Устройство управления трансмиссией транспортного средства

Иллюстрации

Показать все

Изобретение относится к трансмиссиям транспортных средств. Устройство управления трансмиссией транспортного средства, которая содержит механизм переключения передач, который получает множество ступеней переключения передач путем выбора множества путей передачи мощности и масляный насос, подающий масло к смазываемым деталям механизма переключения передач. Устройство управления трансмиссией содержит контроллер трансмиссии для выбора множества путей передачи мощности, который выбирает путь, имеющий малую нагрузку на смазываемые детали, среди множества путей передачи мощности, при обнаружении отказа масляного насоса. Смазываемые детали содержат участки подшипников. Контроллер трансмиссии выбирает путь, на котором сила, прикладываемая в радиальном направлении к участкам подшипников, мала, среди множества путей передачи мощности. Предотвращается заедание смазываемых деталей. 3 н. и 4 з.п. ф-лы, 15 ил.

Реферат

Область техники, к которой относится изобретение

[0001] Данное изобретение относится к устройству управления трансмиссией транспортного средства, содержащего масляный насос, который подает смазочное масло в механизм переключения передач.

УРОВЕНЬ ТЕХНИКИ

[0002] Примером устройства управления трансмиссией транспортного средства, содержащего масляный насос, который подает смазочное масло в механизм трансмиссии, является техническое средство, раскрытое в патентном документе 1. В техническом средстве, раскрытом в патентном документе 1, предусмотрен электрический масляный насос, который подает смазочное масло к смазываемым деталям механизма переключения передач, а управление производительностью электрического масляного насоса осуществляется в соответствии с рабочим состоянием транспортного средства. За счет применения такой конфигурация, техническое средство, раскрытое в патентном документе 1, повышает универсальность конструкции трансмиссии и предотвращает заедание смазываемых деталей и причинение им повреждения.

Документы, характеризующие предшествующий уровень техники

Патентные документы

[0003] Патентный документ 1: Выложенная заявка № Hei 4(1992)-285358 на патент Японии

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задача, решаемая изобретением

[0004] Вместе с тем, если при обнаружении отказа, произошедшего в масляном насосе, который подает смазочное масло, продолжается обычное управление, то есть риск, что из-за недостаточной смазки произойдет заедание смазываемых деталей и причинение им повреждения.

[0005] Ввиду вышеописанных проблем, задача данного изобретения состоит в том, чтобы разработать устройство управления трансмиссией транспортного средства, которое применимо в транспортном средстве, оснащенном масляным насосом для подачи смазочного масла в механизм переключения передач и конфигурация которого позволяет предотвратить заедание смазываемых деталей и причинение им повреждения, если в масляном насосе происходит отказ.

Средства решения задачи

[0006] Чтобы решить вышеописанную задачу, транспортное средство согласно данному изобретению содержит трансмиссию, имеющую механизм переключения передач, который позволяет получить множество ступеней переключения передач путем выбора множества путей передачи мощности, и масляный насос, который подает смазочное масло к смазываемым деталям механизма переключения передач.

Кроме того, устройство управления трансмиссией согласно данному изобретению оснащено контроллером трансмиссии для выбора множества путей передачи мощности.

Контроллер трансмиссии выбирает путь, имеющий малую нагрузку на смазываемые детали, среди множества путей передачи мощности при обнаружении отказа, произошедшего в масляном насосе.

Полезные эффекты изобретения

[0007] Следовательно, при обнаружении отказа, произошедшего в масляном насосе, выбирается путь передачи мощности, имеющий малую нагрузку на смазываемые детали.

То есть, при нормальном управлении переключением на основе запроса переключения передачи, существуют случаи, в которых выбирается путь передачи мощности, имеющий большую нагрузку на смазываемую деталь. Следовательно, если такое управление переключением поддерживается, когда в масляном насосе происходит отказ, существует риск, что в смазываемых деталях произойдет заедание и им будет причинено повреждение.

В отличие от этого, в данном изобретении при обнаружении отказа, произошедшего в масляном насосе, выбирается путь передачи мощности, имеющий малую нагрузку на смазываемые детали.

