Передающее устройство, приемное устройство и способ для формирования сигналов синхронизации

Иллюстрации

Показать все

Изобретение относится к технике беспроводной связи и может быть использовано для формирования сигнала синхронизации для связи между устройствами (D2D). Передающее устройство (110) и способ для него, сконфигурированные с возможностью формирования сигнала синхронизации для связи между устройствами (D2D) с использованием формы сигнала на основе множественного доступа с частотным разделением каналов с одной несущей (SC-FDMA), при этом последовательность синхронизации модулирует набор поднесущих. Передающее устройство (110) содержит: процессор (520), сконфигурированный с возможностью определения последовательности синхронизации, где и для положительной константы , при этом является индексом корня, и является длиной последовательности синхронизации; а также сконфигурирован с возможностью выбора индекса корня из набора индексов корня и помимо этого сконфигурирован с возможностью формирования сигнала синхронизации на основе определенной последовательности синхронизации и выбранного индекса корня, причем процессор (520) сконфигурирован с возможностью преобразования последовательности синхронизации в элементы ресурсов формы SC-FDMA-сигнала таким образом, что для коэффициентов Фурье

, где является целым числом, не меньшим , и является коэффициентом Фурье на частоте . Кроме того, раскрыто приемное устройство (120), сконфигурированное с возможностью обнаружения принимаемого сигнала синхронизации для D2D-связи с использованием формы SC-FDMA-сигнала. Технический результат – уменьшение помех с другими сигналами синхронизации при приеме сигнала синхронизации. 5 н. и 13 з.п. ф-лы, 10 ил., 5 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Реализации, описанные в данном документе, в общем, относятся к передающему устройству, к способу в передающем устройстве и к приемному устройству. В частности, в данном документе описан механизм для формирования сигнала синхронизации для связи между устройствами (D2D) с использованием формы сигнала на основе множественного доступа с частотным разделением каналов с одной несущей (SC-FDMA).

УРОВЕНЬ ТЕХНИКИ

Мобильный терминал, также известный как абонентское устройство (UE), беспроводной терминал и/или мобильная станция, поддерживает обмен данными в беспроводном режиме в сети беспроводной связи, иногда также называемой в качестве системы сотовой радиосвязи. Связь может выполняться, например, между двумя мобильными терминалами, между мобильным терминалом и телефоном с проводным соединением и/или между мобильным терминалом и сервером через сеть радиодоступа (RAN) и возможно одну или более базовых сетей. Беспроводная связь может содержать различные услуги связи, такие как голос, обмен сообщениями, пакетные данные, видео, широковещательная передача и т.д.

Мобильный терминал дополнительно может упоминаться в качестве мобильного телефона, сотового телефона, планшетного компьютера или переносного компьютера с поддержкой беспроводной связи и т.д. Мобильный терминал в настоящем контексте может представлять собой, например, портативные, карманные, переносные, включенные в компьютер или установленные в транспортном средстве мобильные терминалы с поддержкой обмена речью и/или данными, через сеть радиодоступа, с другим объектом, таким как другой мобильный терминал, стационарный объект или сервер.

Сеть беспроводной связи покрывает географическую область, которая разделена на сотовые зоны, причем каждая сотовая зона обслуживается посредством узла радиосети или базовой станции, например, базовой радиостанции (RBS) или базовой приемо-передающей станции (BTS), которая в некоторых сетях может упоминаться в качестве "eNB", "усовершенствованного узла B", "узла B" или "узла B", в зависимости от используемой технологии и/или терминологии.

Иногда, выражение "сота" может использоваться для обозначения самого узла радиосети. Тем не менее, сота в нормальной терминологии также может использоваться для географической области, в которой покрытие радиосвязью предоставляется посредством узла радиосети в узле базовой станции. Один узел радиосети, расположенный в узле базовой станции, может обслуживать одну или несколько сот. Узлы радиосети могут обмениваться данными по радиоинтерфейсу, работающему на радиочастотах, с любой мобильной станцией в пределах диапазона соответствующего узла радиосети.

В некоторых сетях радиодоступа, несколько узлов радиосети могут быть соединены, например, посредством наземных линий или микроволн, с контроллером радиосети (RNC), например, в универсальной системе мобильной связи (UMTS). RNC, который также иногда называется контроллером базовой станции (BSC), например, в GSM, может контролировать и координировать различные действия нескольких узлов радиосети, соединенных с ним. GSM является сокращением для глобальной системы мобильной связи (первоначально: группа экспертов мобильной связи).

