Оптическое волокно малого диаметра

Иллюстрации

Показать все

Изобретение относится к оптическим волокнам. Оптическое волокно содержит сердцевину, при этом упомянутая сердцевина имеет внешний радиус r1, оболочку, окружающую упомянутую сердцевину, причем упомянутая оболочка имеет внешний радиус r4; первичное покрытие, окружающее упомянутую оболочку, причем упомянутое первичное покрытие имеет внешний радиус r5, упомянутое первичное покрытие имеет модуль упругости in situ не выше 0,50 МПа; и вторичное покрытие, окружающее упомянутое первичное покрытие, причем упомянутое вторичное покрытие имеет внешний радиус r6. Упомянутое вторичное покрытие имеет модуль упругости in situ 1500 МПа или больше; причем упомянутый внешний радиус r6 равен 110 мкм или меньше, и упомянутое волокно имеет диаметр модового поля 9 мкм или больше при 1310 нм и характеризуется изгибными потерями на длине волны 1550 нм при намотке на оправку, имеющую диаметр 15 мм, ниже чем 0,5 дБ/виток. Технический результат – уменьшение радиуса и диаметра модового поля, который совместим с диаметром модового поля стандартных одномодовых волокон. 24 з.п. ф-лы, 6 ил., 4 табл.

Реферат

[0001] Настоящая заявка испрашивает приоритет в соответствии с § 120 раздела 35 Кодекса законов США по заявке США № 13/862,755, поданной 15 апреля 2013 г., содержание которой в полном объеме принято к сведению и включено в настоящую заявку путем отсылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0002] Настоящее изобретение относится, в общем, к оптическим волокнам. В частности, настоящее изобретение относится к оптическим волокнам с покрытием, имеющим профиль показателя преломления с областью оболочки со сниженным показателем преломления и тонкое низкомодульное первичное покрытие. Конкретно, настоящее изобретение относится к оптическим волокнам малого радиуса с покрытием, которые характеризуются большим диаметром модового поля и низкими изгибными потерями.

УРОВЕНЬ ТЕХНИКИ

[0003] Оптические волокна с покрытием с малыми радиусами перспективны с точки зрения уменьшения размеров кабелей, снижения стоимости кабелей и эффективного использования существующей инфраструктуры кабельных каналов для укладки кабелей. Волокна с уменьшенными радиусами обычно имеют такие же радиуса стекла, как стандартные оптические волокна (125 мкм), но используют более тонкие слои в качестве первичного и/или вторичных покрытий. Однако уменьшенная толщина покрытий негативно сказывается защитной функции покрытий. В результате, в данной области техники выполнен большой объем работ для разработки новых материалов покрытий, которые обеспечивают требуемую защиту при небольших толщинах, и новых композиций или профилей показателей преломления стекла, которые могут допускать более выраженный изгиб, без снижения интенсивности или качества сигнала. Хотя в известном уровне техники предложены конструкции нечувствительных к изгибу оптических волокон с покрытием с уменьшенными диаметрами (смотри, например, опубликованную патентную заявку США № 20100119202), номинальный диаметр модового поля (MFD) упомянутых волокон на длине волны 1310 нм обычно составляет только ~8,6-8,8 мкм. Данные диаметры модового поля приводят к высоким потерям в точках сращивания/соединений при соединении одномодовых волокон (SMF) со стандартными SMF (которые имеют номинальный MFD приблизительно 9,2 мкм).

[0004] Для исключения потерь сигнала при соединении волокон малого диаметра с существующими стандартными одномодовыми волокнами, желательно разработать оптическое волокно, имеющее уменьшенный радиус и диаметр модового поля, который совместим с диаметром модового поля стандартных одномодовых волокон.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0005] Настоящее изобретение предлагает оптические волокна с покрытиями, имеющие радиус не больше 110 мкм или не больше 105 мкм, или не больше 100 мкм, которые обладают большими диаметрами модового поля, не сопровождающимися значительной деградацией сигнала, вызванной изгибами. Волокна уменьшенного радиуса с покрытием могут содержать внутреннюю стеклянную область, имеющую радиус, по меньшей мере, 50 мкм или, по меньшей мере, 55 мкм, или, по меньшей мере, 60 мкм, или, по меньшей мере, 62,5 мкм в совокупности с окружающими первичными и вторичными покрытиями. Репрезентативные волокна могут включать в себя в концентрическом порядке, стеклянную сердцевину, стеклянную оболочку, первичное покрытие и вторичное покрытие. Сердцевина может быть стеклянной областью с более высоким показателем преломления и может быть окруженной оболочкой с меньшим показателем преломления. Оболочка может включать в себя одну или более внутренних областей оболочек и внешнюю область оболочки, при этом, по меньшей мере, одна из внутренних областей оболочек может иметь показатель преломления ниже, чем внешняя область оболочки. Первичное покрытие может быть сформировано из низкомодульного материала, и вторичное покрытие может быть сформировано из материала с более высоким модулем упругости.