В результате, появляется возможность предотвратить заедание в смазываемых деталях и причинение им повреждения, даже если в масляном насосе происходит отказ.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] На фиг.1 представлен общий вид систем, иллюстрирующий систему привода и систему управления транспортного средства, к которому применимо устройство управления трансмиссией согласно варианту осуществления.

На фиг.2 представлен схематический обзорный вид, иллюстрирующий конфигурацию трансмиссии, установленной на транспортное средство, к которому применимо устройство управления трансмиссией согласно варианту осуществления.

На фиг.3 представлен схематический обзорный вид карты переключений, иллюстрирующий концепцию переключения схемы переключения передач в трансмиссии, установленной на транспортное средство, к которому применимо устройство управления трансмиссией согласно варианту осуществления.

На фиг.4 представлен вид схемы переключения передач, иллюстрирующий варианты схем переключения передач, соответствующие положениям переключения трех муфт сцепления в трансмиссии, установленной на транспортное средство, к которому применимо устройство управления трансмиссией согласно варианту осуществления.

На фиг.5 представлена блок-схема последовательности операций, иллюстрирующая протекание процесса управления переключением, проводимого в блоке управления трансмиссии согласно варианту осуществления.

На фиг.6A представлен ракурс потока крутящих моментов, иллюстрирующий поток крутящего момента MG1 и крутящего момента ICE в трансмиссии, когда выбрана схема переключения передач «EV первая ICE первая».

На фиг.6B представлен ракурс потоков крутящих моментов, иллюстрирующий поток крутящего момента MG1 и крутящего момента ICE в трансмиссии, когда выбрана схема переключения передач «EV вторая ICE третья».

На фиг.7 представлен пояснительный вид, описывающий силу, которая прикладывается в радиальном направлении участка подшипника, в трансмиссии, установленной на транспортное средство, к которому применимо устройство управления трансмиссией согласно варианту осуществления.

На фиг.8A представлен ракурс потоков крутящих моментов, иллюстрирующий поток крутящего момента MG1 и крутящего момента ICE в трансмиссии, когда выбрана схема переключения передач «EV вторая ICE вторая».

На фиг.8B представлен ракурс потоков крутящих моментов, иллюстрирующий поток крутящего момента MG1 и крутящего момента ICE в трансмиссии, когда выбрана схема переключения передач «EV вторая ICE четвертая».

На фиг.9 представлен ракурс потоков крутящих моментов, иллюстрирующий поток крутящего момента MG1 в трансмиссии, когда выбрана схема переключения передач «EV вторая ICE -».

На фиг.10 представлен пояснительный вид, описывающий зависимость между ступенью переключения передач EV и скоростью дифференциального вращения участка подшипника в трансмиссии, установленной на транспортное средство, к которому применимо устройство управления трансмиссией согласно варианту осуществления.

На фиг.11 представлен пояснительный вид, описывающий зависимость между ступенью переключения передач ICE и скоростью дифференциального вращения участка подшипника в трансмиссии, установленной на транспортное средство, к которому применимо устройство управления трансмиссией согласно варианту осуществления.

На фиг.12 представлен схематический обзорный вид карты переключений, иллюстрирующий концепцию переключения ступени переключения передач ICE, когда в насосе смазочного масла происходит отказ, а в трансмиссии, установленной на транспортное средство, применяется устройство управления трансмиссией согласно варианту осуществления.

На фиг.13 представлена временная диаграмма, иллюстрирующая каждую характеристику во время реализации блок-схемы последовательности операций согласно фиг.5.

ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

[0009] Ниже, на основе варианта осуществления, иллюстрируемого на чертежах, приводится описание предпочтительного варианта осуществления, предназначенного для реализации устройства управления трансмиссией транспортного средства согласно данному изобретению.

Примеры

[0010] Сначала описывается конфигурация.

Устройство управления трансмиссией согласно варианту осуществления применяется к гибридному транспортному средству (это один пример транспортного средства с электрическим приводом), содержащему в качестве компонентов системы привода один двигатель, два мотора-генератора и многоступенчатую трансмиссию, имеющую три муфты сцепления. «Общая конфигурация систем», «конфигурация трансмиссии», «конфигурация схем переключения передач» и «конфигурация процесса управления переключением» будут описаны ниже по отдельности применительно к конфигурации устройства управления трансмиссией для гибридного транспортного средства в варианте осуществления.

