Способ определения термодинамических характеристик газообразных веществ при квазиизэнтропических условиях нагружения в мегабарной области давлений

Иллюстрации

Показать все

Изобретение относится к области исследований квазиизэнтропической сжимаемости газов в мегабарной области давлений. Способ, реализуемый в цилиндрическом устройстве, содержащем заряд взрывчатого вещества, охватывающий корпус с полостью для исследуемого газа, внутри которой коаксиально корпусу размещена дополнительная оболочка, а вдоль оси устройства расположен цилиндрический металлический стержень, включает квазиизэнтропическое нагружение газа, находящегося во внутренней коаксиальной полости устройства, фиксирование движения оболочки, сжимающей исследуемый газ, определение размеров оболочки и стержня в момент максимального сжатия газа. Особенностью способа является использование стержня из эталонного материала с известными ударной адиабатой и холодной кривой сжатия. На основании ударной адиабаты, холодной кривой сжатия стержня и измеренных в условиях одного эксперимента значений внутреннего радиуса оболочки и наружного радиуса стержня определяют среднее давление и среднюю плотность исследуемого газа. Технический результат - одновременное экспериментальное определение давлений и плотностей, реализующихся в устройствах квазиизэнтропического нагружения (сжатия). 4 ил.

Реферат

Изобретение относится к области исследований квазиизэнтропической сжимаемости газов в мегабарной области давлений.

Использование экспериментальной техники мощных ударных волн для изучения экстремальных состояний изотопов водорода, как одного из элементов энергетики будущего, является сегодня основным источником информации о поведении сильно сжатой плазмы в области высоких температур и давлений мегабарного уровня. Существенно большие давления, превышающие почти на порядок соответствующие значения однократного ударно-волнового сжатия при значительном снижении эффектов необратимого нагрева, реализуются при квазиизэнтропическом сжатии веществ последовательностью ударных волн.

Эти обстоятельства являются постоянно действующим стимулирующим фактором экспериментального изучения свойств неидеальной плазмы водорода, дейтерия и других газов, в частности их уравнений состояния, связывающих термодинамические параметры, например, давление, плотность и энергию E=E(ρ, P). Такие уравнения необходимы для создания расчетных моделей динамических процессов с интенсивным энерговыделением и инновационных технологий в интересах ядерной энергетики и астрофизики.

Известен способ измерения термодинамических величин в газе при давлениях мегабарного уровня в изначально твердом водороде и дейтерии при изэнтропическом сжатии с помощью давления сверхсильного магнитного поля (Г.В. Борисков, А.И. Быков, Н.И. Егоров и др. Экспериментальное определение нулевой изотермы изотопов водорода до давлений в несколько мегабар. В Сб. XI Научные Харитоновские чтения. Под ред. дтн А.Л.Михайлова. Саров. РФЯЦ-ВНИИЭФ. 2009, с.771-782). При проведении опыта в выбранные моменты времени производится рентгенографирование образцов из исследуемого и эталонного материала, сжимаемого изэнтропически оболочкой цилиндрической геометрии, а по начальным и конечным размерам поперечного сечения определяется плотность как исследуемого, так и эталонного образцов (давление в эталонном образце принимается равным давлению в контрастирующей оболочке из вольфрама). По плотности эталона с помощью его известной изэнтропы, с учетом расчетной поправки ε, определяют давление в исследуемом образце P( δ )=P ( δ ) эт ( 1+ε ).

Недостатком такого способа определения термодинамических величин в газе является расположение эталонного материала (алюминия) на стенке сжимающей оболочки и его конвертирование в контрастирующие оболочки из более плотного материала (сплав на основе вольфрама), что снижает точность определения сжатия, поскольку одна из границ будет всегда подвергаться гравитационной неустойчивости Рэлея-Тейлора. Кроме того, такой способ неприменим для устройств, работающих в условиях не изэнтропического, а часто встречающегося в практических приложениях квазиизэнтропического сжатия вещества, при котором давление в эталонном материале, расположенном в обжимающей оболочке, будет иметь ярко выраженное распределение по толщине.

