Способ определения длины протяженного металлического изделия

Иллюстрации

Показать все

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в предлагаемом способе определения длины протяженного металлического изделия, при котором контролируемое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости - возбуждают электромагнитные колебания ТЕМ-типа как в отрезке длинной линии, разомкнутом на концах, и в первом такте измерений измеряют резонансную частоту ƒ1 электромагнитных колебаний этого отрезка длинной линии, дополнительно, во втором такте измерений, измеряют резонансную частоту ƒ2 электромагнитных колебаний этого отрезка длинной линии при его одновременном замыкании накоротко в двух его сечениях на фиксированной длине l0 между ними, производят совместное преобразование измеренных резонансных частот ƒ1 и ƒ2 согласно соотношению , где m=1, 2, …; n=1, 2, …, по результату которого судят о длине протяженного металлического изделия. Техническим результатом изобретения является расширение функциональных возможностей способа измерения вследствие повышения точности измерения длины протяженного металлического изделия. 1 ил.

Реферат

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях.

Известны механический способ измерения длины протяженных металлических изделий и реализующее его устройство (SU 313070 А1, 31.08.1971). Согласно им контролируемое изделие перемещают протяжным устройством в осевом направлении. Синхронно с этим приводят во вращение роликовый датчик пути, отсчитывая длину изделия как превышение некоторой базовой величины, обозначенной стационарными датчиками. Недостатками этих способа и устройства являются контактность измерений, часто неприемлемая на практике; громоздкость оборудования (его двойная длина); невысокие точность измерения и быстродействие. Точность измерения снижена вследствие проскальзывания изделия относительно ролика.

Известно также техническое решение (SU 442361 А1, 05.09.1974), которое содержит описание способа измерения, по технической сущности наиболее близкого к предлагаемому способу, и принятое в качестве прототипа. Согласно этому способу-прототипу, контролируемую металлическую трубу располагают изолированно над заземленной металлической плоскостью. В совокупности проводников - трубы и данной плоскости - возбуждают электромагнитные колебания как в отрезке длинной линии. Измеряя колебательные характеристики отрезка длинной линии, в частности его резонансную частоту электромагнитных колебаний, судят о длине металлической трубы. Недостатком данного способа является его ограниченные функциональные возможности, вызванные невысокой точностью измерения вследствие возможных изменений электрофизических параметров среды на измерительном участке.

Техническим результатом изобретения является расширение функциональных возможностей способа измерения вследствие повышения точности измерения длины протяженного металлического изделия.

Технический результат достигается тем, что в предлагаемом способе определения длины протяженного металлического изделия, при котором контролируемое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости - возбуждают электромагнитные колебания ТЕМ-типа как в отрезке длинной линии, разомкнутом на концах, и в первом такте измерений измеряют резонансную частоту ƒ1 электромагнитных колебаний этого отрезка длинной линии, дополнительно, во втором такте измерений, измеряют резонансную частоту ƒ2 электромагнитных колебаний этого отрезка длинной линии при его одновременном замыкании накоротко в двух его сечениях на фиксированной длине l0 между ними, производят совместное преобразование измеренных резонансных частот ƒ1 ƒ2 согласно соотношению , где m=1, 2, …; n=1, 2, …, по результату которого судят о длине протяженного металлического изделия.

Предлагаемый способ поясняется чертежом на фиг. 1, где показана функциональная схема устройства для реализации способа измерения длины протяженного металлического изделия.

Устройство, реализующее способ, содержит: изделие 1, диэлектрические опоры 2, металлическую плоскость 3, элемент связи 4, линию связи 5, электронный блок 6, функциональный преобразователь 7, коммутатор 8, регистратор 9.

Сущность предлагаемого способа состоит в следующем.

Данный способ характеризуется проведением последовательно двух тактов измерений с изменением (укорочением) в одном из тактов измеряемого параметра - длины l отрезка длинной линии, которая равна длине контролируемого изделия, - на некоторую фиксированную величину.

Первый такт измерения состоит в определении резонансной частоты ƒ1 полуволнового отрезка длинной линии, разомкнутого на обоих концах. Зависимость ƒ1(l) описывается формулой

Если положение металлического изделия в процессе измерения не зафиксировано строго, то есть неизвестно расположение одного из его концов, то в этом случае следует произвести для проведения второго такта измерений одновременное короткое замыкание отрезка длинной линии в двух точках, в частности, в сечениях, где расположены крайние диэлектрические опоры. При этом длина l0 между точками короткого замыкания известна. Неизвестным является суммарная длина Δl1+Δl2 участков отрезка длинной линии вне длины l0.

Для резонансной частоты ƒ1 будем иметь в этом случае следующее значение:

Полуволновому разомкнутому на обоих концах отрезку длинной линии соответствует значение n=1.

