной системой (NL, т.е., нелинейно-линейная система); и каскадные системы, в которых линейная система сопровождается нелинейностью и, затем, другой линейной системой (LNL).
[0051] Известны несколько способов идентификации системы, причем некоторые из них являются весьма общими, другие являются более конкретными и основаны на некоторых допущениях о свойствах входной функции, примененной к системе. Они также могут зависеть от пространства, в котором используется модель. Один из самых общих способов идентификации нелинейной системы включает выражение функции, дающей ошибку в предполагаемой модели. С использованием параметрического представления системы, для нахождения параметров, которые минимизируют интеграл вероятности ошибки, может быть использован нелинейный способ минимизации, такой как метод Левенберга-Марквардта. Этот подход является общим и понятным для осуществления, но неэффективным в вычислительном отношении по сравнению с другими способами.
[0052] Для случая непараметрической формы модели Винера (LN) чрезвычайно эффективные способы были разработаны Коренбергом и Хантером. Они также разработали эффективные способы идентифицирования систем Гаммерштейна (NL). Такие способы описаны у Хантера и др., (The Identification of nonlinear Biological Systems: Wiener and Hammerstein Cascade Models, Biological Cybernetics, vol. 55 pp. 135-44 (1986)). Они же разработали практические и эффективные способы идентифицирования параллельного каскада линейной системы, сопровождаемой статической нелинейностью и другой линейной системой, (LNL), как описано, например, у Коренберга и др., (The Identification of Nonlinear Biological Systems: LNL Cascade Models, Biological Cybernetics, vol. 55, pp. 125-34, (1986)). В этих источниках показано, что каждая непрерывная система с дискретным временем с конечной памятью может быть однородно аппроксимирована конечной суммой систем LNL.
[0053] Непараметрические функции, осуществленные в цифровой форме, в конечном счете могут быть представлены как выборочные функции, которые включают очень большое количество числовых значений. Таким образом, зачастую эти функции выборочных данных преобразовывают в параметрическую форму. Таким образом, сохраняется эффективность вычисления, и окончательное представление является более простым. Во многих случаях после проверки импульсной характеристики может быть оценен порядок системы, и после согласования упрощенной модели пониженного порядка импульсная характеристика, наконец, является отфильтрованной и менее зашумленной.
[0054] Дополнительное объяснение использования идентификации нелинейной системы, в частности, в отношении ядер Винера и Вольтерра, также может найдено в следующих ссылках: Коренберг, и др., "Exact Orthogonal Kernel Estimation From Finite Data Records: Extending Wiener's Identification Of Nonlinear Systems", Annals of Biomedical Engineering, vol. 16, pp. 201-14 (1988); Коренберг, и др., "The Identification of Nonlinear Biological Systems: Wiener Kernel Approaches", Annals of Biomedical Engineering, vol. 18, pp. 629-54 (1990); и Коренберг, и др., "The Identification of Nonlinear Biological Systems: Volterra Kernel Approaches", Annals of Biomedical Engineering, vol. 24, pp. 250-68 (1996). Дополнительные подробности также могут быть найдены в публикации патентной заявки США №2012/0098481, поименованной "Устройство и способ быстрой зарядки батарей", поданной Ian W. Hunter и Serge R. Lafontaine, содержание которой полностью включено в настоящую заявку посредством ссылки.
[0055] Следует отметить, что система с гистерезисом поддается параметрическому подходу, но в то же время не допускает применения к ней вышеуказанных разработанных Коренбергом и Хантером быстрых способов идентификации структурированных блоков. Как указано выше, в случае параметрического подхода может быть использован метод Левенберга-Марквардта для выяснения параметров, которые минимизируют интеграл вероятности ошибки, например, разность между предполагаемым выходом Винера и действительным выходом системы.
[0056] Следует понимать, что вышеуказанные способы могут быть использованы в необходимых случаях для выполнения идентификации нелинейной системы, описанной в настоящей заявке.
ПРИМЕНЕНИЕ ИДЕНТИФИКАЦИИ НЕЛИНЕЙНОЙ СИСТЕМЫ К БЕСПРОВОДНОЙ ПЕРЕДАЧЕ ЭНЕРГИИ
[0057] В описанных в настоящей заявке вариантах реализации идентификация нелинейной системы с использованием указанных выше способов применяется для усовершенствования беспроводной передачи энергии и ускорения зарядки для регулирования параметров мощного сигнала, поданного в передающую катушку для: обнаружения положения, когда приемная катушка находится достаточно близко для начала передачи энергии; автоматического регулирования частоты при перемещении приемной катушки; регулирования волновой формы сигнала, используемой для передачи энергии; и обнаружения положения, когда посторонний объект препятствует передаче энергии.
