Катализатор, пригодный для получения авиационного керосина из синтетического нефтепродукта фишера-тропша из биомассы, и способ его приготовления
Изобретение относится к катализатору, пригодному для получения авиационного керосина из синтетического нефтепродукта Фишера-Тропша из биомассы, и способу его приготовления. Заявленный катализатор содержит: от 20 до 50 массовых процентов аморфного силиката алюминия; от 5 до 20 массовых процентов оксида алюминия в качестве связующего; от 20 до 60 массовых процентов гидротермически модифицированного цеолита; от 0,5 до 1,0 массовых процентов порошка сесбании; от 0,5 до 5 массовых процентов оксида никеля и от 5 до 15 массовых процентов оксида молибдена, при этом гидротермически модифицированный цеолит представляет собой модифицированный паром деалюминированный цеолит ZSМ-22 водородного типа. Технический результат заключается в получении катализатора с высокой активностью и высокой селективностью, увеличении степени изомеризации длинноцепных алканов, снижении точки замерзания фракций авиационного керосина и увеличении выхода авиационного керосина. 2 н. и 21 з.п. ф-лы, 3 табл., 8 пр.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[1] Данное изобретение касается катализатора гидроизомеризации для получения авиационного керосина и, в частности, катализатора для получения авиационного топлива из синтетического нефтепродукта, полученного с помощью способа Фишера-Тропша, и способа его приготовления.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
[2] В последние годы чистый импорт Китаем сырой нефти непрерывно растет и потребление нефти также увеличивается, приводя к все более серьезной нехватке энергии. С развитием авиационной индустрии увеличивается потребность в авиационном керосине. Данные показывают, что потребление авиационного керосина в Китае растет со скоростью приблизительно 13%. В настоящее время привлекательно применять синтез Фишера-Тропша и глубокую переработку, используя уголь, природный газ и биомассу в качестве исходных материалов для получения высококачественного и сверхчистого жидкого топлива, включая бензин, дизельное топливо и авиационный керосин, и другие химические соединения с высокой добавленной стоимостью. В особенности, материал биомассы, которая отличается богатыми ресурсами, многочисленными источниками, защитой окружающей среды и регенерацией, может превращаться в жидкое топливо, снижать выбросы вредных веществ и парникового газа и улучшать утилизацию источника углерода. Кроме того, получаемое жидкое топливо не содержит серу, азот или арен, что удовлетворяет требованиям к чистому топливу и законодательству по охране окружающей среды и соответствует низкоуглеродной политике чистого топлива, поэтому биомасса привлекает большое внимание.
[3] Нефтепродукт Фишера-Тропша содержит свыше 90 массовых процентов н-алканов, приводящих к высокой точке замерзания и плохой текучести при низкой температуре, и не может непосредственно использоваться в качестве авиационного керосина. Таким образом, ключевым вопросом использования синтетического нефтепродукта Фишера-Тропша для получения авиационного керосина является превращение н-алканов в изопарафины путем гидроизомеризации, причем ключом к решению данной проблемы является изучение катализатора гидроизомеризации длинноцепных алканов.
[4] Катализатор гидроизомеризации является бифункциональным катализатором, образованным путем нанесения металлов для гидрирования-дегидрирования на кислотный носитель. Активные металлы включают благородные металлы, включая Рt и Рd, и неблагородные металлы, включая Мо и W, тогда как в качестве кислотных носителей обычно используют молекулярные сита серий USY, МОR, SАРО и β. Молекулярное сито в качестве носителя имеет сильную кислотность, которая ускоряет реакции крекинга и приводит к низкой селективности изомеризации. Таким образом, очень важно найти носитель, имеющий слабую кислотность и надлежащую текстуру пор, чтобы приготовить катализатор гидроизомеризации.
[5] Китайская патентная публикация с номером СN101722031А раскрывает катализатор для конфигурационно-селективной изомеризации длинноцепного н-алкана, способ его приготовления и способ его применения. Данный катализатор использует молекулярное сито ЕUО типа, причем данное молекулярное сито смешивается с тугоплавким неорганическим оксидом, формируя носитель, и на носитель наносится благородный металл, такой как Рt и Рd, путем пропитки. Данное изобретение отличается тем, что молекулярное сито ЕUО типа модифицируют редкоземельными элементами, включая лантан и церий, формируя менее кислотные центры. Данный катализатор пригоден для способа гидрирования дистиллята смазочного масла, и целевой продукт отличается высоким выходом, низкой температурой застывания и хорошей вязкостью. Однако данный катализатор пригоден только для способа гидрирования дистиллята смазочного масла, белого масла и парафинового воска.