В стандарте долгосрочного развития (LTE) Партнерского проекта третьего поколения (3GPP), узлы радиосети, которые могут упоминаться в качестве усовершенствованных узлов B или eNB, могут соединяться со шлюзом, например, шлюзом радиодоступа, с одной или более базовых сетей. LTE основан на сетевых технологиях GSM/EDGE и UMTS/HSPA, что повышает пропускную способность и скорость с использованием другого радиоинтерфейса наряду с улучшениями базовой сети.

Усовершенствованный стандарт LTE, т.е. LTE версия 10 и последующие версии, задаются с возможностью предоставлять более высокие скорости передачи битов экономически эффективным способом и, одновременно, полностью удовлетворять требованиям, заданным посредством Международного союза по телекоммуникациям (ITU) для усовершенствованного стандарта международной системы мобильной связи (IMT), иногда также называемого в качестве 4G (сокращение для "четвертого поколения").

Связь в чрезвычайных ситуациях не может базироваться только на инфраструктуре систем сотовой связи, таких как, например, LTE-система, поскольку она может быть нефункционирующей, как в случаях землетрясений, цунами, метелей, ураганов и т.д. В некоторых областях, может даже вообще не существовать покрытие системы сотовой связи. В силу этого, в настоящее время проводятся работы по стандартизации, чтобы указывать технические решения, которые должны позволять LTE-терминалам или мобильным терминалам непосредственно обмениваться данными между собой и даже возможно ретранслировать информацию, отправленную из одного терминала, через другой терминал или несколько других терминалов. Прямая связь между терминалами, также известная как связь между устройствами (D2D), должна быть возможной с/без присутствия сотовой LTE-инфраструктуры. Другими словами, такие частные карманные устройства, как предполагается, формируют резервную произвольно организующуюся сеть связи при чрезвычайных происшествиях, когда существующая инфраструктура связи не функционирует, либо отсутствует первоочередное покрытие сотовой связи. Для приложений служб общественной безопасности, может использоваться широковещательная связь, т.е. идентичная информация может приниматься посредством определенного числа D2D-пользователей.

Дополнительный вариант применения заключается в том, что мобильный терминал рядом с другими мобильными или стационарными терминалами должен иметь возможность обнаруживать такие терминалы и после этого иметь возможность устанавливать D2D-связь. Механизм обнаружения также может быть применимым к коммерческому варианту применения, в котором D2D-пользователь может устанавливать прямую связь с друзьями поблизости или использоваться для оповещения. Таким образом, такое обнаружение может возникать, даже если терминалы находятся в пределах покрытия LTE-системы, т.е. независимо от LTE-системы.

Чтобы устанавливать начальный контакт, каждый мобильный терминал должен иметь возможность передавать и принимать D2D-сигналы синхронизации (D2DSS), которые могут служить в приемном устройстве, например, как в качестве сигналов обнаружения, так и в качестве инструментального средства для того, чтобы устанавливать временную и частотную синхронизацию с передающим мобильным терминалом. Базовое свойство сигналов D2DSS заключается в том, что они должны предоставлять импульсообразную апериодическую автокорреляционную функцию, чтобы предоставлять надежное обнаружение в приемном устройстве. Также должно быть возможным обнаруживать D2DSS с низкой сложностью с помощью соответствующего согласованного фильтра в приемном устройстве. Поскольку может быть предусмотрено определенное число параллельных линий D2D-связи в довольно небольшой географической области, должны быть доступными несколько D2DSS с низкой взаимной корреляцией, которые могут выбираться, например, случайно на основе измерений сигнала или посредством любых предварительно заданных правил, посредством мобильных терминалов таким образом, что даже в случае коллизий сигналов в приемном устройстве, имеется вероятность того, что D2DSS может надежно обнаруживаться.

В настоящем контексте, выражения "нисходящая линия связи (downlink)", "нисходящая линия связи (downstream link)" или "прямая линия связи" могут использоваться для тракта передачи из узла радиосети в мобильный терминал. Выражение "восходящая линия связи (uplink)", "восходящая линия связи (upstream link)" или "обратная линия связи" может использоваться для тракта передачи в противоположном направлении, т.е. из мобильного терминала в узел радиосети.

