Способы и система для определения смещения датчика давления в коллекторе

Иллюстрации

Показать все

Изобретение относится к двигателям внутреннего сгорания с датчиком давления в коллекторе. Технический результат заключается в указании ухудшения характеристик датчика давления в коллекторе. Предложен способ определения смещения датчика давления в коллекторе, который включает в себя указание ухудшения характеристик датчика давления в коллекторе на основании смещения датчика, смещение датчика основано на давлении в коллекторе, измеренном при первом угле открытия дросселя, барометрическом давлении при втором угле открытия дросселя, опорном давлении в коллекторе при первом угле открытия дросселя и опорном барометрическом давлении. Также способ может включать в себя коррекцию выходного сигнала датчика давления в коллекторе на определенное смещение датчика. 3 н. и 17 з.п. ф-лы, 6 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ

Двигатели могут включать в себя датчик давления в коллекторе, расположенный во впускном коллекторе двигателя для определения давления в коллекторе (MAP). Контроллер двигателя может использовать измеренное MAP для настройки работы двигателя и/или определения дополнительных рабочих параметров двигателя. Например, крутящий момент двигателя и/или заряд воздуха, засасываемый в цилиндры двигателя, могут быть по меньшей мере частично основаны на MAP. Если датчик MAP становится подвергнутым ухудшению характеристик или имеет смещение, побуждающее выходной сигнал датчика MAP быть иным, чем действующее MAP, настройки двигателя, основанные на выходном сигнале датчика MAP, могут иметь пониженную точность.

Другие попытки принять меры в ответ на ухудшение характеристик или смещение датчика MAP включают в себя сравнение выходных сигналов дополнительных датчиков давления двигателя с показаниями датчика MAP. Один из примерных подходов показан Йю и другими в US 7,171,301. В нем, множество отсчетов, полученных с датчика MAP, сравнивается с множеством отсчетов с датчика массового расхода воздуха (MAF). Смещение датчика MAP определяется на основании этого сравнения.

Однако, изобретатели в материалах настоящей заявки распознали потенциальные проблемы у таких систем. В качестве одного из примеров, в некоторых двигателях, датчик MAP может быть единственным имеющимся в распоряжении датчиком давления. Таким образом, сравнение показаний датчика MAP с датчиком MAF или любым другим датчиком давления может не быть возможным.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В одном из примеров, проблемы, описанные выше, могут быть препоручены способу для указания ухудшения характеристик датчика давления в коллекторе на основании смещения датчика, смещение датчика основано на давлении в коллекторе, измеренном при первом угле открытия дросселя, барометрическом давлении при втором угле открытия дросселя, опорном давлении в коллекторе при первом угле открытия дросселя и опорном барометрическом давлении, и опорном барометрическом давлении. Например, отношение барометрического давления (BP) при втором угле открытия дросселя и на текущей высоте над уровнем моря к BP на опорной высоте над уровнем моря (например, опорному BP) может быть по существу таким же, как отношение давления в коллекторе (MAP) на текущей высоте над уровнем моря и при первом угле открытия дросселя (например, текущего MAP) к значению MAP, рассчитанному на опорной высоте над уровнем моря (например, опорному MAP). Опорное BP может быть основано на предопределенном BP на опорной высоте над уровнем моря (например, BP на уровне моря). BP при втором угле открытия дросселя может быть основано на выходном сигнале датчика давления в коллекторе во время одного из работы двигателя при широко открытом дросселе или включения зажигания двигателя. Дополнительно, опорное MAP может определяться на основании одного или более из текущего (например, первого) угла открытия дросселя, опорного BP, числа оборотов двигателя, массового расхода воздуха и/или положения распределительного вала. По существу, опорное MAP может определяться при опорном BP и первом угле открытия дросселя. В одном из примеров, первый угол открытия дросселя может быть меньшим, чем второй угол открытия дросселя.

Указание ухудшения характеристик датчика MAP может включать в себя указание ухудшения характеристик, когда смещение датчика больше, чем пороговое значение смещения. Кроме того, выходной сигнал датчика MAP может корректироваться на определенное смещение датчика. Впоследствии, контроллер двигателя может настраивать работу двигателя на основании скорректированного выходного сигнала датчика MAP. Как результат, значения MAP, определенные на датчике MAP и скорректированные на смещение датчика, могут быть более точными, чем нескорректированные выходные сигналы MAP. Это может давать в результате более точное управление двигателем.