[6] Китайская патентная публикация с номером СN103059901А раскрывает способ приготовления дизельного компонента или топлива для реактивных двигателей при использовании животного жира. Данный способ применяет двухсекционный реактор, причем н-алкен, содержащий от 8 до 24 атомов углерода, получают в первой секции, а топливо для реактивных двигателей получают путем гидроизомеризации во второй секции. Применяемый катализатор является бифункциональным катализатором, который использует молекулярное сито, такое как SАРО-11, SАРО-31, SАРО-41, ZSМ-22, ZSМ-23 и ZSМ-48, в качестве носителя, и благородные металлы, такие как Рt, Рd, Rh, Ru и Ag, в качестве металлического компонента. Хотя катализатор имеет относительно высокую селективность изомеризации, обычно 80%, выход топлива для реактивных двигателей составляет только приблизительно 45%.
[7] Китайская патентная публикация с номером СN103013589А раскрывает смешанное топливо для реактивных двигателей, содержащее топливо из биомассы, и способ его приготовления. Смешанное топливо для реактивных двигателей использует пинен в качестве исходного материала и Ni/SiО2, Рd/Аl2О3 или Рd/С в качестве катализатора, чтобы синтезировать топливо из биомассы, причем конверсия является высокой, а точка замерзания топлива из биомассы является очень низкой. Однако топливо из биомассы не может индивидуально использоваться в качестве топлива для реактивных двигателей из-за его высокой плотности, поэтому требуется смешивать его с существующим топливом для реактивных двигателей, чтобы удовлетворять стандартам для национального топлива для реактивных двигателей.
[8] Чтобы решить вышеуказанную проблему, исследователи попытались использовать Рt/ZSМ-22 или Рt/SАРО-11 в качестве катализатора для получения авиационного керосина, но селективность по полученному авиационному керосину все еще низкая вследствие малых пор и сильной кислотности носителя. Так как содержание н-алкана в нефтепродукте Фишера-Тропша превышает 90 массовых процентов, что намного выше, чем в обычной нефти, слишком высокая кислотность катализатора сделает реакцию крекинга слишком интенсивной с образованием более мелких молекул. Таким образом, селективность по авиационному керосину, а также степень изомеризации продукта снижаются.
[9] В общем, чтобы получить авиационный керосин с высоким выходом, исследователям нужно найти катализатор гидроизомеризации с высокой активностью и высокой селективностью, чтобы выполнять гидроизомеризацию синтетического нефтепродукта Фишера-Тропша из биомассы, улучшить степень изомеризации авиационного керосина и снизить точку замерзания авиационного керосина, чтобы позволить авиационному керосину удовлетворять стандартам на национальное топливо для реактивных двигателей и заменить существующее ископаемое топливо.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[10] Ввиду вышеописанных проблем одной задачей данного изобретения является обеспечить катализатор для получения авиационного топлива из синтетического нефтепродукта, полученного с помощью способа Фишера-Тропша, который имеет высокую активность и высокую селективность по авиационному топливу. Другой задачей изобретения является обеспечить способ приготовления катализатора, который имеет высокий выход.
[11] Для достижения указанной задачи согласно одному варианту осуществления данного изобретения обеспечивается катализатор для получения авиационного топлива из синтетического нефтепродукта, полученного с помощью способа Фишера-Тропша. Данный катализатор содержит: от 20 до 50 массовых процентов аморфного силиката алюминия, от 5 до 20 массовых процентов оксида алюминия в качестве связующего, от 20 до 60 массовых процентов гидротермически модифицированного цеолита, от 0,5 до 1,0 массовых процентов порошка сесбании, от 0,5 до 5 массовых процентов оксида никеля и от 5 до 15 массовых процентов оксида молибдена.
[12] В одном классе этого варианта осуществления данный катализатор содержит: от 30 до 45 массовых процентов аморфного силиката алюминия, от 8 до 15 массовых процентов оксида алюминия в качестве связующего, от 25 до 50 массовых процентов гидротермически модифицированного цеолита, от 0,6 до 0,8 массовых процентов порошка сесбании, от 2,5 до 4,5 массовых процентов оксида никеля и от 8 до 12 массовых процентов оксида молибдена.
[13] В одном классе этого варианта осуществления данный гидротермически модифицированный цеолит представляет собой модифицированный паром деалюминированный цеолит.
[14] В одном классе этого варианта осуществления данный гидротермически модифицированный цеолит представляет собой модифицированный паром деалюминированный цеолит ZSМ-22 водородного типа.
[15] В одном классе этого варианта осуществления пар имеет температуру от 300 до 900°С, давление от 0,1 до 2,0 мегапаскалей и поддерживается от 2 до 4 часов.
[16] В одном классе этого варианта осуществления пар имеет температуру от 500 до 800°С, давление от 0,1 до 0,5 мегапаскалей и поддерживается от 2 до 3,5 часов.