[0011] Общая конфигурация систем

На фиг.1 изображены система привода и система управления транспортного средства (гибридного транспортного средства), к которому применимо устройство управления трансмиссией согласно варианту осуществления. Ниже, на основе фиг.1, будет описана общая конфигурация систем.

[0012] Система привода гибридного транспортного средства содержит двигатель внутреннего сгорания, ICE, первый мотор-генератор MG1, второй мотор-генератор MG2 и многоступенчатую трансмиссию 1, имеющую три муфты сцепления, С1, С2, С3, как изображено на фиг.1. «ICE» - это аббревиатура термина «двигатель внутреннего сгорания».

[0013] Двигатель внутреннего сгорания, ICE, представляет собой, например, бензиновый двигатель или дизельный двигатель, который расположен в переднем отсеке транспортного средства таким образом, что направление коленчатого вала является направлением ширины транспортного средства. Этот двигатель внутреннего сгорания, ICE, соединен с картером 10 трансмиссии, предназначенном для многоступенчатой трансмиссии 1, а выходной вал двигателя внутреннего сгорания соединен с первым валом 11 (первым валом зубчатой передачи) многоступенчатой трансмиссии 1. Двигатель внутреннего сгорания, ICE, в основном осуществляет запуск MG2, причем второй мотор-генератор MG2 используется в качестве стартерного электродвигателя. Вместе с тем, стартерный электродвигатель 2 оставляют на случай, когда запуск MG2 с помощью аккумуляторной батареи 3 большой мощности гарантировать нельзя, как бывает во время предельно низких температур.

[0014] Как первый мотор-генератор MG1, так и второй мотор-генератор MG2, представляют собой синхронные двигатели с постоянными магнитами, использующие трехфазный переменный ток и имеющие аккумуляторную батарею 3 большой мощности в качестве обычного источника питания. Статор первого мотора-генератора MG1 крепится к корпусу первого мотора-генератора MG1, а этот корпус крепится к картеру 10 трансмиссии, предназначенному для многоступенчатой трансмиссии 1. Далее, первый вал мотора, выполненный как единое целое с ротором первого мотора-генератора MG1, соединен со вторым валом 12 многоступенчатой трансмиссии 1. Статор второго мотора-генератора MG2 крепится к корпусу второго мотора-генератора MG2, а этот корпус крепится к картеру 10 трансмиссии, предназначенному для многоступенчатой трансмиссии 1. Далее, второй вал мотора, выполненный как единое целое с ротором второго мотора-генератора MG2, соединен с шестым валом 16 многоступенчатой трансмиссии 1. Первый инвертор 4, который преобразует постоянный ток в трехфазный переменный ток во время подвода мощности и преобразует трехфазный переменный ток в постоянный ток во время рекуперации, соединен с обмоткой статора первого мотора-генератора MG1 посредством первой электропроводки 5 переменного тока. Второй инвертор 6, который преобразует постоянный ток в трехфазный переменный ток во время подвода мощности и преобразует трехфазный переменный ток в постоянный ток во время рекуперации, соединен с обмоткой статора второго мотора-генератора MG2 посредством второй электропроводки 7 переменного тока. Аккумуляторная батарея 3 большой мощности, первый инвертор 4 и второй инвертор 6 соединены проводкой 8 постоянного тока посредством распределительной коробки 9.

[0015] Многоступенчатая трансмиссия 1 представляет собой трансмиссию с нормальным зацеплением, содержащую множество пар зубчатых колес, имеющих разные передаточные отношения, и содержит шесть валов 11-16 зубчатых передач, снабженных зубчатыми колесами и расположенными параллельно друг другу внутри картера 10 трансмиссии, и три муфты сцепления, С1, С2, С3, для выбора какой-либо пары зубчатых колес. В качестве валов зубчатых передач предусмотрены первый вал 11, второй вал 12, третий вал 13, четвертый вал 14, пятый вал 15 и шестой вал 16. В качестве муфт сцепления предусмотрены первая муфта сцепления, С1, вторая муфта сцепления, С2, и третья муфта сцепления, С3. Картер 10 трансмиссии снабжен электрическим масляным насосом (масляным насосом) 20, который подает смазочное масло к сцепляемым участкам зубчатых колес и участкам подшипников (подшипникам) внутри картера.