В одном примере, D2D-связь может указываться в ресурсах восходящей линии связи (UL), т.е. в UL-несущей для дуплекса с частотным разделением каналов (FDD) или в UL-субкадрах для дуплекса с временным разделением каналов (TDD). Во втором случае, мобильный терминал, который соединен или соединяется с LTE-сетью, может принимать D2DSS, отправленный из другого мобильного терминала, который не синхронизируется или находится в пределах покрытия LTE-сети, при приеме сигналов синхронизации, отправленных в нисходящей линии связи (DL) из узла радиосети. Следовательно, D2DSS должен быть четко отличимым от всех LTE DL-сигналов синхронизации.

Чтобы минимизировать сложность LTE-терминалов, которые поддерживают D2D-связь, очевидно, что базовый способ D2D-передачи должен быть идентичным либо способу в LTE DL, который представляет собой мультиплексирование с ортогональным частотным разделением каналов (OFDM), либо способу в LTE UL, который представляет собой множественный доступ с частотным разделением каналов с одной несущей (SC-FDMA). Можно предполагать, что будущая D2D-связь LTE и D2DSS могут работать либо в LTE FDD UL-полосах частот, либо в UL-субкадрах в TDD-режиме. SC-FDMA и OFDM технически представляют собой OFDM-сигналы, однако SC-FDMA использует сдвиг в 1/2 поднесущей и обеспечивает возможность модуляции всех поднесущих, в отличие от OFDM, которое использует немодулированную DC-поднесущую, при этом частота должна быть равна центральной частоте радиочастотного диапазона узла радиосети.

Предусмотрено два ключевых аспекта, которые обуславливают проектирование сигнала первичной синхронизации (PSS)/сигнала вторичной синхронизации (SSS) в Rel-8, которые, по сути, также должны приоритезироваться для D2DSS: производительность обнаружения и сложность приемного устройства.

Производительность обнаружения зависит от объема ресурсов, выделяемого сигналу синхронизации, а также характеристик сигналов, например, взаимных корреляций.

Приемное устройство типично выполняет согласованную фильтрацию для того, чтобы обнаруживать PSS. Сложность приемного устройства зависит от способности использовать определенные свойства сигнала для того, чтобы существенно сокращать число комплекснозначных умножений в приемном устройстве. PSS имеет центральную симметрию во временной области, т.е. значение сигнала появляется до двух раз в OFDM-символе, что обеспечивает возможность уменьшения числа умножений на ~50% посредством выполнения добавления симметричных выборок до умножения на выборку-реплику. Предусмотрено три различных PSS, которые получаются из трех различных последовательностей модуляции (т.е. PSS-последовательностей). Кроме того, две из PSS-последовательностей составляют пару комплексно-сопряженных последовательностей, и вследствие центральной симметрии во временной области они также становятся парой комплексно-сопряженных сигналов, что позволяет обнаруживать оба PSS со сложностью умножения, идентичной сложности умножения при обнаружении одного PSS. SSS основан на m-последовательностях, для которых быстрые преобразования Адамара могут использоваться в детекторе. Обнаружено, что модуль поиска сот вносит 10-15% совокупных затрат в полосе модулирующих частот LTE-модема. Следовательно, крайне важно, что D2DSS должен поддерживать реализации приемного устройства с низкой сложностью, и что как можно больше из существующих реализаций PSS/SSS-детектора могут повторно использоваться.

D2DSS, передаваемый в LTE TDD-режиме, и существующий PSS, передаваемый из узла радиосети или усовершенствованного узла B, могут обуславливать взаимные помехи. Например, как проиллюстрировано на фиг. 1a, унаследованный мобильный терминал может пытаться обнаруживать PSS узла радиосети LTE-системы, например, для выбора соты, при одновременной неспособности успешно выполнять осуществление доступа к соте, если D2D-терминалы рядом с ним передают D2DSS, имеющий большую взаимную корреляцию с PSS, см. фиг. 1a. В этом случае, унаследованный терминал не имеет предыдущей синхронизации с узлом радиосети и должен выполнять поиск PSS также в UL-субкадрах, в которых может передаваться D2DSS.