В частности, раскрыт способ для двигателя, состоящий в том, что указывают ухудшение характеристик датчика давления в коллекторе на основании смещения датчика, причем смещение датчика основано на давлении в коллекторе, измеренном при первом угле открытия дросселя, барометрическом давлении при втором угле открытия дросселя, опорном давлении в коллекторе при первом угле открытия дросселя и опорном барометрическом давлении, и опорном барометрическом давлении.

В дополнительном аспекте указание ухудшения характеристик заключается в том, что указывают ухудшение характеристик в ответ на смещение датчика, большее, чем пороговое значение смещения.

В другом дополнительном аспекте пороговое значение смещения основано на одном или более из предопределенного смещения датчика или требуемого процента точности датчика давления в коллекторе.

В еще одном дополнительном аспекте первый угол открытия дросселя меньше, чем пороговый угол открытия дросселя, а второй угол открытия дросселя больше, чем пороговый угол открытия дросселя.

В еще одном дополнительном аспекте опорное барометрическое давление является предопределенным давлением на опорной высоте над уровнем моря, причем опорная высота над уровнем моря является уровнем моря.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что определяют барометрическое давление на основании выходного сигнала датчика давления в коллекторе во время одного из работы двигателя при широко открытом дросселе или включения зажигания двигателя.

В еще одном дополнительном аспекте давление в коллекторе измеряется датчиком давления в коллекторе, в то время как двигатель выполняет сгорание, и когда первый угол открытия дросселя меньше, чем пороговый угол открытия дросселя, при этом датчик давления в коллекторе расположен во впускном коллекторе двигателя.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что многократно оценивают опорное давление в коллекторе на основании первого угла открытия дросселя, опорного барометрического давления, числа оборотов двигателя и положения распределительного вала.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что оценивают опорное давление в коллекторе на основании оценки массового расхода воздуха во время работы при первом угле открытия дросселя и коэффициента наполнения двигателя, причем коэффициент наполнения двигателя основан на числе оборотов двигателя, положении распределительного вала и оцененном массовом расходе воздуха.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что корректируют выходной сигнал датчика давления в коллекторе на смещение датчика, чтобы определять скорректированное давление в коллекторе.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что настраивают работу двигателя на основании скорректированного давления в коллекторе.

Кроме того, раскрыт способ для двигателя, состоящий в том, что: настраивают работу двигателя на основании скорректированного давления в коллекторе, причем скорректированное давление в коллекторе основано на смещении датчика давления в коллекторе, смещение основано на зависимости между давлением в коллекторе при первом угле открытия дросселя, опорным давлением в коллекторе, опорным барометрическим давлением и барометрическим давлением при втором угле открытия дросселя; и указывают ухудшение характеристик датчика давления в коллекторе в ответ на смещение, большее, чем пороговое значение смещения.

В дополнительном аспекте первый угол открытия дросселя меньше, чем второй угол открытия дросселя.

В другом дополнительном аспекте первый угол открытия дросселя меньше, чем пороговый угол открытия дросселя, а второй угол открытия дросселя является углом при широко открытом дросселе.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что оценивают опорное давление в коллекторе на основании первого угла открытия дросселя, опорного барометрического давления, числа оборотов двигателя и положения распределительного вала.

В еще одном дополнительном аспекте опорное барометрическое давление является предопределенным барометрическим давлением на уровне моря.

В еще одном дополнительном аспекте давление в коллекторе измеряется датчиком давления в коллекторе, и при этом барометрическое давление оценивается на основании выходного сигнала датчика давления в коллекторе при одном из широко открытого дросселя или включения зажигания двигателя.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что оценивают барометрическое давление во время углов открытия дросселя, меньших, чем пороговое значение, на основании давления в коллекторе, опорного давления в коллекторе и опорного барометрического давления.