[0016] Первый вал 11 представляет собой вал, с которым соединен двигатель внутреннего сгорания, ICE, на втором валу 11 расположены первое зубчатое колесо 101, второе зубчатое колесо 102 (второе зубчатое колесо силовой трансмиссии) и третье зубчатое колесо 103, изображенные на фиг.1 в указанном порядке с правой стороны. Второе зубчатое колесо 101 выполнено как единое целое (включая крепление как единого целого) со вторым валом 11. Второе зубчатое колесо 102 и третье зубчатое колесо 103 представляют собой промежуточные зубчатые колеса, причем участок ступицы, который выступает в осевом направлении, посажен на внешний периметр первого вала 11, и выполнены так что, обеспечивается возможность приводного соединения со вторым валом 11 посредством второй муфты сцепления, С2.

[0017] Второй вал 12 (второй вал зубчатой передачи) представляет собой вал, с которым соединен первый мотор-генератор MG1, и является полым цилиндрическим валом, расположенным коаксиально с осью, выровненной с положением внешней стороны первого вала 11, и на втором валу 12 расположены четвертое зубчатое колесо 104 (четвертое зубчатое колесо силовой трансмиссии) и пятое зубчатое колесо 105 (четвертое зубчатое колесо силовой трансмиссии), изображенные на фиг.1 в указанном порядке с правой стороны. Четвертое зубчатое колесо 104 и пятое зубчатое колесо 105 выполнены как единое целое (включая зацепление как единого целого) со вторым валом 12.

[0018] Третий вал 13 представляет собой вал, расположенный на выходной стороне многоступенчатой трансмиссии 1, шестое зубчатое колесо 106 (третье зубчатое колесо силовой трансмиссии), седьмое зубчатое колесо 107, восьмое зубчатое колесо 108, девятое зубчатое колесо 109 (шестое зубчатое колесо силовой трансмиссии), и десятое зубчатое колесо 110 (шестое зубчатое колесо силовой трансмиссии) расположены изображенные на фиг.1 в указанном порядке с правой стороны. Шестое зубчатое колесо 106, седьмое зубчатое колесо 10, и восьмое зубчатое колесо 108 выполнены как единое целое (включая зацепление как единого целого) с третьим валом 13. На третьем валу 13 расположены девятое зубчатое колесо 109 и десятое зубчатое колесо 110, которые представляют собой промежуточные зубчатые колеса, причем участки ступиц, выступающие в осевом направлении, посажены на внешний периметр третьего вала 13 и выполнены так, что обеспечивается возможность приводного соединения с третьим валом 13 посредством третьей муфты сцепления, С3. Далее, шестое зубчатое колесо 106 ведено в зацепление со вторым зубчатым колесом 102 первого вала 11, седьмое зубчатое колесо 107 введено в зацепление с шестнадцатым зубчатым колесом 116 дифференциала 17, а восьмое зубчатое колесо 108 введено в зацепление с третьим зубчатым колесом 103 первого вала 11. Девятое зубчатое колесо 109 введено в зацепление с четвертым зубчатым колесом 104 второго вала 12, а десятое зубчатое колесо 110 введено в зацепление с пятым зубчатым колесом 105 второго вала 12.

[0019] Четвертый вал 14 имеет оба конца, опирающиеся на картер 10 трансмиссии, причем на четвертом валу 14 расположены одиннадцатое зубчатое колесо 111, двенадцатое зубчатое колесо 112 (второе зубчатое колесо силовой трансмиссии) и тринадцатое зубчатое колесо 113 (пятое зубчатое колесо силовой трансмиссии), изображенные на фиг.1 в указанном порядке с правой стороны. Одиннадцатое зубчатое колесо 111 выполнено как единое целое (включая зацепление как единого целого) с четвертым валом 14. Двенадцатое зубчатое колесо 112 и тринадцатое зубчатое колесо 113 представляют собой промежуточные зубчатые колеса, причем участок ступицы в осевом направлении посажен на внешний периметр четвертого вала 14, и выполнены так что, обеспечивается возможность приводного соединения с четвертым валом 14 посредством первой муфты сцепления, С1. Далее, одиннадцатое зубчатое колесо 111 введено в зацепление со вторым зубчатым колесом 101 первого вала 11, двенадцатое зубчатое колесо 112 введено в зацепление со вторым зубчатым колесом 102 первого вала 11, а тринадцатое зубчатое колесо 113 введено в зацепление с четвертым зубчатым колесом 104 второго вала 12.

