Реассортантные btv и ahsv вакцины

Иллюстрации

Показать все

Изобретения касаются вакцины для вакцинации животных, рекомбинантного BTV (вирус синего языка) вектора, способа его получения, способа вакцинирования животного против BTV и способа получения иммуногенного или защитного ответа у животного против BTV. Охарактеризованная вакцина содержит рекомбинантный BTV вектор, включающий гетерологичный полинуклеотид, кодирующий полипептид BTV, при этом рекомбинантный BTV вектор содержит основу вектора, полученную из генома, выбранного из группы, состоящей из серотипов 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 и 26 BTV. Гетерологичный полинуклеотид кодирует антигенный полипептид из серотипа BTV, который отличается от серотипа BTV, использованного в качестве остова вектора, и представляет собой VP2. Изобретения могут быть использованы для индуцирования иммуногенного или защитного ответа у животных против BTV. 5 н. и 20 з.п. ф-лы, 18 ил., 6 табл., 4 пр.

Реферат

Перекрестные ссылки на родственные заявки

Эта заявка испрашивает приоритет согласно предварительной заявке США 61/659,198 опубликованной 13 июня 2012.

Область техники, к которой относится изобретение

Настоящее изобретение имеет отношение к композициям для борьбы с инфекцией вирусом катаральной лихорадки (вирусом синего языка, BTV) или вирусом африканской чумы лошадей (AHSV) у животных. Настоящее изобретение предоставляет фармацевтические композиции, содержащие рекомбинантный BTV или AHSV вектор, способы вакцинации против BTV или AHSV, и наборы для применения в таких способах и композициях.

Уровень техники изобретения

Катаральная лихорадка («синий язык», ВТ) представляет собой переносимую членистоногими инфекционную вирусную болезнь жвачных животных. Крупный рогатый скот и козы могут быть легко инфицированы вызывающим болезнь вирусом BTV, при этом у них не наблюдается обширное повреждение сосудов и поэтому у этих видов в большинстве случаев отсутствуют явные клинические признаки болезни. В противоположность этому, болезнь у овец характеризуется катаральным воспалением слизистых оболочек рта, носа и переднего отдела желудка, и воспалением эпителия венчика копыт и основы кожи копыт. Наблюдается экскориация (отделение) эпителия и, в конечном счете, некроз слизистой оболочки щек; распухший и воспаленный язык и рот может принимать синюю окраску, из-за которой болезнь получила свое название (Spreull 1905). Процент смертности у овец оценивается на уровне 1-30%.

BTV является прототипным вирусом рода Orbivirus (семейство Reoviridae) и состоит, по меньшей мере, из 24 различных серотипов (Wilson and Mecham 2000). Установлено, что разные штаммы BTV распространены по всему миру на всем протяжении тропических зон и зон умеренного климата. BTV инфекция встречается до 45°N в Европе, до 50°N в Азии и Северной Америке и до 35° в Южной. BTV не является заразным при контакте между жвачными животными, и поэтому распространение BTV зависит от присутствия членистоногого переносчика вида Culicoides sp. (кровососущая мошкара), в зависимости от разных видов переносчиков, встречающихся в разных регионах мира. Недавно полученные данные показывают, что генетический дрейф (случайное распространение генетических мутаций в популяции) и эффект основателя способствуют диверсификации отдельных сегментов гена полевых штаммов BTV (Bonneau, Mullens et al. 2001). Показано, что BTV-серопозитивные животные являются устойчивыми к повторному заражению гомологичным BTV-серотипом.

BTV-инфекция жвачных животных является временной, тогда как заражение насекомого переносчика Culicoides является постоянным. Продолжительность вирусемии зависит от вида животных и штамма BTV. Сообщалось, что вирусемия может быть очень кратковременной у овец и может продолжаться вплоть до 41 дней у животных, инфицированных BTV, до 42 дней у коз и до 100 дней у крупного рогатого скота. Поскольку BTV-инфекция крупного рогатого скота часто приводит к продолжительной, но не постоянной вирусемии, крупный рогатый скот служит резервуаром, из которого вирус может быть передан носителю Culicoides, а затем другим жвачным животным (Anderson, Stott et al. 1985; MacLachlan 1994; MacLachlan and Pearson 2004). Экология многих видов переносчиков Culicoides плохо изучена, места их размножения в большей степени неохарактеризованы, и скорость их распространения неизвестна. Culicoides sonorensis является основным переносчиком BTV в Северной Америке. Самки насекомых Culicoides становятся устойчиво инфицированными BTV и могут передавать вирус после инкубационного периода, составляющего до 14 дней (Mullens, Tabachnick et al. 1995). Перезимовавший в умеренном поясе BTV может распространяться вертикально посредством инфицированных насекомых переносчиков, хотя последние данные показывают, что наблюдается пониженная экспрессия генов внешнего капсида в условиях постоянной BTV инфекции в личиночной стадии насекомых переносчиков (White, Wilson et al. 2005).