[0006] Сердцевина может включать в себя кварцевое стекло или стекло на основе кварца. Стекло на основе кварца может быть кварцевым стеклом, модифицированным щелочным металлом (например, Na, K), щелочноземельным металлом (например, Mg, Ca), элементом группы III (например, B) или элементом группы V (например, P); или легирующей примесью. Показатель преломления в поперечнике сердцевины может быть постоянным или переменным. Показатель преломления сердцевины может быть максимальным в центре или около центра сердцевины и непрерывно снижаться по направлению к внешней границе сердцевины. Профиль показателя преломления сердцевины может иметь или может аппроксимировать гауссов профиль, супергауссов профиль, α-профиль или ступенчатый профиль.

[0007] Оболочка может включать в себя кварцевое стекло или стекло на основе кварца. Стекло на основе кварца может быть кварцевым стеклом, модифицированным щелочным металлом (например, Na, K), щелочноземельным металлом (например, Mg, Ca), элементом группы III (например, B) или элементом группы V (например, P); или легирующей примесью. Оболочка может включать в себя внутреннюю область оболочки и внешнюю область оболочки, при этом внутренняя область оболочки может иметь показатель преломления ниже, чем внешняя область оболочки. Внутренняя область оболочки может иметь постоянный или непрерывно изменяющийся показатель преломления. Внутренняя область оболочки может иметь показатель преломления, который непрерывно снижается от внутренней границы данной области к внешней границе. Непрерывное снижение может быть линейным снижением. Показатель преломления внутренней области оболочки может формировать впадину на профиле показателя преломления волокна с покрытием. Впадина показателя преломления может быть прямоугольной или треугольной. Внешняя область оболочки может иметь постоянный показатель преломления.

[0008] Оболочка может включать в себя первую внутреннюю область оболочки, прилегающую к сердцевине, и вторую внутреннюю область оболочки, расположенную между первой внутренней областью оболочки и внешней областью оболочки. Показатель преломления второй внутренней области оболочки может быть ниже, чем показатель преломления второй внутренней области оболочки. Показатель преломления второй внутренней области оболочки может быть ниже, чем показатель преломления внешней области оболочки. Показатель преломления второй внутренней области оболочки может быть ниже, чем показатели преломления первой внутренней области оболочки и внешней области оболочки.

[0009] Показатель преломления второй внутренней области оболочки может быть постоянным или непрерывно изменяющимся. Вторая внутренняя область оболочки может иметь показатель преломления, который непрерывно снижается от внутренней границы данной области до ее внешней границы. Непрерывное снижение может быть линейным снижением. Показатель преломления второй внутренней области оболочки может формировать впадину на профиле показателя преломления волокна с покрытием. Впадина является областью пониженного показателя преломления и может быть прямоугольной или треугольной. Внешняя область оболочки может иметь постоянный показатель преломления.

[0010] Профили показателя преломления сердцевины и оболочки можно получать посредством управления пространственным распределением легирующих примесей, повышающих показатель преломления, и/или легирующих примесей, снижающих показатель преломления, в кварцевом стекле или стекле на основе кварца.

[0011] Первичное покрытие может быть сформировано из отверждаемой композиции, которая включает в себя олигомер и мономер. Олигомер может быть уретановым акрилатом или уретановым акрилатом с замещениями акрилата. Уретановый акрилат с замещениями акрилата может быть уретановым метакрилатом. Олигомер может включать в себя уретановые группы. Олигомер может быть уретановым акрилатом, который включает в себя одну или более уретановых групп. Олигомер может быть уретановым акрилатом с замещениями акрилата, который включает в себя одну или более уретановых групп. Уретановые группы могут формироваться как продукт химической реакции изоцианатной группы и спиртовой группы.