Также раскрыта система, содержащая: впускной коллектор; дроссель, расположенный во впускном коллекторе; датчик давления в коллекторе, расположенный во впускном коллекторе и выполненный с возможностью определять измеренное давление в коллекторе; и контроллер с машинно-читаемыми командами для коррекции измеренного давления в коллекторе на смещение датчика давления в коллекторе, причем смещение датчика давления в коллекторе основано на измеренном давлении в коллекторе при первом угле открытия дросселя, меньшем, чем пороговое значение, оцененном барометрическом давлении при втором угле открытия дросселя, большем, чем первый угол открытия дросселя, опорном барометрическом давлении и опорном давлении в коллекторе при первом угле открытия дросселя и опорном барометрическом давлении.

В дополнительном аспекте машинно-читаемые команды дополнительно включают в себя команды для указания ухудшения характеристик датчика давления в коллекторе, когда смещение датчика давления в коллекторе больше, чем пороговое значение смещения.

Должно быть понятно, что сущность изобретения, приведенная выше, предоставлена для знакомства с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Она не предполагается для идентификации ключевых или существенных признаков заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен реализациями, которые кладут конец каким-нибудь недостаткам, отмеченным выше или в любой части этого раскрытия.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 - принципиальная схема примерной системы двигателя, включающей в себя датчик давления в коллекторе.

Фиг. 2 - график, показывающий зависимость между давлением в коллекторе и барометрическим давлением при разных углах открытия дросселя.

Фиг. 3 - блок-схема последовательности операций способа для оценивания барометрического давления на основании угла открытия дросселя.

Фиг. 4 - блок-схема последовательности операций способа для оценивания барометрического давления при меньших углах открытия дросселя.

Фиг. 5 - блок-схема последовательности операций способа для определения смещения датчика давления в коллекторе.

Фиг. 6 - график примерных настроек для эксплуатации двигателя на основании оцененного барометрического давления.

ПОДРОБНОЕ ОПИСАНИЕ

Последующее описание относится к системам и способам для оценивания барометрического давления на основании опорного барометрического давления и давлений в коллекторе на двух разных высотах над уровнем моря. В некоторых примерах, система двигателя, такая как система двигателя, показанная на фиг. 1, может не включать в себя датчик барометрического давления (BP). Однако, работа двигателя может быть основана на текущем BP. В одном из примеров, когда двигатель не включает в себя датчик BP, BP может оцениваться на основании значений MAP, измеренных по датчику MAP, расположенному во впускном коллекторе двигателя. Однако, при меньших углах открытия дросселя (например, угле открытия дросселя у впускного дросселя, меньшем, чем пороговое значение), основывание BP только на выходном сигнале датчика MAP и падении давления на впускном дросселе может давать в результате оценки BP пониженной точности. Таким образом, когда двигатель является работающим при углах открытия дросселя, меньших, чем пороговое значение, BP, взамен, может быть основано на значениях MAP в двух разных рабочих состояниях двигателя. Фиг. 3 показывает способ для определения BP на основании угла открытия дросселя. Точнее, для любых заданных угла открытия дросселя, числа оборотов двигателя и положения распределительного вала, отношение между показаниями датчика MAP на двух разных высотах над уровнем моря (или BP) может быть одинаковым. Зависимость между показаниями датчика MAP на двух разных высотах над уровнем моря показана на фиг. 2. Кроме того, отношение между показаниями датчика MAP на двух разных высотах над уровнем моря может быть по существу таким же, как отношение между BP на двух разных высотах над уровнем моря. Эти отношения могут использоваться в способе, показанном на фиг. 4, для оценивания BP при меньших углах открытия дросселя. Таким образом, BP может оцениваться при любом угле открытия дросселя с использованием одного из способов, описанных выше, выбранный способ основан на угле открытия впускного дросселя относительно порогового угла открытия дросселя. Фиг. 6 показывает примерные настройки для работы двигателя на основании оцененного BP.