Вирионы BTV имеют диаметр ~69 нм и покрыты двойной оболочкой (капсид), которая иногда окружена липопротеиновой "псевдооболочкой", происходящей из клеточных мембран инфицированных клеток. Геном BTV включает 10 различных сегментов двухцепочечной РНК, которые совместно кодируют семь структурных (с VP1 по VP7) и четыре неструктурных (NS1, NS2, NS3 и NS3a) белка (Roy 1996); 9 из геномных сегментов являются моноцистронными, в то время как сегмент 10 кодирует и NS3 и NS3A, используя второй кодон инициации внутри рамки. Геномная РНК инкапсулируется в икосаэдрическую частицу вириона двуслойным белковым капсидом (Verwoerd, Els et al. 1972). Икосаэдрическая сердцевина (кор) состоит из двух основных (VP3 и VP7) и трех минорных белков (VP1, VP4, VP6) и окружена внешним капсидом, состоящим из VP2 и VP5, которые соответственно кодируются геномными сегментами 2 и 5 (Roy 1996). VP2 несет ответственность за связывание и вход BTV в клетки, нейтрализацию, серотип-специфичность и гемагглютинацию. Мультимерные формы VP2 (димеры и тримеры) «украшают» значительную часть поверхности VP5, размещаясь на внешней поверхности вирусных частиц (Hassan and Roy 1999). VP2 разнятся больше всего между 24 серотипами BTV, а уровни анти-VP2 антитела коррелируют с нейтрализацией вируса in vitro и in vivo (Huismans and Erasmus 1981). VP5 также заметно варьирует между различными серотипами и штаммами BTV (de Mattos, de Mattos et al. 1994; DeMaula, Bonneau et al. 2000), и хотя до настоящего времени не установлены VP5-специфические нейтрализующие MAb, результаты подтверждают, что этот белок играет роль в нейтрализации и установлении серотипа посредством его конформационного влияния на VP2 (Huismans and Erasmus 1981; Roy, Urakawa et al. 1990; DeMaula et al., 2000). Очищенный VP2, иммуноадсорбированный с BTV-антикоровой сывороткой для удаления следовых количеств VP7, был введен овце. Первоначальная доза 50 микрограмм VP2 была достаточной, чтобы индуцировать VP2-приципитирующие антитела, а также нейтрализующие антитела и антитела, ингибирующие гемагглютинацию. Эти овцы были полностью защищены от заражения вирулентным штаммом того же самого серотипа BTV. Более низкие дозы VP2 по-прежнему обеспечивали значительный уровень защиты, несмотря на то, что нейтрализующие антитела не были обнаружены до заражения (Huismans, van der Walt et al. 1987). Недавние исследования показали, что VP2 и NS1 экспрессируют эпитопы, распознаваемые цитотоксическими Т-лимфоцитами (CTL) (Andrew, Whiteley et al. 1995), кроме того, маловероятно, что VP7 и VP5 имеют CTL эпитопы. До настоящего времени VP3, VP4, VP6, NS2 и NS3 не стимулировали CTL ответ у овцы (Lobato, Coupar et al. 1997). В таблице 1 (из работы Wilson and Mecham 2000) ниже суммированы гены BTV и функции их белков.

Конкретные BTV антигенные полипептиды, представляющие интерес, включают VP2 и VP5. Икосаэдрическая сердцевина состоит из двух основных (VP3 и VP7) и трех минорных белков (VP1, VP4, VP6) и окружена внешним капсидом, состоящим из VP2 и VP5, которые соответственно кодируются геномными сегментами 2 и 5 (Roy 1996). VP2 является ответственным за связывание и вход BTV в клетки, нейтрализацию, серотип-специфичность и гемагглютинацию. Мультимерные формы VP2 (димеры и тримеры) «украшают» значительную часть поверхности VP5, размещаясь на внешней поверхности вирусных частиц (Hassan and Roy 1999). VP2 разнятся больше всего между 24 серотипами BTV, а уровни анти-VP2 антитела коррелируют с нейтрализацией вируса in vitro и in vivo (Huismans and Erasmus 1981). VP5 также заметно варьирует между различными серотипами и штаммами BTV (de Mattos, de Mattos et al. 1994; DeMaula, Bonneau et al. 2000), и хотя до настоящего времени не установлены VP5-специфические нейтрализующие МАЬ, результаты подтверждают, что этот белок играет роль в нейтрализации и установлении серотипа посредством его конформационного влияния на VP2 (Huismans and Erasmus 1981; Roy, Urakawa et al. 1990; DeMaula et al., 2000). Очищенный VP2, иммуноадсорбированный с BTV-анти-коровой сывороткой для удаления следовых количеств VP7, был введен овце. Первоначальная доза 50 микрограмм VP2 была достаточной, чтобы индуцировать VP2-приципитирующие антитела, а также нейтрализующие антитела и антитела, ингибирующие гемагглютинацию. Эти овцы были полностью защищены от заражения вирулентным штаммом того же самого серотипа BTV. Более низкие дозы VP2 еще обеспечивали значительный уровень защиты, несмотря на то, что нейтрализующие антитела не были обнаружены до заражения (Huismans, van der Walt et al. 1987). Недавние исследования показали, что VP2 и NS1 экспрессируют эпитопы, распознаваемые цитотоксическими Т-лимфоцитами (CTL) (Andrew, Whiteley et al. 1995), и кроме того маловероятно, что VP7 и VP5 имеют CTL эпитопы. До настоящего времени VP3, VP4, VP6, NS2 и NS3 не стимулировали CTL ответ у овцы (Lobato, Coupar et al. 1997), смотри таблицу 1.