[0012] Первичное покрытие может иметь модуль упругости in situ не выше 1 МПа или не выше 0,50 МПа, или не выше 0,25 МПа, или не выше 0,20 МПа, или не выше 0,19 МПа, или не выше 0,18 МПа, или не выше 0,17 МПа, или не выше 0,16 МПа, или не выше 0,15 МПа. Температура стеклования первичного покрытия может быть не выше -15°C или не выше -25°C, или не выше -30°C, или не выше -40°C. Температура стеклования первичного покрытия может быть выше чем -60°C, или выше чем -50°C, или выше чем -40°C. Температура стеклования первичного покрытия может быть либо от -60°C до -15°C, либо от -60°C до -30°C, либо от -60°C до -40°C, либо от -50°C до -15°C, либо от -50°C до -30°C, либо от -50°C до -40°C.

[0013] Вторичное покрытие может быть сформировано из отверждаемой вторичной композиции, которая включает в себя один или более мономеров. Один или более мономеров могут включать в себя бисфенол-A диакрилат или замещенный бисфенол-A диакрилат, или алкоксилированный бисфенол-A диакрилат. Алкоксилированный бисфенол-A диакрилат может быть этоксилированным бисфенол-A диакрилатом. Отверждаемая вторичная композиция может дополнительно включать в себя олигомер. Олигомер может быть уретановым акрилатом или уретановым акрилатом с замещениями акрилата. Вторичная композиция может не содержать уретановых групп, уретан-акрилатных соединений, уретановых олигомеров или уретан-акрилатных олигомеров.

[0014] Вторичное покрытие может быть материалом с более высоким модулем упругости и более высокой температурой стеклования, чем первичное покрытие. Модуль упругости in situ вторичного покрытия может быть не ниже 1200 МПа или не ниже 1500 МПа, или не ниже 1800 МПа, или не ниже 2100 МПа, или не ниже 2400 МПа, или не ниже 2700 МПа. Вторичное покрытие может иметь модуль упругости in situ приблизительно от 1500 MПa до 10000 МПа, или от 1500 МПа до 5000 МПа. Температура стеклования in situ вторичного покрытия может быть, по меньшей мере, 50°C или, по меньшей мере, 55°C, или, по меньшей мере, 60°C, или от 55°C до 65°C.

[0015] Радиус волокон с покрытием совпадает с внешним диаметром вторичного покрытия. Радиус волокна с покрытием может быть не больше 110 мкм или не больше 105 мкм, или не больше 100 мкм. Внутри волокна с покрытием, радиус стекла (совпадающий с внешним диаметром оболочки) может быть, по меньшей мере, 50 мкм или, по меньшей мере, 55 мкм, или, по меньшей мере, 60 мкм, или, по меньшей мере, 62,5 мкм. Стекло может находиться в окружении первичного покрытия. Внешний радиус первичного покрытия может быть не больше 85 мкм, или не больше 82,5 мкм, или не больше 80 мкм, или не больше 77,5 мкм, или не больше 75 мкм. Остальная часть диаметра волокна с покрытием обеспечивается вторичным покрытием.

[0016] Волокна с покрытием в соответствии с настоящим изобретением могут быть волокнами малого радиуса, которые характеризуются низкими изгибными потерями, с обеспечением при этом диаметра модового поля, который минимизирует потери, связанные со сращиванием и соединением со стандартными одномодовыми волокнами. Диаметр модового поля может быть не менее 9,0 мкм или не менее 9,1 мкм, или не менее 9,2 мкм на длине волны 1310 нм.

[0017] Волокна с покрытием могут иметь изгибные потери на длине волны 1550 нм ниже чем 0,5 дБ/виток, при намотке на оправку с 15-мм диаметром, или ниже чем 0,5 дБ/виток, при намотке на оправку с 20-мм диаметром, или ниже чем 0,25 дБ/виток, при намотке на оправку с 20-мм диаметром, или ниже чем 0,02 дБ/виток, при намотке на оправку с 30-мм диаметром, или ниже чем 0,012 дБ/виток, при намотке на оправку с 30-мм диаметром.

[0018] Оптические и механические характеристики волокон в соответствии с настоящим изобретением могут быть соответствовать стандарту G.652. Волокна могут иметь пороговую длину волны кабеля не больше 1260 нм. Волокна могут иметь длину волны нулевой дисперсии λ0 в диапазоне 1300 нм≤λ0≤1324 нм.

[0019] Дополнительные признаки и преимущества изложены в последующем подробном описании и частично станут очевидными специалистам в данной области техники из описания или будут определены при практическом исполнении вариантов осуществления, охарактеризованных в описании и формуле изобретения, а также изображенных на прилагаемых чертежах.