В некоторых примерах, датчик MAP двигателя может иметь смещение, побуждающее измеренное MAP отличаться от действующего MAP. Кроме того, датчик MAP может становиться подвергнутым ухудшению характеристик, что подтверждается повышением смещения выше порогового значения смещения. Однако, система двигателя может не включать в себя датчик массового расхода воздуха (MAF) или другой датчик давления для сравнения измерений давления с показаниями датчика MAP и последующего диагностирования датчика MAP. Как результат, управление двигателем на основании показаний датчика MAP может иметь пониженную точность. В одном из примеров, смещение датчика MAP может определяться с использованием отношений между BP и MAP на двух разных высотах над уровнем моря, как описано выше. Фиг. 5 показывает способ для определения смещения датчика MAP, а затем, коррекции выходного сигнала датчика MAP на основании определенного смещения. Кроме того, контроллер двигателя может указывать ухудшение характеристик датчика MAP, если смещение возрастает выше порогового значения смещения. Таким образом, коррекция выходного сигнала датчика MAP на смещение датчика MAP может давать в результате более точные оценки BP, оценки MAP и управление двигателем.

Фиг. 1 - принципиальная схема, показывающая примерный двигатель 10, который может быть включен в силовую установку автомобиля. Двигатель 10 показан с четырьмя цилиндрами иди камерами 30 сгорания. Однако, другие количества цилиндров могут использоваться в соответствии с данным раскрытием. Двигатель 10 может управляться, по меньшей мере частично, системой управления, включающей в себя контроллер 12, и входными сигналами от водителя 132 транспортного средства через устройство 130 ввода. В этом примере, устройство 130 ввода включает в себя педаль акселератора и датчик 134 положения педали для формирования пропорционального сигнала PP положения педали. Каждая камера 30 сгорания (например, цилиндр) двигателя 10 может включать в себя стенки камеры сгорания с поршнем (не показан), расположенными в них. Поршни могут быть присоединены к коленчатому валу 40, так чтобы возвратно-поступательное движение поршня преобразовывалось во вращательное движение коленчатого вала. Коленчатый вал 40 может быть присоединен к по меньшей мере одному ведущему колесу транспортного средства через промежуточную систему 150 трансмиссии. Кроме того, стартерный электродвигатель может быть присоединен к коленчатому валу 40 через маховик, чтобы давать возможность операции запуска двигателя 10. Коленчатый вал 40 также может использоваться для привода генератора переменного тока (не показанного на фиг. 1).

Крутящий момент на выходе двигателя может передаваться на гидротрансформатор (не показан), чтобы приводить в движение систему 150 автоматической трансмиссии. Кроме того, одна или более муфт могут приводиться в зацепление, в том числе, муфта 154 переднего хода, для приведения в движение автомобиля. В одном из примеров, гидротрансформатор может указываться ссылкой как компонент системы 150 трансмиссии. Кроме того, система 150 трансмиссии может включать в себя множество передаточных муфт 152, которые могут приводиться в зацепление по необходимости, чтобы активировать множество постоянных передаточных отношений трансмиссии. Более точно, посредством настойки включения множества передаточных муфт 152, трансмиссия может переключаться между верхней передачей (то есть, передачей с боле низким передаточным отношением) и нижней передачей (то есть, передачей с более высоким передаточным отношением). По существу, разность передаточных отношений вводит в действие более низкое умножение крутящего момента на трансмиссии, когда на верхней передаче, наряду с предоставлением возможности более высокого умножения крутящего момента на трансмиссии, когда на нижней передаче. Транспортное средство может обладать четырьмя имеющимися в распоряжении передачами, где передача трансмиссии четыре (четвертая передача трансмиссии) является высшей имеющейся в распоряжении передачей, а передача трансмиссии один (первая передача трансмиссии) является низшей имеющейся в распоряжении передачей. В других вариантах осуществления, транспортное средство может иметь больше или меньше, чем четыре имеющихся в распоряжении передач. Как конкретизировано в материалах настоящей заявки, контроллер может менять передачу трансмиссии (например, переключать с повышением или переключать с понижением передачу трансмиссии), чтобы настраивать величину крутящего момента, передаваемого через трансмиссию и гидротрансформатор на колеса 156 транспортного средства (то есть, крутящий момент на выходном валу двигателя). В то время как трансмиссия переключается на более низкую передачу, число оборотов двигателя (Ne или RPM) возрастает, увеличивая поток воздуха двигателя. Разрежение во впускном коллекторе, сформированное вращающимся двигателем, может увеличиваться при более высоком RPM.