[0020] Пятый вал 15 имеет оба конца, опертые на картер 10 трансмиссии, и четырнадцатое зубчатое колесо 114, которое введено в зацепление с одиннадцатым зубчатым колесом 111 четвертого вала 14, выполненным как единое целое с ним (включая зацепление как единого целого).

[0021] Шестой валом 16 соединен со вторым мотором-генератором MG2 и имеет пятнадцатое зубчатое колесо 115, которое введено в зацепление с четырнадцатым зубчатым колесом 114 пятого вала 15, выполненным как единое целое с ним (включая зацепление как единого целого).

[0022] Второй мотор-генератор MG2 и двигатель внутреннего сгорания, ICE, механически соединены друг с другом посредством зубчатой передачи, конфигурация которой состоит из пятнадцатого зубчатого колеса 115, четырнадцатого зубчатого колеса 114, одиннадцатого зубчатого колеса 111 и второго зубчатого колеса 101, которые введены в зацепление друг с другом. Эта зубчатая передача служит в качестве понижающей зубчатой передачи, которая уменьшает скорость вращения MG2 в момент, когда с помощью MG2 происходит запуск двигателя внутреннего сгорания, ICE, посредством второго мотора-генератора MG2, и служит в качестве повышающей зубчатой передачи, которая увеличивает скорость вращения двигателя в момент, когда с помощью MG2 происходит генерирование мощности посредством второго мотора-генератора MG2 за счет привода двигателя внутреннего сгорания, ICE.

[0023] Первая муфта сцепления, С1, представляет собой кулачковую муфту, заключенную между двенадцатым зубчатым колесом 112 и тринадцатым зубчатым колесом 113 четвертого вала 14 и вводимую в сцепление - ввиду отсутствия механизма синхронизации - посредством движения сцепления в состоянии синхронизации вращения. Когда первая муфта сцепления, С1, находится в левом положении сцепления (столбец «Левое»), четвертый вал 14 и тринадцатое зубчатое колесо 113 соединены с обеспечением привода. Когда первая муфта сцепления, С1, находится в нейтральном положении (столбец «Н»), четвертый вал 14 и двенадцатое зубчатое колесо 112 расцеплены, и четвертый вал 14 и тринадцатое зубчатое колесо 113 расцеплены. Когда первая муфта сцепления, С1, находится правом положении сцепления (столбец «Правое»), четвертый вал 14 и двенадцатое зубчатое колесо 112 соединены с обеспечением привода.

[0024] Вторая муфта сцепления, С2, представляет собой кулачковую муфту, заключенную между вторым зубчатым колесом 102 и третьим зубчатым колесом 103 первого вала 11 и вводимую в сцепление - ввиду отсутствия механизма синхронизации - посредством движения сцепления в состоянии синхронизации вращения. Когда вторая муфта сцепления, С2, находится в левом положении сцепления (столбец «Левое»), первый вал 11 и третье зубчатое колесо 103 соединены с обеспечением привода. Когда вторая муфта сцепления, С2, находится в нейтральном положении (Н), первый вал 11 и второе зубчатое колесо 102 расцеплены, и первый вал 11 и третье зубчатое колесо 103 расцеплены. Когда вторая муфта сцепления, С2, находится в состоянии правого сцепления (столбец «Правое»), первый вал 11 и второе зубчатое колесо 102 соединены с обеспечением привода.