[0020] Следует понимать, что как вышеприведенное общее описание, так и последующее подробное описание являются всего лишь примерными и предназначены для обеспечения общего представления или основы для понимания существа и характера формулы изобретения.

[0021] Прилагаемые чертежи включены для обеспечения более полного понимания и составляют неотъемлемую часть настоящего описания. Чертежи поясняют один или более вариантов осуществления и вместе с описанием служат для объяснения принципов и работы различных вариантов осуществления.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0022] Фигура 1 – схематическое изображение в поперечном сечении волокна, имеющего сердцевину, внутреннюю область оболочки, внешнюю область оболочки, первичное покрытие и вторичное покрытие.

[0023] Фигура 2 – схематическое изображение в поперечном сечении волокна, имеющего сердцевину, две внутренних области оболочки, внешнюю область оболочки, первичное покрытие и вторичное покрытие.

[0024] Фигуры 3A и 3B - схематические изображения наглядных профилей показателя преломления.

[0025] Фигура 4 – профиль показателя преломления сердцевины-оболочки, имеющий прямоугольную впадину.

[0026] Фигура 5 – профиль показателя преломления сердцевины-оболочки, имеющий треугольную впадину.

[0027] Фигура 6 – профиль показателя преломления сердцевины-оболочки, имеющий треугольную впадину.

ПОДРОБНОЕ ОПИСАНИЕ

[0028] Настоящее изобретение относится к оптическим волокнам с покрытием, которые могут сочетать малый диаметр, большой диаметр модового поля и низкие потери на микроизгибах. Ниже приведено краткое пояснение выбранной терминологии, используемой в настоящей заявке:

[0029] «Профиль показателя преломления» означает зависимость между показателем преломления или относительным показателем преломления и радиусом волокна.

[0030] «Относительный показатель преломления в процентах» определяется в виде:

,

где n(r) означает показатель преломления волокна на радиальном расстоянии r от осевой линии волокна, если не указано иначе, и ns означает показатель преломления чистого кварцевого стекла на длине волны 1550 нм. В контексте настоящего описания, относительный показатель преломления представляется в виде Δ (или «дельта»), Δ% (или «дельта %»), или %, из которых все используются равнозначно в настоящей заявке, и его значения даются в единицах процентов или %, если не указано иначе. Относительный показатель преломления может также выражаться в виде Δ(r) или Δ(r)%.

[0031] «Хроматическая дисперсия», которая может также называться «дисперсией», оптического волокна является суммой дисперсии материала, волноводной дисперсии и межмодовой дисперсии на длине волны λ. В случае одномодовых оптических волокон, межмодовая дисперсия равна нулю. Значения дисперсии в двухмодовом режиме предполагают, что межмодовая дисперсия равна нулю. Длина волны нулевой дисперсии (λ0) является длиной волны, на которой дисперсия имеет нулевое значение. Наклон дисперсии является скоростью изменения дисперсии относительно длины волны.

[0032] Термин «α-профиль» относится к профилю относительного показателя преломления Δ(r), который имеет следующую функциональную форму:

где r0 является точкой, в которой Δ(r) имеет максимум, r1 является точкой, в которой Δ(r) равно нулю, и r находится в диапазоне ri≤r≤rf, где ri является начальной точкой α-профиля, rf является конечной точкой α-профиля, и α является вещественным числом.

[0033] Диаметр модового поля (MFD) измеряется с использованием способа Петермана II (Petermann II) и определяется из выражения:

MFD=2w,

где f(r) означает поперечное распределение электрического поля канализируемого оптического излучения, и r означает радиальное положение в волокне.

[0034] Устойчивость к изгибам оптического волокна можно измерять посредством наведенного затухания в заданных условиях испытания. Для оценки изгибных потерь применяют различные испытания, включая испытание на микроизгиб с поперечной нагрузкой, испытание на штырьковой матрице и испытание намоткой на оправку.

[0035] При испытании с поперечной нагрузкой, заданную длину оптического волокна помещают между двумя плоскими пластинами. К одной из пластин закрепляют проволочную сетку №70. Между пластинами зажимают известную длину оптического волокна, и измеряют опорный коэффициент затухания на выбранной длине волны (обычно в диапазоне 1200-1700 нм, например, 1310 нм или 1550 нм, или 1625 нм) в то время, как пластины сжимают с усилием 30 Ньютонов. Затем к пластинам прикладывают усилие 70 Ньютонов и измеряют увеличение коэффициента затухания на выбранной длине волны в дБ/м. Увеличение коэффициента затухания является коэффициентом затухания волновода на проволочной сетке с поперечной нагрузкой (LLWM).