Камеры 30 сгорания могут принимать всасываемый воздух из впускного коллектора 44 и могут выпускать отработавшие газы через выпускной коллектор 56 в выпускной канал 48. Впускной коллектор 44 и выпускной коллектор 46 могут избирательно сообщаться с камерой 30 сгорания через соответственные впускные клапаны и выпускные клапаны (не показаны). В некоторых вариантах осуществления, камера 30 сгорания может включать в себя два или более впускных клапанов и/или два или более выпускных клапанов.

Топливные форсунки 50 показаны присоединенными непосредственно к камере 30 сгорания для впрыска топлива непосредственно в нее пропорционально длительности импульса сигнала FPW, принятого из контроллера 12. Таким образом, топливная форсунка 50 обеспечивает то, что известно в качестве непосредственного впрыска топлива в камеру 30 сгорания; однако, будет принято во внимание, что оконный впрыск также возможен. Топливо может подаваться в топливную форсунку 50 топливной системой (не показана), включающей в себя топливный бак, топливный насос и направляющую-распределитель для топлива.

В процессе, указываемом ссылкой как воспламенение, впрыснутое топливо воспламеняется известным средством воспламенения, таким как свеча 52 зажигания, приводя к сгоранию. Установка момента искрового зажигания может управляться, из условия чтобы искра возникала до (с опережением) или после (с запаздыванием) предписанного производителем момента времени. Например, установка момента зажигания может подвергаться запаздыванию от установки момента максимального тормозного момента (MBT) для борьбы с детонацией в двигателе или подвергаться опережению в условиях высокой влажности. В частности, MBT может подвергаться опережению, чтобы учитывать низкую скорость горения. В одном из примеров, искровое зажигание может подвергаться запаздыванию во время нажатия педали акселератора. В альтернативном варианте осуществления, воспламенение от сжатия может использоваться для зажигания впрыснутого топлива.

Впускной канал 44 может принимать всасываемый воздух из впускного канала 42. Впускной канал 42 и/или впускной коллектор 44 включает в себя дроссель 21, имеющий дроссельную заслонку 22, чтобы регулировать поток во впускной коллектор 44. В этом конкретном примере, положение (TP) дроссельной заслонки 22 может меняться контроллером 12, чтобы давать возможность электронного управления дросселем (ETC). Таким образом, дроссель 21 может приводиться в действие для изменения всасываемого воздуха, выдаваемого в камеры 30 сгорания. Например, контроллер 12 может настраивать дроссельную заслонку 22 для увеличения открывания дросселя 21. Увеличение открывания дросселя 21 может увеличивать количество воздуха, подаваемого во впускной коллектор 44. В альтернативном примере, открывание дросселя 21 может уменьшаться или полностью закрываться, чтобы перекрывать поток воздуха во впускной коллектор 44. В некоторых вариантах осуществления, дополнительные дроссели могут присутствовать во впускном канале 42. Дополнительно, положение дросселя или угол открытия дросселя могут определяться датчиком 23 положения дросселя, расположенным в дросселе 21. В одном из примеров, датчик 23 положения дросселя может измерять угол дроссельной заслонки 22 относительно направления потока воздуха через впускной канал 42. Например, когда дроссельная заслонка 22 полностью закрыта (и блокируя потока воздуха через впускной канал 42), угол открытия дросселя может приблизительно иметь значение ноль градусов. Когда дроссельная заслонка 22 полностью открыта (и перпендикулярна потоку воздуха), угол открытия дросселя может иметь значение приблизительно 90 градусов. Как дополнительно обсуждено ниже, угол открытия дросселя может оказывать влияние на падение давления на дросселе и на системе впуска. Таким образом, угол открытия дросселя также может оказывать влияние на оценку барометрического давления (BP).

Кроме того, в раскрытых вариантах осуществления, система рециркуляции отработавших газов (EGR) может направлять требуемую часть отработавших газов из выпускного канала 48 во впускной канал 42 через канал EGR, такой как канал 140 EGR. Величина EGR, выдаваемая во впускной канал 42, может меняться контроллером 12 посредством клапана EGR, такого как клапан 142 EGR. В некоторых условиях, система EGR может использоваться для регулирования температуры смеси воздуха и топлива в пределах камеры сгорания. Когда работоспособна, система EGR может вызывать формирование конденсата, особенно когда воздух охлаждается охладителем наддувочного воздуха, как подробнее описано ниже. Например, канал 140 EGR может включать в себя охладитель 143 EGR высокого давления.