Африканская чума лошадей (AHS) представляет собой опасное, часто смертельное, переносимое членистоногими вирусное заболевание лошадей и мулов (African Horse Sickness, The Merck Veterinary Manual). Уровень смертности может составлять вплоть до 95% при некоторых формах этой болезни. Бессимптомные и легкие инфекции могут наблюдаться у лошадей, а также у зебр и ослов, в частности, у лошадей, которые ранее были инфицированы другим серотипом данного вируса. Инфицированные животные или переносчики могут переносить вирус в регионы, свободные от AHS. Некоторые авторы предполагают, что изменение климата может увеличивать риск распространения переносимых членистоногими болезней, таких как африканская чума лошадей, как последнее время происходило с родственным вирусом «синего языка» (Wilson A et al., Parasitol. Res. 2008; 103: 69-77). Culicoides imicola, основной переносчик этой болезни, проник в Северную Африку и Южную Европу. Потенциальные членистоногие переносчики также существуют практически во всех регионах мира, включая большую часть Соединенных Штатов Америки и остальную часть Северной и Южной Америки.

Африканская чума лошадей возникает в результате заражения вирусом африканской чумы лошадей, членом рода Orbivirus семейства Reoviridae. К настоящему времени известно 9 серотипов вируса африканской чумы лошадей. 9 серотип вируса африканской чумы лошадей имеет широкое распространение в эндемических зонах, тогда как серотипы с 1 по 8 обнаруживаются преимущественно в ограниченных географических областях. Серотип 9 несет ответственность за большинство вспышек африканской чумы лошадей вне Африки. Серотип 4 вызвал одну вспышку эпидемии в Испании и Португалии между 1987 и 1990 (Lubroth J., Equine Pract. 1988; 10: 26-33).

Первоначальное исследование вируса африканской чумы лошадей привело к созданию ослабленной модифицированной живой противовирусной вакцины, приготовленной с использованием клеток мозга мыши, против вируса африканской чумы лошадей в 1930-х годах. Эти вакцины были очищены и привели к созданию ослабленной модифицированной живой вакцины (MLV) с использованием культуры ткани в 1960-х годах.

Несмотря на эффективность этой вакцины, она имеет некоторые свойственные для нее ограничения, включающие реакции на вакцину (в том числе гибель) у отдельных животных, разный иммунный ответ у отдельных животных, трудности иммунизации молодых животных с пассивным материнским иммунитетом, возможность возврата к вирулентности вакцинного вируса и восстановление вакцинных штаммов после вакцинации с возможным возвратом к вирулентности (du Plessis M. et al. 1998, Onderstepoort Journal of Veterinary Research 65: 321-329). Существуют также социально-экономические последствия, связанные с использованием MLV вакцины. Южная Африка имеет соглашение, позволяющее экспортировать лошадей в Европейский союз и ряд других стран. Это соглашение также делает возможным ввоз лошадей из других стран в Южную Африку для участия в различных соревнованиях или «подроста» на ферме в течение кратковременного периода. Данный протокол основывается на убеждении, что лошадей надлежащим образом вакцинируют против вируса африканской чумы лошадей. Ветеринарные учреждения осознают возможные угрозы, связанные с использованием MLV вакцины. Большинство этих проблем, вероятно, разрешится при создании альтернативных вакцин против вируса африканской чумы лошадей.

Геном вируса африканской чумы лошадей состоит из десяти двухцепочечных РНК сегментов (Oellermann, R. А. et а1., 1970; Bremer, С.W. et al., 1976), которые кодируют, по меньшей мере, десять вирусных белков. Сегменты генома пронумерованы 1-10 в порядке их перемещения в PAGE. Семь из вирусных белков являются структурными и образуют вирусную частицу в двуслойной оболочке. Наружный капсид состоит из двух основных вирусных белков, VP2 и VP5, которые определяют антигенную изменчивость вирусов африканской чумы лошадей, тогда как внутренний капсид состоит из двух основных (VP3 и VP7) и трех минорных (VP1, VP4 и VP6) вирусных белков (Lewis SA and Grubman MJ, 1991; Martinez-Torrecuadrada JL et al., 1994); Bremer, CW, et al. 1990; Grubman, M. J. & Lewis, S. A., 1992). VP3 и VP7 являются высоко консервативными среди девяти серотипов (Oellermann et al., 1970; Bremer et al., 1990). Установлено, по меньшей мере, три неструктурных белка NS1, NS2 и NS3 (Huismans, Н. & Els, Н. J., 1979; van Staden, V. & Huismans, Н., 1991; Mizukoshi, N. et al., 1992).