Резонансная частота ƒ2 выражается следующим образом:

Полуволновому короткозамкнутому на обоих концах отрезку длинной линии соответствует значение m=1.

Как видно из (2) и (3), значения ƒ1 и ƒ2 выражаются одинаковыми формулами.

Преобразуя совместно (2) и (3) с исключением из результата этого преобразования величины εμ, находим искомое значение Δl1+Δl2:

Следовательно, длина l металлического изделия есть

При m=n=1 будем иметь

В данном случае, как и ранее, логометрическое преобразование ƒ21 частот ƒ1 ƒ2 приводит к определению длины l металлического изделия.

Элементы связи при наличии двух коротких замыканий должны быть расположены в пределах длины l0 отрезка длинной линии. Величины Δl1 и Δl2 можно выбирать достаточно произвольно. Например, можно принимать Δl1/l0~0,1; Δl2/l0~0,1.

Согласно данному способу, в рассматриваемом отрезке длинной линии, разомкнутом на концах, возбуждают электромагнитные колебания типа ТЕМ. Для образования данного резонатора - разомкнутого на концах отрезка длинной линии - контролируемое протяженное металлическое изделие 1 располагают на диэлектрических опорах 2 над металлической плоскостью 3 (фиг. 1).

С помощью элемента связи 4, которой может являться металлическая петля (индуктивность), линии связи 5 (коаксиальный кабель) в таком отрезке длинной линии возбуждают электромагнитные колебания с применением высокочастотного генератора, входящего в состав электронного блока 6. Частота генератора изменяется в некоторых пределах, соответствующих диапазону изменения длины контролируемого изделия в рабочем диапазоне. В первом такте измерений в этом же электронном блоке 6 производят измерение резонансной частоты ƒ1 электромагнитных колебаний разомкнутого на обоих концах отрезка длинной линии на выбранной гармонике, характеризуемой индексом n. К выходу электронного блоку 6 подсоединен функциональный преобразователь 7, на один из входов которого поступает данная информация о текущем значении резонансной частоты ƒ1. Во втором такте измерений производят одновременное короткое замыкание отрезка длинной линии в двух точках, в частности, в сечениях, где расположены крайние диэлектрические опоры. Элемент связи 4 и линию связи 5 выполняют при этом с возможностью возбуждения и съема электромагнитных колебаний в обоих тактах измерений, в том числе у одного из таких короткозамкнутых концов отрезка длинной линии во втором такте измерений. При этом длина l0 между точками короткого замыкания известна. Неизвестным является суммарная длина Δl1+Δl2 участков отрезка длинной линии вне длины l0. Одновременно с этим замыканием накоротко производят измерение в электронном блоке 6, соответствующее этому значению ƒ2 резонансной частоты электромагнитных колебаний короткозамкнутого на обоих концах отрезка длинной линии на выбранной гармонике, характеризуемой индексом m. Информация о текущем значении резонансной частоты ƒ2 поступает на второй вход функционального преобразователя 7, в котором производят совместное преобразование измеренных резонансных частот ƒ1 и ƒ2 согласно соотношению (5). По результату этого преобразования резонансных частот ƒ1 и ƒ2 судят об определяемой длине l изделия. Функциональный преобразователь 7 соединен с коммутатором 8, осуществляющим периодическое, во втором такте измерений, замыкание накоротко проводников данного отрезка длинной линии в фиксированных сечениях с известным расстоянием l0 между ними. По завершению этого такта измерений и возвращению к первому такту измерений коммутатор 8 размыкает проводники отрезка длинной линии в этом его сечении. К выходу функционального преобразователя 7 подсоединен регистратор 9, выходной сигнал которого соответствует значению длины l протяженного металлического изделия.

Для контролируемых изделий выбором фиксированной частоты генератора можно оптимизировать чувствительность такого датчика длины изделия в рабочем диапазоне ее изменения. При этом имеет место монотонность зависимости информативного параметра от этой длины. Данный способ измерения может найти применение на практике там, где требуется производить высокоточные бесконтактные измерения длины различных протяженных металлических изделий при наличии возможных изменений электрофизических параметров окружающей среды в области расположения измерительного участка, где производят измерения длины металлического изделия.

Способ определения длины протяженного металлического изделия, при котором контролируемое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости - возбуждают электромагнитные колебания ТЕМ-типа как в отрезке длинной линии, разомкнутом на концах, и в первом такте измерений измеряют резонансную частоту ƒ1 электромагнитных колебаний отрезка длинной линии, отличающийся тем, что дополнительно, во втором такте измерений, измеряют резонансную частоту ƒ2 электромагнитных колебаний этого отрезка длинной линии при его одновременном замыкании накоротко в двух его сечениях на фиксированной длине l0 между ними, производят совместное преобразование измеренных резонансных частот ƒ1 и ƒ2 согласно соотношению , где m=1, 2, …; n=1, 2, …, по результату которого судят о длине протяженного металлического изделия.