Двигатель 10 может быть безнаддувным двигателем без трубонагнетателя или без нагнетателя. По существу, способы, дополнительно описанные ниже со ссылкой на фиг. 2-6, могут выполняться в условиях без наддува. В альтернативных вариантах осуществления, двигатель 10 может включать в себя турбонагнетатель, включающий в себя компрессор с приводом от турбины.

Двигатель 10 дополнительно может включать в себя один или более датчиков кислорода, расположенных во впускном канале 42 и/или впускном коллекторе 44. Впускной коллектор 44 включает в себя датчик 122 MAP для измерения абсолютного давления в коллекторе (MAP). Как дополнительно обсуждено ниже, выходной сигнал датчика 122 MAP может использоваться для оценки других давлений в системе двигателя, таких как BP. Дополнительно, необязательный датчик 120 массового расхода воздуха (MAF) может быть расположен во впускном канале 42 выше по потоку от дросселя 21. В других вариантах осуществления, впускной канал 42 может не включать в себя датчик 120 MAF, и массовый расход воздуха может оцениваться с использованием альтернативных способов, как дополнительно обсуждено ниже. В некоторых вариантах осуществления, датчик 122 MAP может быть единственным датчиком давления во впуске двигателя (например, во впускном канале 42 и впускном коллекторе 44). Дополнительно, в этом варианте осуществления, впуск двигателя может не включать в себя датчик 120 MAF.

Контроллер 12 показан на фиг. 1 в качестве микрокомпьютера, включающего в себя микропроцессорный блок 102, порты 104 ввода/вывода, электронный запоминающий носитель для исполняемых программ и калибровочных значений, показанный в качестве микросхемы 106 постоянного запоминающего устройства в этом конкретном примере, оперативное запоминающее устройство 108, дежурную память 110 и шину данных. Контроллер 12 может принимать различные сигналы с датчиков, присоединенных к двигателю 10 для выполнения различных функций для эксплуатации двигателя 10. В дополнение к таким сигналам, обсужденным ранее, эти сигналы могут включать в себя измерение засасываемого массового расхода воздуха с датчика 120 MAF (если датчик 120 MAF включен в двигатель 10); температуру охлаждающей жидкости двигателя (ECT) с датчика 112 температуры, схематически показанного в одном месте в пределах двигателя 10; сигнал профильного считывания зажигания (PIP) с датчика 118 на эффекте Холла (или другого типа), присоединенного к коленчатому валу 40; положение дросселя (TP) с датчика 23 положения дросселя; и сигнал абсолютного давления в коллекторе, MAP, с датчика 122, как обсужденный выше. Сигнал числа оборотов двигателя, RPM, может формироваться контроллером 12 из сигнала PIP. Сигнал давления в коллекторе, MAP, с датчика давления в коллекторе может использоваться для выдачи указания разряжения или давления во впускном коллекторе 44. Отметим, что могут использоваться различные комбинации вышеприведенных датчиков, такие как датчик MAF без датчика MAP, или наоборот. Во время стехиометрической работы, датчик MAP может давать показание крутящего момента двигателя. Кроме того, этот датчик, наряду с выявленным числом оборотов двигателя, может давать оценку заряда (включающего в себя воздух), введенного в цилиндр. В одном из примеров, датчик 118 на эффекте Холла, который также используется в качестве датчика числа оборотов двигателя, может вырабатывать предопределенное количество равноразнесенных импульсов каждый оборот коленчатого вала 40.

Другие, не изображенные датчики также могут присутствовать, такие как датчик для определения температуры и/или влажности окружающей среды, и другие датчики. В некоторых примерах, микросхема 106 постоянного запоминающего устройства запоминающего носителя может быть запрограммировано машинно-читаемыми данными, представляющими команды, исполняемые микропроцессорным блоком 102 для выполнения способов, описанных ниже, а также вариантов, которые предвосхищены, но специально не перечислены. Примерные процедуры описаны в материалах настоящей заявки на фиг. 3-5.