Рекомбинантные канарипокс вирусы, полученные из ослабленных вирусов, были созданы в качестве векторов для экспрессии гетерологичных вирусных генов. Ряд из этих канарипокс-конструктов был лицензирован в качестве вакцин во многих странах, включая Южную Африку, Европейский союз и Соединенные Штаты Америки, для применения на лошадях (Minke JM, et al., 2004a and b; Minke JM, et al., 2007; Siger L, et al.2006) и других видах (Poulet Н, et al., 2003).

Тот факт, что эти вакцины содержат гены только представляющего интерес организма, делает их изначально более безопасными (Minke JM, et al., 2004b). Кроме того, появление обнаружимого нейтрализующего антитела происходит быстро даже после одной дозы вакцины (Minke JM et al., 2004b). Присущая безопасность таких вакцин и характер развития нейтрализующего антитела делают такие вакцины особенно привлекательными для использования при эпизоотиях (Minke JM et al., 2004а).

Предшествующие исследования показали, что у лошадей вырабатываются нейтрализующие антитела к AHS, когда им был инокулирован экзогенно экспрессированный VP2 и подходящий адъювант (Scanlen M, et al., 2002). Исследования на овцах показали, что ответ нейтрализующих антител на вирус «синего языка» усиливается при инокулировании овцы вирусоподобными частицами, в которых VP2 и VP5 являются ко-экспрессированными (Pearson LD, Roy P, 1993). Недавно было показано, что рекомбинантная канарипокс-вирусная вакцина, ко-экспрессирующая гены, кодирующие белки VP2 и VP5 наружного капсида вируса «синего языка», индуцирует высокие уровни защиты у овец (Boone JD, et al., 2007).

Не было показано, что у лошадей вырабатываются нейтрализующие антитела к вирусу африканской чумы лошадей при инокулировании вектором, содержащим и ко-экспрессирующим AHSV VP2 и VP5. Таким образом, следует иметь в виду, что настоящее изобретение восполняет потребность в данной области путем предоставления рекомбинантного поксвируса, включая композиции и продукты с его применением, в частности, рекомбинанты на основе ALVAC, и композиции и продукты с их использованием, в частности, подобные рекомбинанты, экспрессирующие AHSV VPs 2 и 5 или любые их комбинации и композиции и продукты из них.

Исследования, имеющие отношение к генетической модификации BTV или AHSV, описаны Piet A van Rijn et al. (Virology Journal, 2010, 7: 261), Polly Roy et al. (Journal of Viology, 2011, 85, 19; 10213-10221), Polly Roy et al. (Journal of Viology, 2008, p8339-8348), Massimo Palmarini et al. (PloS pathogens, 2011, 7(12): e1002477), и в WO 2009/068870.

Таким образом, было бы целесообразно предоставить улучшенные иммуногенные и вакцинные композиции против BTV и AHSV, и способы изготовления и использования таких композиций, включая подобные композиции, которые предназначаются для различных диагностических методов, анализов и наборов.

С учетом чувствительности животных, включая людей, к BTV или AHSV, способ предотвращения BTV или AHSV инфекции и защиты животных имеет существенное значение. Соответственно, существует потребность в эффективной вакцине против BTV или AHSV.

Подробное описание изобретения

Предоставляются композиции, содержащие один или более рекомбинантных реассортантных BTV или AHSV векторов, включающих один или более гетерологичных полинуклеотидов, кодирующих, по меньшей мере, один антиген BTV или AHSV.

Способы изобретения включают методы изготовления рекомбинантных реассортантных BTV или AHSV композиций или векторов. Способы также включают способы использования, включающие введение животному эффективного количества композиций или векторов с целью получения защитного иммунного ответа.

Краткое описание чертежей

Следующее подробное описание, предоставленное в виде примера, но не предназначающееся для ограничения изобретения только описанными конкретными вариантами осуществления, может быть лучше понято в сочетании с прилагаемыми чертежами.

Фигура 1 (А-В) показывает схематическое изображение реассортантных BTV-1 и BTV-8 и схему-алгоритм создания рекомбинантных реассортантных BTV векторов. На фигуре 1А отображена каждая комбинация монореассортанта. Кроме того, кор BTV-1 или 8 были спасены с помощью белков внешнего капсида VP-2 или VP-5 гетерологичного вируса. На фигруре 1В представлено общее представление о процессе спасения. РНК синтезируют из линеаризованной плазмиды и трансфицируют в BSR клетки. Спаснные вирусы отобрали и амплифицировали в клеточной культуре для подтверждения генотипа с помощью RT-PCT и секвенироания.