[0025] Третья муфта сцепления, С3, представляет собой кулачковую муфту, заключенную между девятым зубчатым колесом 109 и десятым зубчатым колесом 110 третьего вала 13 и вводимую в сцепление - ввиду отсутствия механизма синхронизации - посредством движения сцепления в состоянии синхронизации вращения. Когда третья муфта сцепления, С3, находится в левом положении сцепления (столбец «Левое»), третий вал 13 и десятое зубчатое колесо 110 соединены с обеспечением привода. Когда третья муфта сцепления, С3, находится в нейтральном положении (Н), третий вал 13 и девятое зубчатое колесо 109 расцеплены, и третий вал 13 и десятое зубчатое колесо 110 расцеплены. Когда третья муфта сцепления, С3, находится в правом положении сцепления (столбец «Правое»), третий вал 13 и девятое зубчатое колесо 109 соединены с обеспечением привода. Далее, шестнадцатое зубчатое колесо 116, которое введено в сцепление с седьмым зубчатым колесом 107, выполненным как единое целое (включая сцепление как единого целого) с третьим валом 13 многоступенчатой трансмиссии 1, соединено с левым и правым ведущими колесами 19 посредством дифференциала 17 и левой и правой полуосей 18.

[0026] Система управления гибридного транспортного средства содержит модуль 21 управления гибридным транспортным средством, блок 22 управления моторами, блок 23 управления трансмиссией и блок 24 управления двигателем, как изображено на фиг.1.

[0027] Модуль 21 управления гибридным транспортным средством (аббревиатура: «HCM») представляет собой встроенное средство управления для надлежащей организации энергопотребления транспортного средства в целом. Этот модуль 21 управления гибридным транспортным средством соединен с другими блоками управления (блоком 22 управления моторами, блоком 23 управления трансмиссией, блоком 24 управления двигателем, и т.д.), обеспечивая возможность двунаправленного обмена информацией посредством линии 25 связи CAN. «CAN» в термине «линия 25 связи CAN» - это аббревиатура термина «локальная сеть контроллеров».

[0028] Блок 22 управления моторами (аббревиатура: «MCU») осуществляет управление подводом мощности, управление рекуперацией, и т.п., первого мотора-генератора MG1 и второго мотора-генератора MG2 по командам управления, поступающим во первый инвертор 4 и второй инвертор 6. Режимы управления для первого мотора-генератора MG1 и второго мотора-генератора MG2 - это «управление по крутящему моменту» и «управление с обратной связью по скорости вращения». В режиме «управления по крутящему моменту» осуществляется управление, при котором вызывается соответствие действительного крутящего момента моторов целевому крутящему моменту моторов при определении целевого крутящего момента моторов, подлежащего передаче в соответствии с целевой движущей силой. В режиме «управления с обратной связью по скорости вращения» осуществляется управление, при котором определяют целевую скорость вращения мотора, с которой синхронизируют скорости вращения на входе-выходе сцепления, а выдача крутящего момента обратной связи происходит так, что действительная скорость вращения мотора сближается с целевой скоростью вращения мотора, когда есть запрос переключения передачи с целью введения в зацепление зубчатых колес и сцепления любой из муфт сцепления, С1, С2, С3, во время движения.

[0029] Блок 23 управления трансмиссией (аббревиатура «TMCU») осуществляет управление переключением с целью переключения схемы переключения передач (пути передачи мощности) многоступенчатой трансмиссии 1 за счет выдачи текущей команды в электрические исполнительные механизмы 31, 32, 33 (не показаны) первой, второй и третьей муфт сцепления, С1, С2, С3, на основе заранее определенной входной информации. В процессе этого управления переключением передач, муфты сцепления, С1, С2, С3, избирательно сцепляют и расцепляют, а пары зубчатых колес, содержащиеся в силовой трансмиссии, выбирают из множества пар, которому эти пары зубчатых колес принадлежат. В данном случае, в момент запроса переключения передачи с целью введения в зацепления одной из расцепленных муфт сцепления С1, С2, С3, чтобы подавить скорость дифференциального вращения между входом или выходом муфты для гарантии сцепления посредством введения в зацепление, используется комбинированное управление с обратной связью по скорости вращения (управление синхронизацией вращения) первого мотора-генератора MG1 или второго мотора-генератора MG2.