Система по фиг. 1 предусматривает систему двигателя, включающую в себя впускной коллектор, дроссель, расположенный во впускном коллекторе, датчик давления в коллекторе, расположенный во впускном коллекторе и выполненный с возможностью определять измеренное давление в коллекторе, и контроллер. В одном из примеров, контроллер может включать в себя машинно-читаемые команды для настройки работы двигателя в ответ на барометрическое давление, барометрическое давление основано на измеренном давлении в коллекторе, а, во время работы двигателя при угле открытия дросселя, меньшем, чем пороговое значение, барометрическое давление дополнительно основано на опорном барометрическом давлении и опорном давлении в коллекторе при угле открытия дросселя и опорном барометрическом давлении. опорное давление в коллекторе может быть основано на многократном расчете давления в коллекторе и массовом расходе воздуха при опорном барометрическом давлении и угле открытия дросселя, и при этом, опорное барометрическое давление является предопределенным барометрическим давлением, хранимым в памяти контроллера.

В еще одном примере, контроллер может включать в себя машинно-читаемые команды для коррекции измеренного давления в коллекторе на смещение датчика давления в коллекторе, смещение датчика давления в коллекторе основано на измеренном давлении в коллекторе при первом угле открытия дросселя, меньшем, чем пороговое значение, оцененном барометрическом давлении при втором угле открытия дросселя, большем, чем первый угол открытия дросселя, опорном барометрическом давлении и опорном давлении в коллекторе при первом угле открытия дросселя и опорном барометрическом давлении. Машинно-читаемые команды дополнительно могут включать в себя команды для указания ухудшения характеристик датчика давления в коллекторе, когда смещение датчика давления в коллекторе больше, чем пороговое значение смещения.

Как представлено выше, измерение барометрического давления (BP) может использоваться контроллером двигателя (например, контроллером 12, показанным на фиг. 1) для различных процедур диагностики и управления двигателем. В одном из примеров, контроллер может использовать измерение или оценку BP для расчета заряда воздуха. В еще одном примере, контроллер может настраивать рабочие параметры двигателя, такие как требуемое топливо-воздушное соотношение, установка момента зажигания и/или требуемый уровень EGR (например, интенсивность потока EGR), на основании BP.

Однако, некоторые системы двигателя (такие как система, показанная на фиг. 1) могут не включать в себя датчик барометрического давления (BP) для определения BP. В этих системах двигателя, BP может оцениваться на основании измерений с альтернативных датчиков двигателя и/или условий эксплуатации двигателя. В одном из примеров, BP может оцениваться на основании MAP, измеренного по датчику MAP во впускном коллекторе двигателя. Более точно, BP может логически выводиться (например, оцениваться) в качестве показания датчика MAP плюс небольшое падение давления на дросселе. Однако, этот способ оценки BP может требовать, чтобы дроссель был открыт в достаточной мере, из условия чтобы падение давления на дросселе было достаточно малым, чтобы моделироваться функцией угла открытия дросселя и потока воздуха (например, массового расхода воздуха). В одном из примеров, оценивание BP таким образом может быть точным только при широко открытом дросселе (WOT), или когда угол открытия дросселя (или величина открывания дросселя) больше, чем пороговое значение. Пороговое значение может быть пороговым углом открытия дросселя, ниже которого падение давления на дросселе возрастает до уровня, приводящего к пониженной точности оценки BP и являющегося результатом управления двигателем.

Таким образом, во время работы двигателя, когда положение дросселя находится ниже порогового угла открытия дросселя, BP может не оцениваться. Взамен, предыдущая (или самая последняя) оценка BP может использоваться для настроек исполнительных механизмов и/или рабочих параметров двигателя. В одном из примеров, когда двигатель является снижающимся с более высокой высоты над уровнем моря, угол открытия дросселя может быть ниже порогового значения, а BP может быть меняющимся. Однако, поскольку BP может не оцениваться во время этого состояния, расчеты и настройки исполнительных механизмов двигателя на основании BP могут снижаться по точности.