[17] В одном классе этого варианта осуществления данный катализатор имеет удельную площадь от 200 до 300 м2/г; микропоры, имеющие объем пор от 0,4 до 0,8 мл/г, и распределение размера пор от 4 до 10 нм для 65-85% полного объема пор; и полная кислотность катализатора, измеряемая с использованием NН3-ТПД метода, составляет от 0,4 до 1,0 ммоль/г.
[18] Согласно другому варианту осуществления данного изобретения обеспечивается способ приготовления данного катализатора.
Данный способ содержит:
[19] 1) добавление цеолита ZSМ-22 калиевого типа в качестве исходного материала к раствору NН4NО3 для ионного обмена, фильтрование, промывание и сушку полученного цеолита;
[20] 2) повторение 1) два или три раза и прокаливание цеолита с получением цеолита ZSМ-22 водородного типа;
[21] 3) введение пара в цеолит ZSМ-22 водородного типа для гидротермической обработки с получением деалюминированного цеолита ZSМ-22 водородного типа;
[22] 4) смешивание деалюминированного цеолита ZSМ-22 водородного типа с аморфным силикатом алюминия, добавление оксида алюминия в качестве связующего, добавление разбавленного раствора азотной кислоты для модуляции и добавление порошка сесбании в качестве помощника экструзии, перемешивание, замешивание и прессование с образованием масс, и экструдирование масс с образованием лент;
[23] 5) сушку и прокаливание данных лент с получением носителя катализатора;
[24] 6) смешивание растворимой соли молибдена и растворимой соли никеля с получением водного раствора, диспергирование данного водного раствора с помощью ультразвуковой волны с получением активного пропитывающего раствора; и
[25] 7) вымачивание данного носителя катализатора в активном пропитывающем растворе с нанесением активных компонентов на носитель, выдерживание, сушку и прокаливание с получением катализатора.
[26] В одном классе этого варианта осуществления, в 1), цеолит ZSМ-22 калиевого типа имеет мольное отношение SiО2/Аl2О3 от 20 до 160.
[27] В одном классе этого варианта осуществления, в 1), цеолит ZSМ-22 калиевого типа имеет мольное отношение SiО2/Аl2О3 от 30 до 100.
[28] В одном классе этого варианта осуществления, в 1), концентрация раствора NН4NО3 составляет от 1,0 до 2,0 моль/л; и цеолит ZSМ-22 калиевого типа добавляют к раствору NН4NО3 для ионного обмена, причем ионный обмен выполняют в условиях водяной бани при температуре от 60 до 110°С в течение от 1 до 4 ч.
[29] В одном классе этого варианта осуществления, в 1), концентрация раствора NН4NО3 составляет от 1,0 до 1,5 моль/л; и ионный обмен выполняют в условиях водяной бани при температуре от 80 до 100°С в течение от 2 до 4 ч.
[30] В одном классе этого варианта осуществления, в 3), гидротермическую обработку цеолита ZSМ-22 водородного типа паром выполняют при температуре от 300 до 900°С и давлении от 0,1 до 2,0 мегапаскалей в течение от 2 до 4 ч.
[31] В одном классе этого варианта осуществления, в 3), гидротермическую обработку цеолита ZSМ-22 водородного типа паром выполняют при температуре от 500 до 800°С и давлении от 0,1 до 0,5 мегапаскалей в течение от 2 до 3,5 ч.
[32] В одном классе этого варианта осуществления, в 4), аморфный силикат алюминия имеет удельную площадь от 250 до 400 м2/г, и SiО2 составляет от 20 до 50 масс.% от полной массы аморфного силиката алюминия.
[33] В одном классе этого варианта осуществления, в 4), аморфный силикат алюминия имеет удельную площадь от 250 до 300 м2/г, и SiО2 составляет от 30 до 50 масс.% от полной массы аморфного силиката алюминия.
[34] В одном классе этого варианта осуществления, в 4), разбавленный раствор азотной кислоты имеет концентрацию от 3 до 8 массовых процентов.
[35] В одном классе этого варианта осуществления, в 5), ленты сушат при температуре от 80 до 120°С в течение от 6 до 24 ч.
[36] В одном классе этого варианта осуществления, в 5), ленты сушат при температуре от 100 до 120°С в течение от 6 до 12 ч.
[37] В одном классе этого варианта осуществления, в 5), ленты сушат при температуре от 500 до 600°С в течение от 4 до 8 ч.
[38] В одном классе этого варианта осуществления, в 5), носитель катализатора имеет цилиндрическую форму, трехлепестковую форму или четырехлепестковую форму.
[39] В одном классе этого варианта осуществления, в 6), растворимая соль молибдена является молибдатом аммония или молибдатом натрия; и растворимая соль никеля является нитратом никеля.
[40] В одном классе этого варианта осуществления, в 6), время для обработки ультразвуковой волной составляет от 0,5 до 1,5 ч.