В другом проиллюстрированном примере на фиг. 1b, D2D-терминал, расположенный за пределами покрытия LTE-сети, не должен иметь возможность осуществлять доступ к какой-либо соте, но иногда по-прежнему может принимать LTE-сигналы синхронизации, PSS/SSS, см. фиг. 1b. Эти сигналы должны составлять помехи при попытке обнаруживать D2DSS. В этом случае, D2D-терминал не имеет синхронизации с узлом радиосети, и PSS может обнаруживаться в субкадрах, в которых может приниматься D2DSS.

Даже если LTE PSS и D2DSS должны использовать различные формы сигналов, можно показывать, что взаимная корреляция между LTE PSS (на основе форм OFDM-сигнала) и D2DSS, полученным из формы SC-FDMA-сигнала, модулированной с помощью идентичной PSS-последовательности, демонстрирует два сильных пика взаимной корреляции, согласно приблизительно 50% от энергии сигналов. Кроме того, пиковая взаимная корреляция более чем на 50% превышает максимальный автокорреляционный боковой лепесток D2DSS. Таблица 1 приводит пример корреляционных значений, когда D2DSS использует последовательность модуляции, идентичную последовательности модуляции для PSS, но использует форму SC-FDMA-сигнала. Термин "индекс корня" означает параметр в определении последовательности модуляции, и различные индексы корня приводят к различным последовательностям.

ТАБЛИЦА 1
Индекс корня(u) Автокорреляция:максимальная ложная пиковая корреляция Взаимная корреляция:максимальный ложный пик, (индекс корня) Взаимная корреляция с PSS:максимальный ложный пик, (PSS-индекс корня)
u=25 0,24 0,38, (u=34) 0,47, (u=25)
u=29 0,24 0,40, (u=34) 0,47, (u=29)
u=34 0,24 0,38, (u=25) 0,47, (u=34)

Такие уровни помех являются нежелательными, поскольку максимальная взаимная корреляция не должна быть существенно выше максимального автокорреляционного бокового лепестка, чтобы иметь возможность поддерживать идентичное пороговое значение обнаружения в приемном устройстве, как если отсутствуют помехи, т.е. как на канале аддитивного белого гауссова шума (AWGN). Для этих пиков взаимной корреляции, пороговое значение обнаружения должно увеличиваться, с тем чтобы сохранять целевую частоту ложных оповещений, что приводит к снижению вероятности обнаружения.

LTE PSS-последовательность выбирается и преобразуется в поднесущие таким образом, что результирующий PSS является центрально симметричным во временной области. PSS формируется в качестве OFDM-сигнала, в котором DC-поднесущая, т.е. частота, является немодулированной. Дискретная форма сигнала может быть представлена посредством следующего:

,

для , Чтобы получать центральную симметрию во временной области, т.е. , PSS преобразуется в поднесущие таким образом, что следующая взаимосвязь применяется для коэффициентов Фурье .

Центральная симметрия N-2 выборок PSS может использоваться для того, чтобы сокращать число умножений в соответствующем согласованном фильтре. Например, если PSS имеет длину в N выборок, можно показывать, что предусмотрено N-2 центрально симметричных выборок в PSS-сигнале, т.е. предусмотрено (N-2)/2 уникальных выборочных значений и дополнительно 2 выборки, которые могут не быть идентичными другим выборкам. Таким образом, посредством выполнения добавления симметричных выборок до умножения на символ-реплику, согласованный фильтр может реализовываться посредством (N-2)/2+2 умножений в расчете на одну корреляцию, что составляет уменьшение приблизительно в 50% по сравнению с прямой реализацией, которая требует N умножений, т.е. по одному умножению в расчете на входную выборку. Пример приемного LTE-устройства для PSS проиллюстрирован на фиг. 1c, где "*" обозначает комплексное сопряжение, и являются значениями PSS с индексом корня.

Таким образом, фиг. 1c иллюстрирует эффективный согласованный фильтр для обнаружения PSS-сигналов с использованием N выборок. Кроме того, в LTE задаются три различных PSS, которые получаются из трех различных PSS-последовательностей. Две из последовательностей составляют комплексно-сопряженную версию друг друга. Иными словами, предусмотрено два индекса u и v корня, которые формируют PSS-последовательности таким образом, что результирующие PSS связаны посредством . Следовательно, поскольку комплексно-сопряженное число подразумевает только изменение знака в мнимой части принимаемой выборки, можно обнаруживать оба этих PSS со сложностью умножения всего одной из последовательностей. Иными словами, дополнительные умножения не требуются для вычисления корреляции сопряженного сигнала, т.е. уменьшение сложности на 50%. Центральная симметрия сохраняется для любого значения индекса u корня, обеспечивая возможность наличия только одной структуры согласованных фильтров, с фиксированными соединениями между аппаратными элементами, которые в силу этого могут многократно использоваться для обнаружения различных D2DSS-сигналов посредством изменения только сигнала-реплики.