[0036] Устойчивость к макроизгибам волокна можно измерять посредством измерения наведенного увеличения коэффициента затухания в ходе испытания намоткой на оправку. При испытании намоткой на оправку, волокно наматывают один или более раз вокруг цилиндрической оправки, имеющей установленный диаметр, и определяют увеличение коэффициента затухания на установленной длине, обусловленное изгибом. Коэффициент затухания при испытании намоткой на оправку выражают в единицах дБ/виток, где один виток соответствует одному обороту волокна вокруг оправки.

[0037] Испытание на изгиб на «штырьковой матрице» применяют для сравнения относительной устойчивости оптического волокна к изгибу. Для выполнения данного испытания, потери на ослабление на выбранной длине волны измеряют для оптического волокна в конфигурации, по существу, не имеющей изгибных потерь. Затем обвивают оптическое волокно вокруг штырьковой матрицы и снова измеряют коэффициент ослабления на выбранной длине волны (обычно в диапазоне 1200-1700 nm, например, 1310 нм или 1550 нм, или 1625 нм). Потери, наведенные изгибанием, равны разности между двумя измеренными коэффициентами ослабления. Штырьковая матрица представляет собой набор из десяти цилиндрических штырьков, расположенных в один ряд и закрепленных в фиксированном вертикальном положении на плоской поверхности. Расстояние между центрами штырьков составляет 5 мм. Диаметр штырька равен 0,67 мм. Во время испытания прикладывают достаточное натяжение, чтобы обеспечивать соответствие оптического волокна участку поверхности штырька.

[0038] Пороговую длину волны волокна можно измерить посредством стандартного испытания на пороговую длину волны 2-м волокна согласно FOTP-80 (EIA-TIA-455-80), чтобы получить «пороговую длину волны волокна», известную также как «пороговая длина волны 2-м волокна» или «измеренная пороговая длина волны». Стандартное испытание FOTP-80 выполняют либо для отделения мод более высокого порядка с использованием управляемой величины изгибания, либо для нормирования спектральной характеристики волокна по характеристики многомодового волокна.

[0039] Пороговая длина волны в кабеле или «пороговая длина волны кабеля» (известная также как «пороговая длина волны при 22 метрах») обычно ниже, чем измеренная пороговая длина волны волокна, вследствие более высоких уровней изгиба и механического давления в условиях кабеля. Фактическое состояние в кабеле можно аппроксимировать посредством испытания на пороговую длину волны в кабеле, описанного в процедурах испытаний волоконной оптики EIA-445, которые входят в стандарты на волоконную оптику EIA-TIA (стандартов на волоконную оптику Объединения электронной промышленности – Ассоциации телекоммуникационной промышленности (Electronics Industry Alliance - Telecommunications Industry Association Fiber Optics Standards)), известные также под сокращенным названием FOTP). Измерение пороговой длины волны в кабеле описано в стандарте EIA-455-170, Пороговая длина волны кабеля из одномодового волокна посредством пропускаемой мощности, или «FOTP-170». Если в настоящей заявке не указано иначе, то оптические свойства (например, дисперсия, наклон кривой дисперсии и т.п.) сообщаются для моды LP01.

[0040] Настоящее изобретение предлагает волокна малого радиуса с покрытием с очень высокими микроизгибными и макроизгибными функциональными характеристиками и диаметром модового поля, который может допускать сращивание и соединение со стандартными одномодовыми волокнами с минимальными потерями. Волокна с покрытием в соответствии с настоящим изобретением могут исключать недостатки небольшого диаметра модового поля и/или значительных изгибных потерь, которые сопровождали работы известного уровня техники по получению волокон малого радиуса. С настоящими волокнами с покрытием, небольшие радиуса можно получать без ущерба для диаметра модового поля или изгибных функциональных характеристик. Настоящее изобретение может соответственно обеспечить компактные волокна с покрытием, которые могут быть собраны в высокоплотных конфигурациях для внутреннего монтажа и при этом обеспечивать надлежащее сопряжение и низкие потери, при интегрировании с внешними одномодовыми волокнами. Ниже охарактеризованы разные рисунки профилей, которые дают, в результате высокие микроизгибные и макроизгибные функциональные характеристики волокна, даже когда толщина слоев покрытия является небольшой. Раскрываются механические свойства, композиции и геометрия слоев первичных и вторичных покрытий уменьшенной толщины, которые могут давать низкие микроизгибные и макроизгибные потери и высокую прочность на прокол. Если не указано иначе, то все результаты, зависящие от длины волны, основаны на длине волны 1550 нм.