[41] В одном классе этого варианта осуществления, в 7), обработку выдерживанием выполняют при комнатной температуре в течение от 12 до 24 ч; сушку выполняют при температуре от 100 до 120°С в течение от 10 до 14 ч; и прокаливание выполняют при температуре от 500 до 600°С в течение от 4 до 8 ч.
[42] В одном классе этого варианта осуществления, в 7), обработку выдерживанием выполняют при комнатной температуре в течение от 16 до 20 ч; сушку выполняют при температуре от 110 до 120°С в течение от 10 до 12 ч; и прокаливание выполняют при температуре от 550 до 600°С в течение от 4 до 6 ч.
[43] Так как данный цеолит имеет цилиндрические одномерные 10-кольцовые поры размером 0,46 нм×0,55 нм и нет поперечных пор, данный цеолит подходит только для изомеризации небольших молекул алканов. Требуется модифицировать данный цеолит, чтобы дополнительно увеличить размер пор, когда он будет применяться в изомеризации длинноцепных алканов.
[44] Катализатор и способ данного изобретения основаны на характеристиках длинноцепных н-алканов синтетического нефтепродукта, полученного с помощью способа Фишера-Тропша. Цеолит ZSМ-22 калиевого типа подходит в качестве исходного материала для получения цеолита ZSМ-22 водородного типа путем ионного обмена. Цеолит ZSМ-22 водородного типа деалюминируют путем гидротермической обработки, чтобы снизить его кислотность, и аморфный силикат алюминия, который имеет слабую кислотность, смешивают с деалюминированным цеолитом ZSМ-22 водородного типа в определенном отношении, получая носитель, так что данный носитель имеет надлежащую слабую кислотность и текстуру пор. Затем активные компоненты Ni и Мо наносят на носитель, получая катализатор, имеющий распределение размера пор от 4 до 10 нм, что выгодно для изомеризации длинноцепных алканов.
[45] Преимущества катализатора для получения авиационного топлива из синтетического нефтепродукта, полученного с помощью способа Фишера-Тропша, и способа его приготовления согласно вариантам осуществления данного изобретения суммируются следующим образом: приготовленный катализатор имеет высокую активность и высокую селективность. Длинноцепной синтетический нефтепродукт, полученный с помощью способа Фишера-Тропша, подвергают гидроизомеризации с получением авиационного топлива с высокой селективностью, причем во время изомеризации степень длинноцепного алкана увеличивается, точка замерзания дистиллята авиационного топлива снижается, и селективность по компоненту авиационного топлива улучшается. Кроме того, данный катализатор имеет высокую каталитическую активность, и поэтому выход авиационного топлива улучшается. Авиационное топливо, полученное с использованием катализатора данного изобретения, достигает стандартов для национального топлива для реактивных двигателей и поэтому подходит для замещения существующих ископаемых топлив.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[46] Для дополнительной иллюстрации данного изобретения ниже описываются эксперименты, детализирующие катализатор для получения авиационного топлива из синтетического нефтепродукта, полученного с помощью способа Фишера-Тропша, и способ его приготовления. Следует заметить, что последующие примеры предназначены описывать, а не ограничивать данное изобретение.
[47] Свойства синтетического нефтепродукта, полученного с помощью способа Фишера-Тропша, приготовленного с помощью биомассы в качестве исходного материала, показаны в таблице 1.
Таблица 1 Свойства синтетического нефтепродукта, полученного с помощью способа Фишера-Тропша, в качестве исходного материала
Диапазон дистилляции (°С) | Плотность (20°С, кг/м3) | Точка замерзания (°С) | Вязкость (-20°С, мм2/с) |
100-350 | 820 | -20 | 6,82 |
Пример 1
[48] 1) 200 г цеолита К-ZSМ-22, имеющего мольное отношение SiО2/Аl2О3 40, добавляли к раствору NН4NО3, имеющему концентрацию 1,5 моль/л, с массовым отношением цеолита К-ZSМ-22 к раствору NН4NО3 1:10 для выполнения ионного обмена. Полученную смесь перемешивали при постоянной температуре в течение 2 ч в условиях водяной бани при температуре 100°С. Затем смесь после обработки фильтровали, собирая полученный цеолит. Потом цеолит промывали и сушили при 120°С в течение 4 ч.
[49] 2) Операцию 1) повторяли три раза, и затем цеолит прокаливали при 550°С в течение 6 ч, получая цеолит Н-ZSМ-22.
[50] 3) Цеолит Н-ZSМ-22 помещали в печь для обжига. Пар вводили в печь для обжига для гидротермической обработки при 500°С и 0,2 мегапаскалей в течение 4 ч, получая деалюминированный цеолит Н-ZSМ-22.