Взамен, BP может оцениваться на основании значений MAP в двух разных рабочих состояниях двигателя. Для любых заданных угла открытия дросселя, числа оборотов двигателя и положения распределительного вала, отношение между показаниями датчика MAP на двух разных высотах над уровнем моря (или BP) может быть одинаковым. Более точно, двигатель, работающий при фиксированных числе оборотов двигателя и положении распределительного вала на уровне моря и тех же самых фиксированных числе оборотов двигателя и положении распределительного вала на более высокой высоте над уровнем моря, может иметь постоянное отношение между показаниями датчика MAP, когда двигатель, в то же время, переводится с низкого угла открытия дросселя на WOT. Кроме того, как представлено выше, выходной сигнал датчика MAP может отражать BP при любом числе оборотов двигателя и положении распределительного вала, когда дроссель находится близко к (пределах порогового значения) или на WOT.

Зависимость между показаниями датчика MAP на двух разных высотах над уровнем моря показана на фиг. 2. Более точно, фиг. 2 показывает график 200 давления в коллекторе (MAP) в зависимости от угла открытия дросселя. Каждая линия на графике 200 находится на разном BP. Линия 202 предназначена для первого BP. Первое BP может быть опорным BP. В одном из примеров, первое BP может быть BP на первой высоте над уровнем моря, такой как уровень моря. Линия 204 предназначена для второго BP, второе BP является более низким, чем первое BP. По существу, второе BP может представлять вторую высоту над уровнем моря, более высокую, чем первая высота над уровнем моря.

Как обсуждено выше, линия 202 может представлять опорное BP наряду с тем, что линия 204 может представлять BP на текущем возвышении (на котором работает транспортное средство). Таким образом, измеренное MAP, MAPm, является MAP, измеренным датчиком MAP при текущих возвышении, BP и условиях эксплуатации двигателя. Кроме того, MAPm показано при текущем угле открытия дросселя, как показано на линии 206. Текущий угол открытия дросселя (линия 206) может быть меньшим, чем пороговый угол открытия дросселя, как обсуждено выше. График 200 также показывает текущее BP, BPc, на текущей высоте над уровнем моря (линия 204). BPc может быть тем, что датчик MAP показывал бы до того, как двигатель запускается, или при более высоком угле открытия дросселя, таком как WOT. Таким образом, в одном из примеров, линия 208 может представлять WOT. В других примерах, линия 208 может представлять угол открытия дросселя, меньший, чем WOT, но больший, чем пороговый угол открытия дросселя.

График 200 также показывает опорное BP, BPref, на линии 202. В способах, дополнительно описанных ниже, опорное BP может выбираться на калиброванном опорном значении, таком как BP на уровне моря ли BP при запуске двигателя (например, при включении зажигания перед эксплуатацией двигателя). Опорное MAP, MAPref, может рассчитываться (например, оцениваться) при текущем угле открытия дросселя (линия 206) и опорном BP (линия 202). MAPref также может рассчитываться на основании текущих числа оборотов двигателя и положения распределительного вала. Способ для расчета MAPref дополнительно обсужден ниже со ссылкой на фиг. 4 и может включать в себя итерационный способ для определения значения MAP с использованием модели дросселя, чтобы логически выводить поток воздуха и характеристику коэффициента наполнения.

Как показано на графике 200, отношение BP на текущей высоте над уровнем моря, BPc, к BP на опорной высоте над уровнем моря, BPref, может быть по существу равным отношению измеренного MAP на текущей высоте над уровнем моря, MAPm, к рассчитанному MAP на опорной высоте над уровнем моря, MAPref. Эта зависимость может быть представлена уравнением 1:

(1)

Уравнение 1 может быть перекомпоновано для определения BPc, как показано в уравнении 2:

(2)

Таким образом, BP в любых условиях эксплуатации двигателя, во время работы транспортного средства, может оцениваться с использованием зависимостей давления, показанных на фиг. 2.

В некоторых примерах, датчик MAP может становиться подвергнутым ухудшению характеристик или включать в себя смещение, которое может снижать точность выходного значения MAP. Смещение датчика MAP может определяться с использованием зависимости степени повышения давления, описанной выше. После определения смещения датчика, выходной сигнал датчика MAP может подвергаться поправке с использованием определенного смещения. Фиг. 2 показывает примерное смещение датчика MAP на 212. Смещение 212 датчика MAP может быть по существу постоянным значением давления, которое может побуждать датчик MAP показывать давление, на некоторую величину более высокое или более низкое, чем действующее MAP. Величиной может