Известен способ определения термодинамической характеристики – средней плотности газообразных веществ в условиях квазиизэнтропического нагружения давлением мегабарного уровня в цилиндрическом устройстве, содержащем заряд взрывчатого вещества, охватывающий корпус с полостью для исследуемого газа, внутри которой коаксиально корпусу размещена дополнительная оболочка, а вдоль оси устройства расположен цилиндрический металлический стержень, включающий квазиизэнтропическое нагружение газа, находящегося во внутренней коаксиальной полости устройства, фиксирование движения оболочки, сжимающей исследуемый газ, определение размеров оболочки и стержня в момент максимального сжатия газа, выбранный в качестве прототипа (А.О. Бликов, М.А. Мочалов, В.А. Огородников, В.А. Комраков. «Цилиндрическое устройство для сжатия газов до мегабарных давлений». Патент (RU)№2471545, МПКB01J3/08,G01N7/00, 9/00(2006/01), опубл. 10.01.2013, бюл.№1). Недостатком данного способа является отсутствие возможности одновременного определения давлений и плотностей в устройствах квазиизэнтропического нагружения.

Техническая проблема, на решение которой направлено заявляемое изобретение, заключается в определении термодинамических характеристик исследуемых газообразных веществ в условиях их квазиизэнтропического сжатия.

Технический результат, достигаемый при осуществлении заявляемого изобретения, заключается в одновременном экспериментальном определении давлений и плотностей, реализующихся в устройствах квазиизэнтропического нагружения (сжатия).

Указанный технический результат достигается тем, что согласно заявляемому способу определения термодинамических характеристик газообразных веществ в условиях квазиизэнтропического нагружения давлением мегабарного уровня в цилиндрическом устройстве, содержащем заряд взрывчатого вещества, охватывающий корпус с полостью для исследуемого газа, внутри которой коаксиально корпусу размещена дополнительная оболочка, а вдоль оси устройства расположен цилиндрический металлический стержень, включающему квазиизэнтропическое нагружение газа, находящегося во внутренней коаксиальной полости устройства, фиксирование движения оболочки, сжимающей исследуемый газ, определение размеров оболочки и стержня в момент максимального сжатия газа, в отличие от прототипа используют стержень из эталонного материала с известными ударной адиабатой и холодной кривой сжатия, на основании ударной адиабаты, холодной кривой сжатия стержня и измеренных значений внутреннего радиуса оболочки и наружного радиуса стержня определяют среднее давление и среднюю плотность исследуемого газа.

Использование всей совокупности признаков заявляемого способа позволяет определить в одном эксперименте термодинамические характеристики (средняя плотность и среднее давление) исследуемых газообразных веществ в условиях их квазиизэнтропического сжатия.

Изобретение поясняется фигурами. На фиг. 1 схематично изображено цилиндрическое устройство для квазиизэнтропического сжатия газа до мегабарных давлений. На фиг. 2 приведены ударная адиабата и холодная кривая сжатия эталонного материала, в данном случае – из стали и сплава вольфрама с никелем и железом ВНЖ-90. На фиг. 3 приведена одна из рентгенограмм опыта, полученная на момент максимального сжатия газа («остановки» оболочки), когда наступает равенство давления внутри сжатого газа на внутренней границе оболочки и на внешней границе стержня. На фиг. 4 приведены R(t) диаграммы движения внутренней границы оболочки из железа и наружной границы стержня из ВНЖ-90.

Заявляемый способ осуществляется в ходе работы цилиндрического устройства, содержащего заряд взрывчатого вещества (ВВ) 1, охватывающий корпус 2 с полостью 3 для исследуемого газа, внутри которой коаксиально корпусу 2 размещена дополнительная оболочка 4 и вдоль оси устройства расположен цилиндрический металлический стержень 8 с образованием двух коаксиальных полостей А и Б для исследуемого газа, следующим образом.

Для изменения степени сжатия газа часть ВВ может заменяться прокладкой из диэлектрика 5. Стальные фланцы 6 и гайки 7 используются для герметизации полостей А и Б с исследуемым газом.

После детонации заряда ВВ 1 возникает цилиндрическая ударная волна, которая, последовательно проходя по элементам устройства, транслируется в газ, находящийся в полости Б, сжимая и нагревая его. При схождении волны к оси устройства в полости Б формируется отраженная от металлического стержня 8 ударная волна, проходящая по уже сжатому нагретому газу. Этот процесс близок к изэнтропическому (является квазиизэнтропическим), т.к. после прохождения первой ударной волны дальнейшее сжатие газа в полости Б происходит практически без заметного набора энтропии газа. В ходе одного эксперимента с помощью жесткого рентгеновского излучения и многокадровой системы регистрации фиксируют движение оболочки 4, сжимающей исследуемый газ, и сжатие наружной границы стержня 8.