[0058] Ниже подробно описаны различные варианты реализации, которые осуществляют эти функции.
СИСТЕМА ДЛЯ БЕСПРОВОДНОЙ ПЕРЕДАЧИ ЭНЕРГИИ
[0059] Как показано на фиг. 8, пример системы, в которой могут быть осуществлены различные варианты реализации, содержит беспроводную систему 10 для передачи энергии и приемную систему 50. В зависимости от необходимого случая применения передающая система может быть расположена на платформе 11, которая может быть неподвижной платформой, или которая может быть подвижной платформой, такой как транспортное средство или колесо транспортного средства. Приемная система расположена на подвижной платформе 51 (например, электрическом транспортном средстве или колесе транспортного средства), которое содержит заряжаемый батарейный блок 56 для того хранения энергии для управления оборудованием на подвижной платформе, например, электродвигателем.
[0060] Передающая система содержит передающую катушку 12, посредством которой энергия беспроводным способом передается приемной системе путем резонансного индуктивного заряжания (RIC). Передающая система также содержит схему 14 для передатчика энергии, управляющую передающей катушкой, электронное управляющее устройство 16 для передатчика энергии, управляющее схемой 14 для передатчика энергии и выполняющее функции, которые будут описаны ниже, систему 18 источника питания для подачи энергии в передающую катушку 12 и питания различных других электрических компонентов, а также датчик и схему 20 для измерения, выполненную с возможностью измерения и регистрации сигналов электрического тока и напряжения в передающей катушке 12.
[0061] Электронное управляющее устройство содержит процессорную систему 24 (содержащую один или большее количество процессоров) для запуска алгоритмов, которые описаны в настоящей заявке, для исполнения кода для управления схемой передатчика энергии и для выполнения других функций, относящихся к передающей энергию системе. Оно также содержит запоминающее устройство (ОЗУ и ПЗУ) 26 для сохранения кода, который исполняется процессорной системой 24, включая код, соответствующий функциям описанных в настоящей заявке алгоритмов, а также для сохранения данных, используемых процессорной системой 24, и данных, генерируемых процессорной системой 24 в ходе реализации описанных в настоящей заявке алгоритмов. Оно также содержит накопитель 28 на жестких дисках, соединенный с процессорной системой, к которому процессорная система 24 имеет доступ. Жесткий диск образует читаемое компьютером, цифровое хранилище для программ, загружаемых в ОЗУ, которые исполняются процессором для осуществления описанных в настоящей заявке алгоритмов.
[0062] Приемная система 50 содержит приемную катушку 52, посредством которой система принимает энергию, переданную беспроводным способом посредством передающей катушки 12. Система также содержит перезаряжаемый батарейный блок 56, (содержащий, например, аккумулятор с литий-ионными ячейками) и управляющую батареей систему 54 для управления работой батарейного блока 56. Относительно описанных в настоящей заявке вариантов реализации, управляющая батареей система 54 обеспечивает зарядку батарейного блока 56, когда переданная беспроводным способом энергия принимается приемной катушка 52 от соседней передающей энергию системы.
ОБНАРУЖЕНИЕ ПРИСУТСТВИЯ ПРИЕМНОЙ СИСТЕМЫ
[0063] Обычно предпочтительно возбуждать передающие катушки только тогда, когда приемная катушка находится в положении, подходящем для приема энергии. Присутствие приемной катушки может быть обнаружено с использованием различных средств, таких как дистанционный датчик, радиометки RFID, маломощный сигнал, излученный приемной катушкой к передающей катушке на боковой частотной полосе, с использованием акустических или оптических приемопередатчиков, или с участием оператора, который нажимает кнопку. Но даже в случае использования одного из указанных способов все еще имеется потребность в подтверждении того, что обнаруженный приемник находится в надлежащем местоположении. Также возможны случаи, в которых желательным является автоматическое обнаружение присутствия катушки с санкционированным доступом, чтобы автоматически начать зарядку, когда указанная катушка находится в нужном положении.
[0064] Как показано на фиг. 2, измеренный импеданс передающей катушки значительно изменяется при перемещении приемной катушки в направлении к приемнику, и этот факт подсказывает средство для обнаружения приемной катушки. Импеданс может быть получен путем качания немодулированного синусоидального сигнала в некотором частотном диапазоне и графического отображения отношения напряжения к электрическому току в зависимости от частоты. Однако идентификация системы предлагает усовершенствованный подход. В теории систем известно, что динамическая система отображает область допустимых временных функций в область выходных временных функций. Катушку можно рассматривать как систему, которая возбуждается изменяющимся во времени напряжением (или электрическим током) и вырабатывает временную характеристику в форме электрического тока (или напряжения). Способы идентификации стандартной непараметрическо