[0041] Настоящие волокна с покрытием могут включать в себя оболочку, имеющую две области и профиль показателя преломления, который различается в двух областях. Рисунок профиля показателя преломления оболочки может уменьшать чувствительность волокна с покрытием к изгибу и может допускать применение первичного покрытия с толщиной, уменьшенной по сравнению с волокнами с покрытиями в соответствии с известным уровнем техники. Более тонкое первичное покрытие приводит к уменьшению общего диаметра волокна с покрытием, что обеспечивает компактные волокна с покрытием, которые можно плотно упаковывать и/или надежно прокладывать в существующей волоконной инфраструктуре. Механические свойства первичного покрытия можно выбирать так, что высокая микроизгибная функциональная характеристика волокна с покрытием достигается даже в том случае, когда толщина первичного покрытия уменьшается.

[0042] Волокна с покрытием в соответствии с настоящим изобретением могут включать в себя сердцевину, оболочку, первичное покрытие и вторичное покрытие, при этом оболочка может включать в себя две или более области с различающимися профилями показателя преломления. Схематическое изображение поперечного сечения первого из многих волокон с покрытием в соответствии с настоящим изобретением показано на фиг. 1. Волокно 10 включает в себя сердцевину 20, оболочку 30, первичное покрытие 40 и вторичное покрытие 50. Оболочка 30 включает в себя внутреннюю область 33 оболочки и внешнюю область 37 оболочки. Схематичное поперечное сечение второго из многих волокон с покрытием в соответствии с настоящим изобретением показано на фиг. 2. Волокно 60 включает в себя сердцевину 70, оболочку 80, первичное покрытие 90 и вторичное покрытие 100. Оболочка 80 включает в себя первую внутреннюю область 81 оболочки, вторую внутреннюю область 83 оболочки и внешнюю область 85 оболочки.

[0043] Сердцевина и оболочка могут быть кварцевым стеклом или стеклом на основе кварца и, при желании, могут включать в себя легирующую примесь, повышающую показатель преломления, или легирующую примесь, снижающую показатель преломления. Стекло на основе кварца может быть кварцевым стеклом, модифицированным щелочным или щелочноземельным элементом, или элементом группы III (например, B, Al), или элементом группы V (например, P). Радиус сердцевины может быть в диапазоне 4-10 мкм для одномодового волокна. Оболочка может включать в себя две или более областей, которые различаются по профилю показателя преломления и могут продолжаться до внешнего радиуса, по меньшей мере, 50 мкм, или, по меньшей мере, 55 мкм, или, по меньшей мере, 60 мкм, или 62,5 мкм.

[0044] Показатель преломления в поперечнике сердцевины. Показатель преломления сердцевины может быть максимальным в центре или около центра сердцевины и может непрерывно снижаться по направлению к внешней границе сердцевины. Профиль показателя преломления сердцевины может иметь или может аппроксимировать гауссов профиль, супергауссов профиль, α-профиль или ступенчатый профиль.

[0045] Оболочка может включать в себя внутреннюю область оболочки и внешнюю область оболочки, при этом внутренняя область оболочки может иметь показатель преломления ниже, чем внешняя область оболочки. Показатель преломления внутренней области оболочки может быть постоянным или непрерывно изменяющимся. Внутренняя область оболочки может иметь показатель преломления, который непрерывно снижается от внутренней границы данной области к внешней границе. Непрерывное снижение может быть линейным снижением. Показатель преломления внутренней области оболочки может формировать впадину на профиле показателя преломления волокна с покрытием. Впадина представляет собой область пониженного показателя преломления и может быть прямоугольной или треугольной. Внешняя область оболочки может иметь постоянный или непрерывно изменяющийся показатель преломления. Минимальный показатель преломления внутренней области сердцевины может быть меньше, чем максимальный показатель преломления внешней области оболочки.