[51] 4) 50,0 г деалюминированного цеолита Н-ZSМ-22, 125,0 г аморфного силиката алюминия и 37,5 г оксида алюминия в качестве связующего добавляли в разбавленный раствор азотной кислоты, имеющий концентрацию 5,0 массовых процентов, для модуляции. Добавляли 2,0 г порошка сесбании в качестве помощника экструзии. Полученную смесь равномерно перемешивали, замешивали, прессовали в массы и данные массы затем экструдировали, формируя ленты трехлепестковой формы.
[52] 5) Ленты трехлепестковой формы помещали в сушильный шкаф, сушили при 120°С в течение 6 ч, прокаливали при 500°С в течение 8 ч и затем охлаждали до комнатной температуры, получая носитель катализатора.
[53] 6) 42,0 г молибдата натрия и 40,8 г нитрата никеля смешивали, образуя водный раствор, и водный раствор диспергировали в течение 1 ч, получая активный пропитывающий раствор.
[54] 7) Носитель катализатора пропитывали активным пропитывающим раствором, нанося активные компоненты на носитель. Носитель с нанесенными активными компонентами затем выдерживали при комнатной температуре в течение 24 ч, сушили в сушильном шкафу при 100°С в течение 14 ч, прокаливали при 500°С в течение 8 ч и затем охлаждали до комнатной температуры, получая катализатор А.
[55] Катализатор А содержал: 20,0 массовых процентов модифицированного цеолита Н-ZSМ-22, 50,0 массовых процентов аморфного силиката алюминия, 15,0 массовых процентов оксида алюминия, 0,8 массовых процентов порошка сесбании, 4,2 массовых процентов оксида никеля и 10,0 массовых процентов оксида молибдена.
[56] Физико-химические свойства катализатора А приведены в таблице 2, а результаты определения и свойства продукта катализатора А приведены в таблице 3.
Таблица 2 Физико-химические свойства катализаторов
Катализатор | A | B | C | D | E | F | G | H |
Удельная площадь (м2/г) | 263 | 248 | 233 | 251 | 260 | 294 | 275 | 218 |
Объем пор (мл/г) | 0,53 | 0,58 | 0,50 | 0,68 | 0,75 | 0,80 | 0,59 | 0,42 |
Средний размер пор (нм) | 5,89 | 8,65 | 6,05 | 8,43 | 7,92 | 7,32 | 7,11 | 6,24 |
Распределение размера пор 4-10 нм (%) | 65,1 | 83,6 | 76,8 | 78,4 | 72,2 | 70,3 | 73,4 | 68,9 |
Полная кислотность, измеренная с использованием метода NН3-ТПД (ммоль/г) | 0,80 | 0,42 | 0,57 | 0,51 | 0,62 | 0,73 | 0,65 | 0,92 |
Таблица 3 Результаты определения и свойства продуктов
Катализатор | A | B | C | D | E | F | G | H |
Конверсия (в массовых процентах) | 90,8 | 87,2 | 86,5 | 85,8 | 82,5 | 86,7 | 81,3 | 83,2 |
Селективность (%) по авиационному топливу (150-270°С) | 68,4 | 94,7 | 89,5 | 92,3 | 85,6 | 78,5 | 87,3 | 60,3 |
Точка замерзания (°С) | -48 | -62 | -55 | -56 | -53 | -49 | -52 | -50 |
Плотность (20°С, кг/м3) | 794,4 | 785,2 | 787,5 | 789,3 | 790,4 | 802,6 | 791,0 | 814,2 |
Вязкость (-20°С, мм2/с) | 4,8 | 5,1 | 5,3 | 5,6 | 5,4 | 5,2 | 6,5 | 6,1 |
Точка воспламенения (°С) | 48 | 60 | 56 | 58 | 55 | 50 | 52 | 50 |
Пример 2
[57] 1) 200 г цеолита К-ZSМ-22, имеющего мольное отношение SiО2/Аl2О3 50, добавляли к раствору NН4NО3, имеющему концентрацию 1,0 моль/л, с массовым отношением цеолита К-ZSМ-22 к раствору NН4NО3 1:10 для выполнения ионного обмена. Полученную смесь перемешивали при постоянной температуре в течение 4 ч в условиях водяной бани при температуре 80°С. Затем смесь после обработки фильтровали, собирая полученный цеолит. Потом цеолит промывали и сушили при 120°С в течение 4 ч.
[58] 2) Операцию 1) повторяли три раза, и затем цеолит прокаливали при 550°С в течение 6 ч, получая цеолит Н-ZSМ-22.
[59] 3) Цеолит Н-ZSМ-22 помещали в печь для обжига. Пар вводили в печь для обжига для гидротермической обработки при 650°С и 0,1 мегапаскалей в течение 3 ч, получая деалюминированный цеолит Н-ZSМ-22.