Фигура 2 показывает средние диаметры бляшек BTV реассортантов.

Фигура 3 показывает анализ кривых роста реассортантных вирусов. Большинство реассортантов растет аналогично исходным вирусам дикого типа.

Фигура 4 (А-В) показывает результаты нейтрализации BTV. VP2 оказался ответственным за нейтрализацию вируса. На 4А показано, что BTV-1, BTV-18VP5 и BTV-81VP2 и BTV-81VP2,VP5 все были нейтрализованы BTV-1 антисывороткой, но не BTV-8 антисывороткой, тогда как BTV-8, BTV-81VP5, BTV-18VP2 и BTV-18VP2,VP5 все были нейтрализованы BTV-8 антисывороткой, но не BTV-1 антисывороткой. На фигуре 4В представлен обобщенный рисунок: BTV нейтрализация коррелирует с VP2, вне зависимости от VP5 (для BTV-1: BTV-8 реассортантов)

Фигура 5 показывает получение BTV реассортантов. BTV реассортанты были «спасены» с помощью 9 сегментов BTV-1 дикого типа и включения VP2 любого из BTV-8 (В), из BTV-2 (С) или из BTV-9 (Е).

Фигура 6 показывает схематическое изображение получения BTV реассортантов с использованием реверсивной генетики.

Фигура 7 показывает таблицу, содержащую SEQ ID NO и последовательности ДНК и белков.

Фигура 8 показывает динамику изменения средних значений ректальной температуры после заражения.

Фигура 9 показывает разброс максимальной гипертермии.

Фигура 10 показывает динамику изменения среднего значения ежедневного клинического счета.

Фигура 11 показывает дисперсию (разброс) общего клинического показателя.

Фигура 12 показывает дисперсию средних титров виремии.

Фигура 13 показывает разброс AUC.

Фигура 14 показывает изменение среднего значения BTV-8 титров нейтрализующих антител.

Фигура 15 показывает морфологию бляшек sBTV, содержащих VP2 и VP5 белок каждого серотипа.

Фигура 16 показывает титры вирусов sBTV в ВНК-21.

Фигура 17 показывает титр инфекции, ELISA, Dot Blot Vp2 для BTV1+BTV8 VP2 (RAS10).

Фигура 18 показывает титр инфекции, ELISA, Dot Blot Vp2 for BTV1+BTV8 VP2/VP5 (RAS32).

Подробное описание

Предоставляются композиции, содержащие один или более рекомбинантных BTV или AHSV векторов, содержащих один или более гетерологичных полинуклеотидов, кодирующих, по меньшей мере, один антиген из BTV или AHSV, который вызывает иммуногенный ответ у животного. В одном варианте осуществления полипептидный антиген представляет собой BTV VP2 или VP5 полипептид или его активный фрагмент или вариант.

Понятно, что антигенные полипептиды изобретения могут быть полноразмерными полипептидами или их активными фрагментами или вариантами. Под "активными фрагментами" или "активными вариантами" подразумевается, что фрагменты или варианты сохраняют антигенную природу полипептида. Таким образом, настоящее изобретение рассматривает любой BTV или AHSV полипептид, антиген, эпитоп или иммуноген, вызывающий иммуногенный ответ у животного. BTV или AHSV полипептид, антиген, эпитоп или иммуноген может быть любым BTV или AHSV полипептидом, антигеном, эпитопом или иммуногеном, таким как, но без ограничения, белок, пептид или его фрагмент или вариант, который вызывает или стимулирует ответ у животного, такого как овца, корова, коза или лошадь.

Настоящее изобретение имеет отношение к овечьим, коровьим, козьим или лошадиным вакцинам или композициям, которые могут содержать эффективное количество рекомбинантного BTV или AHSV вектора и приемлемого фармацевтически или с точки зрения ветеринарии носителя, эксципиента, адъюванта (вспомогательного средства) или разбавителя (среды).

В некоторых вариантах осуществления вакцины дополнительно содержат адъюванты, такие как масло-в-воде (O/W), описанные в патенте США 7,371,395.

В других вариантах осуществления адъюванты включают EMULSIGEN, гидроксид алюминия и сапонин, и CpG, или их комбинации.

В некоторых вариантах осуществления ответ у животного является защитным иммунным ответом.