[0046] Оболочка может включать в себя первую внутреннюю область оболочки, прилегающую к сердцевине, и вторую внутреннюю область оболочки, расположенную между первой внутренней областью оболочки и внешней областью оболочки. Показатель преломления второй внутренней области оболочки может быть ниже, чем показатель преломления первой внутренней области оболочки. Минимальный показатель преломления второй внутренней области оболочки может быть ниже, чем максимальный показатель преломления первой внутренней области оболочки. Показатель преломления второй внутренней области оболочки может быть ниже, чем показатель преломления внешней области оболочки. Минимальный показатель преломления второй внутренней области оболочки может быть ниже, чем максимальный показатель преломления внешней области оболочки. Показатель преломления второй внутренней области оболочки может быть ниже, чем показатели преломления первой внутренней области оболочки и внешней области оболочки. Минимальный показатель преломления второй внутренней области оболочки может быть ниже, чем максимальные показатели преломления первой внутренней области оболочки и внешней области оболочки.

[0047] Показатель преломления второй внутренней области оболочки может быть постоянным или непрерывно изменяющимся. Вторая внутренняя область оболочки может иметь показатель преломления, который непрерывно снижается от внутренней границы данной области к ее внешней границе. Непрерывное снижение может быть линейным снижением. Показатель преломления второй внутренней области оболочки может формировать впадину на профиле показателя преломления волокна с покрытием. Впадина является областью пониженного показателя преломления и может быть прямоугольной или треугольной. Область пониженного показателя преломления может характеризоваться объемом канавки профиля, V3, в единицах % мкм2, равным:

Абсолютное значение |V3| объема канавки может быть, по меньшей мере, 30% мкм2 или, по меньшей мере, 50% мкм2, или, по меньшей мере, 65% мкм2. Абсолютное значение |V3| объема канавки может быть также меньше чем 80% мкм2, или меньше чем 75% мкм2, или от 30% мкм2 до 80% мкм2, включительно. Термины «канавка» и «впадина» применяются в настоящей заявке взаимозаменяемо.

[0048] Репрезентативные профили показателя преломления для сердцевины и оболочки представлены на фигурах 3A и 3B. Фигура 3A изображает прямоугольный профиль впадины для волокна (101), имеющего сердцевину (1) с внешним радиусом r1 и показателем преломления Δ1, первую внутреннюю область (2) оболочки, продолжающуюся от радиального положения r1 до радиального положения r2 и имеющую показатель преломления Δ2, вторую внутреннюю область (3) оболочки, продолжающуюся от радиального положения r2 до радиального положения r3 и имеющую показатель преломления Δ3, и внешнюю область (4) оболочки, продолжающуюся от радиального положения r3 до радиального положения r4 и имеющую показатель преломления Δ4. На профиле, показанном на фигуре 3A, вторую внутреннюю область (3) оболочки может называться прямоугольной впадиной в настоящей заявке и может иметь постоянный показатель преломления, который ниже, чем показатели преломления первой внутренней области (2) оболочки и внешней области (4) оболочки. Сердцевина (1) может иметь наиболее высокий показатель преломления на профиле. Сердцевина (1) может включать в себя область пониженного показателя преломления на или около осевой линии (известную в данной области техники как «осевой провал»). Следует отметить, что первая внутренняя область (2) оболочки является необязательной и может отсутствовать.

[0049] Фигура 3B изображает профиль показателя преломления с треугольной впадиной для волокна (101), имеющего сердцевину (1) с радиусом r1 и показателем преломления Δ1 с максимальным Δ1MAX, первую внутреннюю область (2) оболочки, продолжающуюся от радиального положения r1 до радиального положения r2 и имеющую показатель преломления Δ2, вторую внутреннюю область (3) оболочки, продолжающуюся от радиального положения r2 до радиального положения r3 и имеющую показатель преломления Δ3 с минимальным Δ3ΜΙΝ, и внешнюю область (4) оболочки, продолжающуюся от радиального положения r3 до радиального положения r4 и имеющую показатель преломления Δ4. На профиле на фигуре 3B, вторая внутренняя область (3) оболочки может называться в настоящей заявке треугольной впадиной и может иметь непрерывно снижающийся показатель преломления между радиальными положениями r2, и при этом средний и минимальный показатели преломления треугольной впадины могут быть ниже, чем показатели преломления первой внутренней области (2) оболочки и внешней области (4) оболочки. Сердцевина (1) может иметь максимальный показатель преломления на профиле. Сердцевина (l) может включать в себя область пониженного показателя преломления на или вблизи осевой линии, с показателем преломления ниже, чем Δ1ΜΑΧ. Следует отметить, что первая внутренняя область (2) оболочки является необязательной и может отсутствовать.