[60] 4) 50,0 г деалюминированного цеолита Н-ZSМ-22, 20,0 г аморфного силиката алюминия и 19,2 г оксида алюминия в качестве связующего добавляли в разбавленный раствор азотной кислоты, имеющий концентрацию 5,0 массовых процентов, для модуляции. Добавляли 0,8 г порошка сесбании в качестве помощника экструзии. Полученную смесь равномерно перемешивали, замешивали, прессовали в массы и данные массы затем экструдировали, формируя ленты трехлепестковой формы.
[61] 5) Ленты трехлепестковой формы помещали в сушильный шкаф, сушили при 100°С в течение 12 ч, прокаливали при 550°С в течение 6 ч и затем охлаждали до комнатной температуры, получая носитель катализатора.
[62] 6) 6,8 г молибдата аммония и 19,5 г нитрата никеля смешивали, образуя водный раствор, и водный раствор диспергировали в течение 1 ч, получая активный пропитывающий раствор.
[63] 7) Носитель катализатора пропитывали активным пропитывающим раствором, нанося активные компоненты на носитель. Носитель с нанесенными активными компонентами затем выдерживали при комнатной температуре в течение 18 ч, сушили в сушильном шкафу при 120°С в течение 10 ч, прокаливали при 550°С в течение 6 ч и затем охлаждали до комнатной температуры, получая катализатор В.
[64] Катализатор В содержал: 50,0 массовых процентов модифицированного цеолита Н-ZSМ-22, 20,0 массовых процентов аморфного силиката алюминия, 19,2 массовых процентов оксида алюминия, 0,8 массовых процентов порошка сесбании, 5,0 массовых процентов оксида никеля и 5,0 массовых процентов оксида молибдена.
[65] Физико-химические свойства катализатора В приведены в таблице 2, а результаты определения и свойства продукта катализатора В приведены в таблице 3.
Пример 3
[66] 1) 200 г цеолита К-ZSМ-22, имеющего мольное отношение SiО2/Аl2О3 60, добавляли к раствору NН4NО3, имеющему концентрацию 2,0 моль/л, с массовым отношением цеолита К-ZSМ-22 к раствору NН4NО3 1:10 для выполнения ионного обмена. Полученную смесь перемешивали при постоянной температуре в течение 3 ч в условиях водяной бани при температуре 90°С. Затем смесь после обработки фильтровали, собирая полученный цеолит. Потом цеолит промывали и сушили при 120°С в течение 4 ч.
[67] 2) Операцию 1) повторяли три раза, и затем цеолит прокаливали при 550°С в течение 6 ч, получая цеолит Н-ZSМ-22.
[68] 3) Цеолит Н-ZSМ-22 помещали в печь для обжига. Пар вводили в печь для обжига для гидротермической обработки при 800°С и 0,5 мегапаскалей в течение 2 ч, получая деалюминированный цеолит Н-ZSМ-22.
[69] 4) 50,0 г деалюминированного цеолита Н-ZSМ-22, 16,7 г аморфного силиката алюминия и 7,7 г оксида алюминия в качестве связующего добавляли в разбавленный раствор азотной кислоты, имеющий концентрацию 5,0 массовых процентов, для модуляции. Добавляли 0,7 г порошка сесбании в качестве помощника экструзии. Полученную смесь равномерно перемешивали, замешивали, прессовали в массы и данные массы затем экструдировали, формируя ленты трехлепестковой формы.
[70] 5) Ленты трехлепестковой формы помещали в сушильный шкаф, сушили при 110°С в течение 10 ч, прокаливали при 600°С в течение 4 ч и затем охлаждали до комнатной температуры, получая носитель катализатора.
[71] 6) 5,7 г молибдата аммония и 16,2 г нитрата никеля смешивали, образуя водный раствор, и водный раствор диспергировали в течение 1 ч, получая активный пропитывающий раствор.
[72] 7) Носитель катализатора пропитывали активным пропитывающим раствором, нанося активные компоненты на носитель. Носитель с нанесенными активными компонентами затем выдерживали при комнатной температуре в течение 12 ч, сушили в сушильном шкафу при 110°С в течение 12 ч, прокаливали при 600°С в течение 4 ч и затем охлаждали до комнатной температуры, получая катализатор С.
[73] Катализатор С содержал: 60,0 массовых процентов модифицированного цеолита Н-ZSМ-22, 20,0 массовых процентов аморфного силиката алюминия, 9,2 массовых процентов оксида алюминия, 0,8 массовых процентов порошка сесбании, 5,0 массовых процентов оксида никеля и 5,0 массовых процентов оксида молибдена.
[74] Физико-химические свойства катализатора С приведены в таблице 2, а результаты определения и свойства продукта катализатора С приведены в таблице 3.
Пример 4
[75] 1) 200 г цеолита К-ZSМ-22, имеющего мольное отношение SiО2/Аl2О3 80, добавляли к раствору NН4NО3, имеющему концентрацию 1,0 моль/л, с массовым отношением цеолита К-ZSМ-22 к раствору NН4NО3 1:10 для выполнения ионного обмена. Полученную смесь перемешивали при постоянной температуре в течение 4 ч в условиях водяной бани при температуре 80°С. Затем смесь после обработки фильтровали, собирая полученный цеолит. Потом цеолит промывали и сушили при 120°С в течение 4 ч.