Из полученных экспериментально траекторий движения R(t) внутренней границы оболочки 4 определяют радиус внутренней границы оболочки 4 в момент максимального сжатия газа – ее «остановки» – R в.о к и наружный радиус стержня 8 из эталонного материала – R н.с к .

Средняя плотность газа определяется из выражения

ρ г к = ρ г 0 ⋅[ ( R в.о 0 ) 2 − ( R н.с 0 ) 2 ]⋅ [ ( R в.о к ) 2 − ( R н.с к ) 2 ] −1 ,

где ρ г 0 , R в.о 0 , R н.с 0 – начальная плотность газа, начальные радиусы внутренней границы оболочки 4 и наружной границы стержня 8 соответственно.

Средняя плотность стержня из эталонного материала определяется из выражения

ρ ст к = ρ ст 0 ⋅ ( R н.с 0 ) 2 ⋅ ( R н.с к ) −2 ,

где ρ ст 0 – начальная плотность стержня.

Второй термодинамический параметр – среднее давление в газе Pг – определяют по найденному значению ρ ст к при использовании известных ударной адиабаты и холодной кривой сжатия эталонного материала стержня и с учетом того, что на границе газ-стержень выполняется условие равенства давлений P ст к = P г , из выражения

Р г =  P ст к =( P уд ( ρ ст к ) +P хол ( ρ ст к ))⋅0,5

где P ст к – давление на наружной границе стержня в момент максимального сжатия газа, P уд ( ρ ст к ), P хол ( ρ ст к ) – значения давлений на ударной адиабате и холодной кривой сжатия эталонного материала стержня, соответствующие экспериментально определенному значению ρ ст к .

Погрешность регистрации положения границ оболочки и стержня, контактирующих с газом, а следовательно, и плотности газа и стержня из эталонного материала определяется качеством рентгеновского изображения, а именно влиянием рассеянного излучения, асимметрией сжатия и контрастом указанных границ, зависящим от разницы в коэффициентах поглощения рентгеновского излучения газом μ1 и материалом оболочки и стержня μ2:

( μ 1 − μ 2 )~( ρ 1 Z 1 3 − ρ 2 Z 2 3 )⋅ λ 3 ,

где ρ 1 и ρ 2 , Z 1 и Z 2 – плотности и атомные номера газа и материала оболочки (стержня) соответственно, λ – длина волны излучения. Поэтому при исследовании сжимаемости, например, водорода, дейтерия или гелия оправдано применение в устройстве оболочек и стержня из ВНЖ-90 (ρ = 17,1 г/см3; Z≈70), меди (ρ = 8,93 г/см3; Z=29) или стали (ρ = 7,85 г/см3; Z=26).

Начальные параметры газа и фактические размеры устройства контролируются в каждом эксперименте.

Начальная (до сжатия) температура газа непрерывно измеряется термопарой, закрепленной на трубопроводе на входе в камеру высокого давления. Для контроля давления газа (до его сжатия) в объеме оболочки непрерывно в реальном времени используется тензометрический датчик давления. По измеренным перед опытом давлению и температуре определяется начальная плотность газа ρ0. Для теневой регистрации изображения внутренней границы оболочки и наружной границы стержня, по которым определяется размер полости со сжатым газом в момент максимального сжатия («остановки» оболочки), используются генераторы мощных импульсов тормозного излучения и системы регистрации, позволяющие получать рентгенограммы на подлетной и разлетной стадии движения оболочки. Погрешность определения средней плотности и среднего давления в квазиизэнтропически сжатом газе в области давлений до 500 ГПа составляет ±10% и ±15% соответственно.

Способ определения термодинамических характеристик газообразных веществ при квазиизэнтропических условиях нагружения в мегабарной области давлений, включающий квазиизэнтропическое нагружение газа, находящегося во внутренней коаксиальной полости цилиндрического устройства, содержащего заряд взрывчатого вещества, охватывающий корпус с полостью для исследуемого газа, внутри которой коаксиально корпусу размещена дополнительная оболочка, а вдоль оси устройства расположен цилиндрический металлический стержень, фиксирование движения оболочки, сжимающей исследуемый газ, определение размеров оболочки и стержня в момент максимального сжатия газа, отличающийся тем, что используют стержень из эталонного материала с известными ударной адиабатой и холодной кривой сжатия, на основании измеренных значений внутреннего радиуса оболочки и наружного радиуса стержня, ударной адиабаты, холодной кривой сжатия стержня определяют среднее давление и среднюю плотность исследуемого газа.