Под термином "животное" подразумевается млекопитающее, птица и тому подобное. Животное или хозяин включает млекопитающих и человека. Животное может быть выбрано из группы, состоящей из лошадиных (например, лошадь), псовых (например, собаки, волки, лисы, койоты, шакалы), кошачьих (например, львы, тигры, домашние кошки, дикие кошки, другие большие кошки и другие кошачьи, включая гепардов и рысей), овечьих (например, овцы), бычьих (например, крупный рогатый скот), свиньих (например, свинья), козлиных (например, коза), птичьих (например, курица, утка, гусь, индейка, перепелка, фазан, попугай, вьюрок, сокол, ворон, страус, эму и казуар), приматов (например, полуобезьяна, долгопят, гиббон, мартышка, человекообразная обезьяна) и рыбы. Термин "животное" также включает отдельное животное на всех стадиях развития, включая стадии эмбриона и плода.

Если не указано иное, все технические и научные термины, использованные в описании, имеют то же самое значение, которое обычно понятно среднему специалисту в той области техники, к которой относится это описание. Термины в единственном числе включают термины во множественном числе, если контекст явно не указывает иное. Аналогично, слово "или" включает "и", если контекст явно не указывает иначе.

Следует отметить, что в этом описании и в частности в формуле изобретения и/или параграфах, такие термины как "содержит", "содержащий" и тому подобные могут иметь значение, приписываемое им в законе о патенте США; например, они могут означать "включает", "включая", "включающий" и тому подобное; и что термины, такие как "состоящий в основном из" и "состоит в основном из" имеют значение, приписываемое им в законе о патенте США, например, термины допускают, что элементы непосредственно не упоминаются, но исключают элементы, обнаруженные в предшествующем уровне техники, или которые затрагивают основную или новую характеристику изобретения.

Термины "рекомбинантный BTV или AHSV вектор(ы)", "рекомбинантный реассортантный BTV или AHSV вектор(ы)", "реассортантный BTV или AHSV", "BTV или AHSV реассортанты" используются в описании взаимозаменяемым образом, чтобы относиться к любой модификации, изменению или инженерии BTV или AHSV вируса. Модификация, изменение или инженерия BTV или AHSV вируса может включать, но не ограничивается этим, делецию одного или более нуклеотидов или аминокислот, делецию полного гена, оптимизацию кодонов гена, консервативную замену нуклеиновых кислот, вставку одного или более гетерологичных полинуклеотидов, смешивание генов, транскриптов, РНК сегментов, ДНК сегментов различных серотипов или видов в новые комбинации.

Антигенные полипептиды изобретения способны защищать от BTV и AHSV. То есть, они способны стимулировать иммунный ответ у животного. Термин "антиген" или "иммуноген" означает субстанцию, которая вызывает специфический иммунный ответ у животного-хозяина. Антиген может включать весь организм, убитый, ослабленный или живой; субъединицу или часть организма; рекомбинантный вектор, содержащий вставку с иммуногенными свойствами; участок или фрагмент ДНК, способный вызвать иммунный ответ после презентирования животному-хозяину; полипептид, эпитоп, гаптен или любую их комбинацию. Альтернативно, иммуноген или антиген могут содержать токсин или антитоксин.

Использованный в описании термин "иммуногенный белок, полипептид или пептид" включает полипептиды, которые являются иммунологически активными в том смысле, что при введении хозяину, они способны вызвать иммунный ответ гуморального и/или клеточного типа, направленный против белка. Предпочтительно этот белковый фрагмент является таким, что он обладает фактически такой же иммунологической активностью, как полный белок. Таким образом, белковый фрагмент согласно изобретению содержит или в основном состоит или состоит, по меньшей мере, из одного эпитопа или антигенной детерминанты. "Иммуногенный" белок или полипептид, при использовании в описании, включает полноразмерную последовательность белка, его аналогов или иммуногенных фрагментов. Термин "иммуногенный фрагмент" означает фрагмент белка, который включает один или более эпитопов и таким образом вызывает иммунологический ответ, описанный выше. Такие фрагменты могут быть установлены с помощью любого из ряда методов картирования эпитопов, хорошо известных в данной области техники. Смотри, например, Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66 (Glenn E. Morris, Ed., 1996). Например, линейные эпитопы могут быть определены, например, с помощью одновременного синтеза большого количества пептидов на твердых подложках, пептидов, соответствующих частям белковой молекулы, и реагирования пептидов с антителами, в то время как пептиды по-прежнему прикреплены к подложкам. Такие методы известны в данной области техники и описаны, например, в патенте США №4,708,871; Geysen et al., 1984; Geysen et al., 1986. Аналогично, коформационные эпитопы легко идентифицировать путем установления пространственной конформации аминокислот, например, с помощью рентгеновской кристаллографии и 2-мерного ядерного магнитного резонанса. Смотри, например, Epitope Mapping Protocols, выше.