[76] 2) Операцию 1) повторяли три раза, и затем цеолит прокаливали при 550°С в течение 6 ч, получая цеолит Н-ZSМ-22.
[77] 3) Цеолит Н-ZSМ-22 помещали в печь для обжига. Пар вводили в печь для обжига для гидротермической обработки при 650°С и 0,1 мегапаскалей в течение 3 ч, получая деалюминированный цеолит Н-ZSМ-22.
[78] 4) 50,0 г деалюминированного цеолита Н-ZSМ-22, 42,8 г аморфного силиката алюминия и 28,6 г оксида алюминия в качестве связующего добавляли в разбавленный раствор азотной кислоты, имеющий концентрацию 5,0 массовых процентов, для модуляции. Добавляли 1,2 г порошка сесбании в качестве помощника экструзии. Полученную смесь равномерно перемешивали, замешивали, прессовали в массы и данные массы затем экструдировали, формируя ленты трехлепестковой формы.
[79] 5) Ленты трехлепестковой формы помещали в сушильный шкаф, сушили при 120°С в течение 6 ч, прокаливали при 600°С в течение 4 ч и затем охлаждали до комнатной температуры, получая носитель катализатора.
[80] 6) 23,7 г молибдата аммония и 11,1 г нитрата никеля смешивали, образуя водный раствор, и водный раствор диспергировали в течение 1 ч, получая активный пропитывающий раствор.
[81] 7) Носитель катализатора пропитывали активным пропитывающим раствором, нанося активные компоненты на носитель. Носитель с нанесенными активными компонентами затем выдерживали при комнатной температуре в течение 24 ч, сушили в сушильном шкафу при 110°С в течение 12 ч, прокаливали при 600°С в течение 4 ч и затем охлаждали до комнатной температуры, получая катализатор D.
[82] Катализатор D содержал: 35,0 массовых процентов модифицированного цеолита Н-ZSМ-22, 30,0 массовых процентов аморфного силиката алюминия, 20 массовых процентов оксида алюминия, 0,8 массовых процентов порошка сесбании, 2,0 массовых процентов оксида никеля и 12,2 массовых процентов оксида молибдена.
[83] Физико-химические свойства катализатора D приведены в таблице 2, а результаты определения и свойства продукта катализатора D приведены в таблице 3.
Пример 5
[84] 1) 200 г цеолита К-ZSМ-22, имеющего мольное отношение SiО2/Аl2О3 90, добавляли к раствору NН4NО3, имеющему концентрацию 1,0 моль/л, с массовым отношением цеолита К-ZSМ-22 к раствору NН4NО3 1:10 для выполнения ионного обмена. Полученную смесь перемешивали при постоянной температуре в течение 4 ч в условиях водяной бани при температуре 80°С. Затем смесь после обработки фильтровали, собирая полученный цеолит. Потом цеолит промывали и сушили при 120°С в течение 4 ч.
[85] 2) Операцию 1) повторяли три раза, и затем цеолит прокаливали при 550°С в течение 6 ч, получая цеолит Н-ZSМ-22.
[86] 3) Цеолит Н-ZSМ-22 помещали в печь для обжига. Пар вводили в печь для обжига для гидротермической обработки при 650°С и 0,1 мегапаскалей в течение 3 ч, получая деалюминированный цеолит Н-ZSМ-22.
[87] 4) 50,0 г деалюминированного цеолита Н-ZSМ-22, 100,0 г аморфного силиката алюминия и 60,5 г оксида алюминия в качестве связующего добавляли в разбавленный раствор азотной кислоты, имеющий концентрацию 5,0 массовых процентов, для модуляции. Добавляли 2,0 г порошка сесбании в качестве помощника экструзии. Полученную смесь равномерно перемешивали, замешивали, прессовали в массы и данные массы затем экструдировали, формируя ленты цилиндрической формы.
[88] 5) Ленты цилиндрической формы помещали в сушильный шкаф, сушили при 110°С в течение 10 ч, прокаливали при 500°С в течение 8 ч и затем охлаждали до комнатной температуры, получая носитель катализатора.
[89] 6) 34,0 г молибдата аммония и 7,8 г нитрата никеля смешивали, образуя водный раствор, и водный раствор диспергировали в течение 1 ч, получая активный пропитывающий раствор.
[90] 7) Носитель катализатора пропитывали активным пропитывающим раствором, нанося активные компоненты на носитель. Носитель с нанесенными активными компонентами затем выдерживали при комнатной температуре в течение 12 ч, сушили в сушильном шкафу при 100°С в течение 14 ч, прокаливали при 500°С в течение 8 ч и затем охлаждали до комнатной температуры, получая катализатор Е.