[0050] Профили показателя преломления сердцевины и оболочки могут достигаться регулированием пространственного распределения легирующих примесей или модификаторов в кремниевом стекле или стекле на основе кремния. Легирующие примеси, повышающие показатель преломления (например, GeO2, Al2O3, P2O5, TiO2, Cl, Br), можно использовать для создания областей повышенного показателя преломления и легирующие примеси, понижающие показатель преломления (например, F, B2O3, непериодические междоузлия), можно использовать для создания областей пониженного показателя преломления. Области постоянного показателя преломления можно формировать отсутствием легирования или легированием с равномерной концентрацией. Области переменного показателя преломления можно формировать посредством неравномерных пространственных распределений легирующих примесей. Треугольная впадина, показанная на фигуре 3B, например, может быть создана посредством включения F в качестве легирующей примеси, понижающей показатель преломления, с неравномерным профилем пространственной концентрации. Концентрация F в радиальном положении r2 может быть ниже, чем концентрация F в радиальном положении r3.

[0051] Волокно с покрытием может включать в себя области, расположенные между сердцевиной и первой внутренней областью оболочки или между первой внутренней областью оболочки и второй внутренней областью оболочки, или между второй внутренней областью оболочки и внешней областью оболочки, или между внешней областью оболочки и первичным покрытием, или между первичным покрытием и вторичным покрытием. Волокно может иметь сердцевину с внешним радиусом r1 и показателем преломления Δ1 c максимальным значением Δ1MAX и минимальным значением Δ1MIN, первую внутреннюю область оболочки, имеющую внешний радиус r2 и имеющую показатель преломления Δ2 с максимальным значением Δ2ΜΑΧ и минимальным значением Δ2ΜΙΝ, вторую внутреннюю область оболочки, имеющую внешний радиус r3 и имеющую показатель преломления Δ3 с максимальным значением Δ3ΜΑΧ и минимальным значением Δ3ΜΙΝ, внешнюю область оболочки, имеющую внешний радиус r4 и имеющую показатель преломления Δ4 с максимальным значением Δ4ΜΑΧ и минимальным значением Δ4ΜΙΝ, первичное покрытие, имеющее внешний радиус r5, и вторичное покрытие, имеющее внешний радиус r6, где r6>r5>r4>r3>r2>r1.

[0052] Сердцевина и оболочка настоящих волокон с покрытием могут создаваться за одноэтапную операцию или многоэтапную операцию с использованием способов, которые широко известны в данной области техники. Подходящие способы включают в себя: способ двойного тигля, процедуры штабика в трубке и процессы легирования кремния, называемые также, в общем, химическим осаждением из паровой фазы («CVD») или парофазным окислением. Известно множество различных процессов CVD, которые пригодны для создания сердцевины и слоя оболочки, используемых в оптических волокнах с покрытием в примерных вариантах осуществления, приведенных в настоящей заявке. Упомянутые процессы включают в себя процессы внешнего CVD, процессы аксиального осаждения из паровой фазы, модифицированное CVD (MCVD), внутреннее осаждение из паровой фазы и плазменное CVD (PECVD).

[0053] Стеклянный участок волокон с покрытием можно вытягивать из специально подготовленной цилиндрической заготовки, которая локально и симметрично нагрета до температуры, достаточной для размягчения стекла, например, температуры около 2000°C для кварцевого стекла. Когда заготовка нагревается, например, подачей заготовки в и через печь, стекловолокно вытягивается из расплавленного материала. Смотри, например, патенты США №№ 7,565,820; 5,410,567; 7,832,675; и 6,027,062; раскрытия которых включены в настоящую заявку путем отсылки для получения дополнительных сведений о процессах изготовления волокон.

[0054] Первичное покрытие может иметь модуль упругости меньше, чем вторичное покрытие. Первичное покрытие может быть сформировано из первичной композиции, которая включает в себя отверждаемый олигомер. Отверждаемая первичная композиция может также включать в себя мономеры, инициатор полимеризации и одну или более добавок. Если в настоящем описании не указано или не подразумевается иного, то весовое процентное содержание (весовой %) конкретного компонента в отверждаемой первичной композиции относится к количеству компонента, присутствующему в отверждаемой первичной композиции, без учета добавок. В общем, весовые процентные содержания мономера(ов), олигомера(ов) и инициатора(ов) составляют в сумме 100%. При наличии, количество добавки указывается в единицах частей на сто (pph) относительно суммарных количеств мономера(ов), олигомера(ов) и инициатора(ов). Добавка, присутствующая в концентрации 1 pph, например, присутствует в количестве 1 г на каждые 100 г суммарного количества мономера(ов), олигомера(ов) и инициатора(ов).

[0055] Олигомер отверждаемой первичной композ