Центрально симметричный PSS получается из LTE PSS-последовательности , сформированной из последовательности Задова-Чу частотной области с длиной 63 согласно следующему:

,

где упоминается в качестве набора индексов корня. Последовательность должна преобразовываться в элементы ресурсов согласно следующему:

Непрерывный во времени сигнал нижних частот на антенном порту в OFDM-символе во временном кванте нисходящей линии связи задается посредством следующего:

,

для , где и , и является контентом элемента ресурсов на антенном порту . Переменная N равна 2048 для разнесения поднесущих в и 4096 для разнесения поднесущих в . Объекты и дополнительно заданы в технических требованиях LTE.

Форма SC-FDMA-сигнала в LTE является такой, что непрерывный во времени сигнал нижних частот для антенного порта в SC-FDMA-символе во временном кванте восходящей линии связи задается посредством следующего:

,

для , где . Переменная равна 2048 для разнесения поднесущих в , и является контентом элемента ресурсов на антенном порту . Объекты и дополнительно заданы в технических требованиях LTE.

В контексте этого раскрытия сущности, форма SC-FDMA-сигнала означает сигнал с несколькими несущими без немодулированных DC-поднесущих, причем поднесущие выделяются со смещением в половину поднесущей относительно DC-частоты.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Следовательно, цель заключается в том, чтобы исключать, по меньшей мере, некоторые вышеуказанные недостатки и обеспечивать возможность мобильному терминалу формировать сигнал синхронизации, который позволяет приемной мобильной станции обнаруживать передающее устройство без вызывания помех с другими сигналами синхронизации или, по меньшей мере, уменьшать такие помехи.

Это и другие цели достигаются посредством признаков прилагаемых независимых пунктов формулы изобретения. Дополнительные формы реализации являются очевидными из зависимых пунктов формулы изобретения, описания и чертежей.

Во избежание вышеизложенных проблем, в данном документе раскрыто проектирование новых последовательностей синхронизации для D2DSS с использованием формы SC-FDMA-сигнала при одновременной демонстрации симметрии сигналов, которая обеспечивает возможность эффективной реализации приемного устройства.

Согласно первому аспекту, предусмотрено передающее устройство, сконфигурированное с возможностью формирования сигнала синхронизации для связи между устройствами (D2D) с использованием формы сигнала на основе множественного доступа с частотным разделением каналов с одной несущей (SC-FDMA), при этом последовательность синхронизации модулирует набор поднесущих. Передающее устройство содержит процессор, сконфигурированный с возможностью определения последовательности синхронизации, где и для положительной константы , при этом является индексом корня, и является длиной последовательности синхронизации. Процессор также сконфигурирован с возможностью выбора индекса корня из набора индексов корня. Помимо этого, процессор сконфигурирован с возможностью формирования сигнала синхронизации на основе определенной последовательности синхронизации и выбранного индекса корня. Кроме того, процессор (520) сконфигурирован с возможностью преобразования последовательности синхронизации в элементы ресурсов формы SC-FDMA-сигнала таким образом, что для коэффициентов Фурье: , где является целым числом, не меньшим , и является коэффициентом Фурье на частоте .

В силу этого, обеспечивается своевременное и эффективное обнаружение сигналов синхронизации с исключенными или, по меньшей мере, уменьшенными помехами для других сигналов синхронизации, таких как, например, PSS и/или SSS.

В первой возможной реализации передающего устройства согласно первому аспекту, процессор может быть дополнительно сконфигурирован с возможностью определения последовательности синхронизации таким образом, что .

В силу этого, представлена альтернативная реализация последовательности синхронизации, имеющая низкие помехи для другой передачи служебных сигналов при наложении нестрогих требований на приемное устройство в его реализации.