[91] Катализатор Е содержал: 50,0 массовых процентов модифицированного цеолита Н-ZSМ-22, 40,0 массовых процентов аморфного силиката алюминия, 24,2 массовых процентов оксида алюминия, 0,8 массовых процентов порошка сесбании, 5,0 массовых процентов оксида никеля и 10,0 массовых процентов оксида молибдена.
[92] Физико-химические свойства катализатора Е приведены в таблице 2, а результаты определения и свойства продукта катализатора Е приведены в таблице 3.
Пример 6
[93] 1) 200 г цеолита К-ZSМ-22, имеющего мольное отношение SiО2/Аl2О3 100, добавляли к раствору NН4NО3, имеющему концентрацию 2,0 моль/л, с массовым отношением цеолита К-ZSМ-22 к раствору NН4NО3 1:10 для выполнения ионного обмена. Полученную смесь перемешивали при постоянной температуре в течение 3 ч в условиях водяной бани при температуре 90°С. Затем смесь после обработки фильтровали, собирая полученный цеолит. Потом цеолит промывали и сушили при 120°С в течение 4 ч.
[94] 2) Операцию 1) повторяли три раза, и затем цеолит прокаливали при 550°С в течение 6 ч, получая цеолит Н-ZSМ-22.
[95] 3) Цеолит Н-ZSМ-22 помещали в печь для обжига. Пар вводили в печь для обжига для гидротермической обработки при 800°С и 0,5 мегапаскалей в течение 2 ч, получая деалюминированный цеолит Н-ZSМ-22.
[96] 4) 50,0 г деалюминированного цеолита Н-ZSМ-22, 100,0 г аморфного силиката алюминия и 48,0 г оксида алюминия в качестве связующего добавляли в разбавленный раствор азотной кислоты, имеющий концентрацию 5,0 массовых процентов, для модуляции. Добавляли 2,0 г порошка сесбании в качестве помощника экструзии. Полученную смесь равномерно перемешивали, замешивали, прессовали в массы и данные массы затем экструдировали, формируя ленты четырехлепестковой формы.
[97] 5) Ленты четырехлепестковой формы помещали в сушильный шкаф, сушили при 120°С в течение 6 ч, прокаливали при 500°С в течение 6 ч и затем охлаждали до комнатной температуры, получая носитель катализатора.
[98] 6) 51,1 г молибдата аммония и 7,8 г нитрата никеля смешивали, образуя водный раствор, и водный раствор диспергировали в течение 1 ч, получая активный пропитывающий раствор.
[99] 7) Носитель катализатора пропитывали активным пропитывающим раствором, нанося активные компоненты на носитель. Носитель с нанесенными активными компонентами затем выдерживали при комнатной температуре в течение 20 ч, сушили в сушильном шкафу при 120°С в течение 10 ч, прокаливали при 550°С в течение 6 ч и затем охлаждали до комнатной температуры, получая катализатор F.
[100] Катализатор F содержал: 20,0 массовых процентов модифицированного цеолита Н-ZSМ-22, 40,0 массовых процентов аморфного силиката алюминия, 19,2 массовых процентов оксида алюминия, 0,8 массовых процентов порошка сесбании, 5,0 массовых процентов оксида никеля и 15,0 массовых процентов оксида молибдена.
[101] Физико-химические свойства катализатора F приведены в таблице 2, а результаты определения и свойства продукта катализатора F приведены в таблице 3.
Пример 7
[102] 1) 200 г цеолита К-ZSМ-22, имеющего мольное отношение SiО2/Аl2О3 30, добавляли к раствору NН4NО3, имеющему концентрацию 2,0 моль/л, с массовым отношением цеолита К-ZSМ-22 к раствору NН4NО3 1:10 для выполнения ионного обмена. Полученную смесь перемешивали при постоянной температуре в течение 3 ч в условиях водяной бани при температуре 90°С. Затем смесь после обработки фильтровали, собирая полученный цеолит. Потом цеолит промывали и сушили при 120°С в течение 4 ч.
[103] 2) Операцию 1) повторяли три раза, и затем цеолит прокаливали при 550°С в течение 6 ч, получая цеолит Н-ZSМ-22.
[104] 3) Цеолит Н-ZSМ-22 помещали в печь для обжига. Пар вводили в печь для обжига для гидротермической обработки при 800°С и 0,5 мегапаскалей в течение 2 ч, получая деалюминированный цеолит Н-ZSМ-22.
[105] 4) 50,0 г деалюминированного цеолита Н-ZSМ-22, 41,3 г аморфного силиката алюминия и 18,8 г оксида алюминия в качестве связующего добавляли в разбавленный раствор азотной кислоты, имеющий концентрацию 5,0