Как уже обсуждалось, изобретение включает активные фрагменты и варианты антигенного полипептида. Таким образом, термин "иммуногенный белок, полипептид или пептид" дополнительно рассматривает делеции, вставки и замены в последовательности, поскольку полипептид функционирует с целью вызвать иммунологический ответ, как определено в описании. Термин "консервативное изменение" означает замену аминокислотного остатка другим биологически подобным остатком или замену нуклеотида в последовательности нуклеиновой кислоты, так что кодированный аминокислотный остаток не изменяется или является другим биологически подобным остатком. В этом отношении, особенно предпочтительные замены будут в большинстве случаев консервативными по характеру, т.е., такими заменами, которые происходят в пределах семейства аминокислот. Например, аминокислоты делятся на четыре семейства: (1) кислые - аспартат и глутамат; (2) основные - лизин, аргинин, гистидин; (3) неполярные - аланин, валин, лейцин, изолейцин, пролин, фенилаланин, метионин, триптофан; и (4) незаряженные полярные - глицин, аспарагин, глутамин, цистеин, серин, треонин, тирозин. Фенилаланин, триптофан и тирозин иногда классифицируют как ароматические аминокислоты. Примеры консервативных изменений включают замену одного гидрофобного остатка, такого как изолейцин, валин, лейцин или метионин другим гидрофобным остатком, или замену одного полярного остатка другим полярным остатком, например, замена аргинина на лизин, глутаминовой кислоты на аспарагиновую кислоту, или глутамина на аспарагин и тому подобное; или подобную консервативную замену аминокислоты структурно родственной аминокислотой, которая не будет оказывать большого влияния на биологическую активность. Белки, в основном имеющие одинаковую аминокислотную последовательность с исходной молекулой, но имеющие несущественные аминокислотные замены, которые незначительно влияют на иммуногенность белка, следовательно, относятся к определению исходного полипептида. Все полипептиды, полученные с помощью этих модификаций, включаются в данное описание. Термин "консервативное изменение" также включает использование замещенной аминокислоты вместо незамещенной исходной аминокислоты, при условии, что антитела, возникшие к замещенному полипептиду, также вступают в иммунную реакцию с незамещенным полипептидом.

Термин "эпитоп" относится к участку на антигене или гаптене, на который реагируют специфические В-клетки и/или Т-клетки. Термин используется также взаимозаменяемым образом с "антигенной детерминантой" или "сайтом антигенной детерминанты". Антитела, распознающие один и тот же эпитоп, могут быть установлены с помощью обычного иммуноанализа, показывающего способность одного антитела блокировать связывание другого антитела с антигеном-мишенью.

"Иммунологический ответ" на композицию или вакцину - это развитие у хозяина клеточного и/или опосредованного антителами иммунного ответа на интересующую композицию или вакцину. Как правило, "иммунологический ответ" включает, но не ограничивается этим, один или более из следующих эффектов: выработку антител, В-клеток, хелперных Т-клеток и/или цитотоксических Т-клеток, направленных специфически на антиген или антигены, включенные в интересующую композицию или вакцину. Предпочтительно, хозяин будет проявлять или терапевтический или защитный иммунологический ответ, так что устойчивость к новой инфекции будет увеличиваться и/или будет уменьшаться клиническая тяжесть болезни. Такая защита будет проявляться в виде уменьшения или отсутствия симптомов, которые обычно проявляются у инфицированного хозяина, более быстрого времени восстановления и/или более низкой концентрации (титра) вируса у инфицированного хозяина.

Синтетические антигены также включаются в определение, например, полиэпитопы, фланкирующие эпитопы и другие рекомбинантные или полученные синтетическим методом антигены. Смотри, например, Bergmann et al., 1993; Bergmann et al., 1996; Suhrbier, 1997; Gardner et al., 1998. Иммуногенные фрагменты для целей настоящего изобретения будут включать, по меньшей мере, около 3 аминокислот, по меньшей мере, около 5 аминокислот, по меньшей мере, около 10-15 аминокислот, или около 15-25 аминокислот или более аминокислот молекулы. Не существует критической верхней границы для длины фрагмента, который может содержать почти всю длину белковой последовательности, или даже гибридный белок, содержащий, по меньшей мере, один эпитоп белка.