Во второй возможной реализации передающего устройства согласно первому аспекту или первой возможной реализации первого аспекта, процессор может быть дополнительно сконфигурирован с возможностью получения центрально антисимметричной D2D-последовательности синхронизации четной длины из центрально симметричной D2D-последовательности синхронизации четной длины посредством умножения элементов одной из половин последовательности синхронизации на -1.

В силу этого, представлена еще одна альтернативная реализация. Преимущество использования центрально антисимметричного сигнала состоит в том, что он имеет очень низкую взаимную корреляцию с центрально симметричным сигналом. Следовательно, когда сигналы совмещены по времени, если D2DSS является центрально антисимметричным, он может иметь низкую взаимную корреляцию с LTE PSS, который является центрально симметричным.

В третьей возможной реализации передающего устройства согласно первому аспекту или любой из предыдущих реализаций первого аспекта, процессор может быть сконфигурирован с возможностью определения последовательности синхронизации таким образом, что:

,

а также сконфигурирован с возможностью выбора индекса корня как целого числа, отличающегося от 25, 29 и 34.

Преимущество согласно такой реализации состоит в том, что помехи любому PSS-сигналу могут предотвращаться или уменьшаться посредством выбора индекса корня, отличного от индекса корня, используемого в передаче служебных PSS-сигналов.

В четвертой возможной реализации передающего устройства согласно первому аспекту или любой из предыдущих реализаций первого аспекта, процессор может быть сконфигурирован с возможностью определения последовательности синхронизации посредством выбора последовательности Задова-Чу нечетной длины и удаления нечетного числа элементов из выбранной последовательности Задова-Чу, чтобы получать последовательность синхронизации четной длины.

Таким образом, достигается эффективный и при этом легко реализованный сигнал синхронизации.

В пятой возможной реализации передающего устройства согласно первому аспекту или любой из предыдущих реализаций, процессор может быть сконфигурирован с возможностью определения последовательности синхронизации посредством выбора последовательности Задова-Чу четной длины, расширения выбранной последовательности Задова-Чу на один элемент и удаления центрального элемента расширенной последовательности Задова-Чу.

Таким образом, достигается эффективный и при этом легко реализованный сигнал синхронизации.

В шестой возможной реализации передающего устройства согласно первому аспекту или любой из предыдущих реализаций, процессор может быть сконфигурирован с возможностью определения последовательности синхронизации таким образом, что ; и .

Таким образом, достигается эффективный и при этом легко реализованный сигнал синхронизации.

В седьмой возможной реализации передающего устройства согласно первому аспекту или любой из предыдущих реализаций, процессор может быть сконфигурирован с возможностью преобразования последовательности синхронизации в элементы ресурсов SC-FDMA-сигнала таким образом, что для коэффициентов Фурье: .

Таким образом, достигается эффективный и при этом легко реализованный сигнал синхронизации.

В восьмой возможной реализации передающего устройства согласно первому аспекту или любой из предыдущих возможных реализаций, , где является сигналом SC-FDMA, .

В девятой возможной реализации передающего устройства согласно первому аспекту или любой из предыдущих возможных реализаций, процессор может быть сконфигурирован с возможностью преобразования последовательности синхронизации в элементы ресурсов SC-FDMA-сигнала таким образом, что для коэффициентов Фурье: .

Таким образом, достигается эффективный и при этом легко реализованный сигнал синхронизации.

В десятой возможной реализации передающего устройства согласно первому аспекту или любой из предыдущих возможных реализаций, процессор может быть сконфигурирован с возможностью выбора индекса корня из набора индексов корня либо случайно, либо посредством его извлечения из одного или более параметров, внутренних для передающего устройства.

Преимущество этой реализации содержит повышенную гибкость в выборе индекса корня в сигнале синхронизации.

В одиннадцатой возможной реализации передающего устройства согласно первому аспекту или любой из предыдущих возможных реализаций, процессор может быть сконфигурирован с возможностью выбора индекса корня из набора индексов корня на основе информации, принимаемой из обслуживающего узла радиосети, или на основе принимаемого сигнала; и/или выбора индекса корня из первого набора индексов корня при приеме сигнала синхронизации из другого передающего D2D-устройства, синхронизированного с сотой, и из второго набора индексов корня при приеме сигнала синхронизации из другого передающего D2D-устройства, не синхронизированного с сотой; и/или посредством выбора индекса корня, идентичного или отличного от индекса корня, который использован в принимаемом сигнале синхронизации; и/или, когда сигнал синхронизации передается по нескольким перескокам между сетевыми узлами, выбора индекса корня из набора индексов корня на основе числа перескоков принимаемого сигнала синхронизации.

Преимущество этой реализации содержит повышенную гибкость в выборе индекса корня в сигнале синхронизации.

Согласно второму аспекту, предусмотрен способ для использования в передающем устройстве. Способ направлен на формирование сигнала синхронизации для D2D-связи с использованием формы SC-FDMA-сигнала, при этом последовательность синхронизации модулирует набор поднесущих. Способ содержит определение последовательности синхронизации, где и , для положительной константы , при этом является индексом корня, и является длиной последовательности синхронизации. Кроме того, способ содержит выбор индекса корня из набора индексов корня. Дополнительно, способ, кроме того, содержит формирование сигнала синхронизации на основе определенной последовательности синхронизации и выбранного индекса корня. Кроме того последовательность синхронизации может быть преобразована в элементы ресурсов формы SC-FDMA-сигнала таким образом, что для коэффициентов Фурье: , где является целым числом, не меньшим .

В силу этого, обеспечивается своевременное и эффективное обнаружение сигналов синхронизации с исключенными или, по меньшей мере, уменьшенными помехами для других сигналов синхронизации, таких как, например, PSS и/или SSS.

В первой возможной реализации способа согласно второму аспекту, способ также может содержать определение последовательности синхронизации таким образом, что .

В силу этого, представлена альтернативная реализация последовательности синхронизации, имеющая низкие помехи для другой передачи служебных сигналов при наложении нестрогих требований на приемное устройство в его реализации.

Во второй возможной реализации способа согласно второму аспекту или первой возможной реализации, центрально антисимметричная D2D-последовательность синхронизации четной длины может получаться из центрально симметричной D2D-последовательности синхронизации четной длины посредством умножения элементов одной из половин последовательности синхронизации на -1.

В силу этого, представлена еще одна альтернативная реализация. Преимущество использования центрально антисимметричного сигнала состоит в том, что он имеет очень низкую взаимную корреляцию с центрально симметричным сигналом. Следовательно, когда сигналы совмещены по времени, если D2DSS является центрально антисимметричным, он может иметь низкую взаимную корреляцию с LTE PSS, который является центрально симметричным.

В третьей возможной реализации способа согласно второму аспекту или любой из предыдущих реализаций первого аспекта, последовательность синхронизации может определяться таким образом, что:

,

а также сконфигурирован с возможностью выбора индекса корня как целого числа, отличающегося от 25, 29 и 34.

Преимущество согласно такой реализации состоит в том, что помехи любому PSS-сигналу могут предотвращаться или уменьшаться посредством выбора индекса корня, отличного от индекса корня, используемого в передаче служебных PSS-сигналов.

В четвертой возможной реализации способа согласно второму аспекту или любой из предыдущих реализаций второго аспекта, последовательность синхронизации может определяться посредством выбора последовательности Задова-Чу нечетной длины и удаления нечетного числа элементов из выбранной последовательности Задова-Чу, чтобы получать последовательность синхронизации четной длины.

Таким образом, достигается эффективный и при этом легко реализованный сигнал синхронизации.

В пятой возможной реализации способа согласно второму аспекту или любой из предыдущих реализаций, последовательность синхронизации может определяться посредством выбора последовательности Задова-Чу четной длины, расширения выбранной последовательности Задова-Чу на один элемент и удаления центрального элемента расширенной последовательности Задова-Чу.

Таким образом, достигается эффективный и при этом легко реализованный сигнал синхронизации.

В шестой возможной реализации способа согласно второму аспекту или любой из предыдущих реализаций, последовательность синхронизации может определяться таким образом, что ; и .

Таким образом, достигается эффективный и при этом легко реализованный сигнал синхронизации.

В седьмой возможной реализации способа согласно второму аспекту или любой из предыдущих реализаций, последовательность синхронизации может преобразовываться в элементы ресурсов SC-FDMA-сигнала таким образом, что для коэффициентов Фурье: .

Таким образом, достигается эффективный и при этом легко реализованный сигнал синхронизации.

В восьмой возможной реализации способа согласно второму аспекту или любой из предыдущих возможных реализаций, , где является сигналом SC-FDMA, .

В девятой возможной реализации сп