Соответственно, минимальная структура полинуклеотида, экспрессирующего эпитоп, заключается в том, что он содержит или состоит в основном из нуклеотидов, кодирующих эпитоп или антигенную детерминанту BTV или AHSV полипептида. Полинуклеотид, кодирующий фрагмент BTV или AHSV полипептида, может содержать или состоит в основном или состоит минимум из 15 нуклеотидов, примерно 30-45 нуклеотидов, примерно 45-75 или, по меньшей мере, 57, 87 или 150 последовательных или смежных нуклеотидов последовательности, кодирующей полипептид. При применении изобретения на практике могут использоваться такие методы определения эпитопов, как создание перекрывающихся библиотек пептидов (Hemmer et al., 1998), Pepscan (Geysen et al., 1984; Geysen et al., 1985; Van der Zee R. et al., 1989; Geysen, 1990; Multipin. RTM. Peptide Synthesis Kits de Chiron) и алгоритмы (De Groot et al., 1999; PCT/US 2004/022605). Термин "нуклеиновая кислота" и "полинуклеотид" относится к РНК или ДНК, которая является линейной или разветвленной, одно или двухцепочечной, или их гибридам. Данный термин также включает гибриды РНК/ДНК. Неограничивающими примерами полинуклеотидов являются ген или фрагмент гена, экзоны, интроны, мРНК, тРНК, рРНК, рибозимы, кДНК, рекомбинантные полинуклеотиды, разветвленные полинуклеотиды, плазмиды, векторы, изолированные ДНК любой последовательности, изолированные РНК любой последовательности, зонды нуклеиновых кислот и праймеры. Полинуклеотид может содержать модифицированные нуклеотиды, такие как метилированные нуклеотиды и нуклеотидные аналоги, урацил, другие сахара и связывающие группы, такие как фторрибоза и тиолат, и цепи нуклеотидов. Последовательность нуклеотидов может быть дополнительно модифицирована после полимеризации, например, путем соединения с компонентом-меткой. Другими типами модификаций, включенных в это определение, являются кэпы (caps), замена одного или более природных нуклеотидов аналогом и введение средств для присоединения полинуклеотида к белкам, ионов металлов, метящих компонентов, других полинуклеотидов или твердой подложки. Полинуклеотиды можно получить с помощью химического синтеза или из микроорганизма.

Термин "ген" используется широко, чтобы относиться к любому сегменту полинуклеотида, связанного с биологической функцией. Таким образом, гены включают интроны и экзоны, как например геномная последовательность, или только кодирующие последовательности как, например кДНК и/или регуляторные последовательности, необходимые для их экспрессии. Например, ген также имеет отношение к фрагменту нуклеиновой кислоты, который экспрессирует мРНК или функциональную РНК или кодирует специфический белок и который включает регуляторные последовательности.

Термины "белок", "пептид", "полипептид" и "фрагмент полипептида" используются в описании взаимозаменяемым образом, чтобы относиться к полимерам из остатков аминокислот любой длины. Полимер может быть линейным или разветвленным, он может содержать модифицированные аминокислоты или аналоги аминокислот, и он может прерываться химическими фрагментами (молекулами), отличными от аминокислот. Данные термины также включают аминокислотный полимер, модифицированный естественным путем или путем вмешательства; например, образование дисульфидной связи, гликозилирование, липидизация, ацетилирование, фосфорилирование, или любой другой манипуляцией или модификацией, например, конъюгацией с меткой или биоактивным компонентом.

"Изолированный" биологический компонент (такой как нуклеиновая кислота или белок или органелла) относится к компоненту, который в основном отделен или очищен от других биологических компонентов в клетке организма, в котором этот компонент существует от природы, например, другая хромосомная и экстра-хромосомная ДНК и РНК, белки и органеллы. «Изолированные» нуклеиновые кислоты и белки включают такие, которые очищены с помощью стандартных методов очистки. Термин также включает нуклеиновые кислоты и белки, полученные с помощью рекомбинантных технологий, а также с помощью химического синтеза.

Использованный в описании термин "очищенный" не требует абсолютной чистоты; скорее предполагается, что это относительный термин. Таким образом, например, препарат очищенного полипептида - это препарат, который обогащен полипептидом, по сравнению с содержанием полипептида в его естественной среде. Говоря другими словами, полипептид является отделенным от клеточных компонентов. Под выражением "практически (в основном) очищенный" имеется в виду, что полипептид представляет несколько вариантов осуществления, в которых, по меньшей мере, 60%, по меньшей мере, 70%, по меньшей мере, 80%, по меньшей мере, 90%, по меньшей мере, 95%, или, по меньшей мере, 98%, или более клеточных компонентов или материалов удаляется. Аналогично, полипептид может быть частично очищенным. Под выражением "частично очищенный" имеется в виду, что удаляется менее чем 60%, клеточных компонентов или материалов. То же самое относится к полинуклеотидам. Раскрытые в описании полипептиды могут быть очищены любым известным в данной области техники способом.

Как уже было отмечено, антигенные полипептиды или их фрагменты или варианты представляют собой BTV или AHSV антигенные полипептиды. Фрагменты и варианты раскрытых полинуклеотидов и полипептидов, кодированных ими, также рассматриваются настоящим изобретением. Под "фрагментом" имеется в виду участок полинуклеотида или участок антигенной аминокислотной последовательности, кодированной им. Фрагменты полинуклеотида могут кодировать белковые фрагменты, сохраняющие биологическую активность нативного белка, и, следовательно, обладающие иммуногенной активностью, как уже отмечалось в данном документе. Фрагменты полипептидной последовательности сохраняют способность вызывать защитный иммунный ответ у животного.

Термин "варианты" обозначает по существу аналогичные последовательности. В отношении полинуклеотидов, вариант включает делецию и/или вставку одного или более нуклеотидов в одном или более сайтах в пределах нативного полинуклеотида и/или замену одного или более нуклеотидов в одном или более сайтах в на