[0030] Блок 23 управления трансмиссией обеспечивает ввод сигналов датчиков и сигналов переключения из датчика 71 скорости транспортного средства, датчика 72 величины параметра положения открытия акселератора, датчика 73 скорости вращения выходного вала трансмиссии, датчика 74 скорости вращения двигателя, датчика 75 скорости вращения MG1, датчика 76 скорости вращения MG2, переключателя 77 нейтрали, датчика 78 скорости вращения масляного насоса, и т.п. Датчик 73 скорости вращения выходного вала трансмиссии установлен на концевой участок вала, принадлежащий третьему валу 13, и обнаруживает скорость вращения вала, присущую третьему валу 13. Блок 23 управления трансмиссией определяет, произошел ли отказ в электрическом масляном насосе 20, на основе сигнала датчика из датчика 78 скорости вращения масляного насоса. Определение того, произошел ли отказ в электрическом масляном насосе 20, не ограничивается осуществлением посредством датчика 78 скорости вращения масляного насоса и возможно, например, если предусмотрен датчик гидравлического давления для электрического масляного насоса 20, если предусмотрен датчик температуры для смазываемых деталей, описываемых ниже, или предусмотрена комбинация этих датчиков. То есть, если в электрическом масляном насосе 20 происходит отказ, давление на выкиде электрического масляного насоса 20 уменьшается, а температура смазываемых деталей увеличивается; как следствие, становится возможным определение отказа в электрическом масляном насосе 20 на основе этих изменений.

[0031] Блок 24 управления двигателем (аббревиатура «ECU») осуществляет управление запуском двигателя внутреннего сгорания, ICE, управление остановом двигателя внутреннего сгорания, ICE, управление отсечкой топлива, и т.п., за счет выдачи команды управления в блок 22 управления моторами, на свечу зажигания, в исполнительный механизм впрыска топлива или аналогичные средства на основе заранее определенной входной информации.

[0032] Многоступенчатая трансмиссия 1, соответствующая варианту осуществления, отличается тем, что кпд получается посредством уменьшения сопротивления за счет применения - в качестве переключающих элементов - муфт сцепления, С1, С2, С3 (кулачковых муфт), сцепляемых посредством зацепления. Далее, когда есть запрос переключения передачи для введения в зацепление зубчатых колес и сцепления любой из муфт сцепления С1, С2, С3, скорости дифференциального вращения входа и выхода муфты синхронизируются первым мотором-генератором MG1 (когда сцепляется муфта сцепления, С3) или вторым мотором-генератором MG2 (когда сцепляются муфты сцепления, С1, С2), а движение сцепления начинается сразу же после того, как скорость вращения оказывается в пределах диапазона скоростей вращения, соответствующих определению синхронизации, для реализации переключения передач. Кроме того, когда есть запрос переключения передачи для расцепления любой из сцепленных муфт сцепления, С1, С2, С3, крутящий момент трансмиссии с муфтами, присущий расцепляемой муфте, уменьшается, и сразу же после того, как этот крутящий момент становится равным значению определения крутящего момента расцепления или меньшим, начинается движение расцепления для реализации переключения передачи.

[0033] Конфигурация трансмиссии

На фиг.2 представлено сечение многоступенчатой трансмиссии 1 согласно варианту осуществления. Конфигурация трансмиссии 1 согласно варианту осуществления будет описана ниже на основе фиг.2.

[0034] В многоступенчатой трансмиссии 1 согласно варианту осуществления, второе зубчатое колесо 102 и третье зубчатое колесо 103 находятся на стороне внешнего периметра первого вала 11, который соединен с выходным валом двигателя внутреннего сгорания, ICE, посредством участка 202 второго подшипника и участка 203 третьего подшипника, соответственно, как изображено на фиг.2. Первый вал 11 опирается на картер 10 трансмиссии посредством участка 211 одиннадцатого подшипника и оперт внутри второго вала 12, который является цилиндрическим валом, посредством участка 204 четвертого подшипника и участка 205 пятого подшипника. В данном случае, участок 204 четвертого подшипника заключен между первым валом 11 и четвертым зубчатым колесом 104, которое выполнено как единое целое со вторым валом 12. Кроме того, участок 205 пятого подшипника заключен между первым валом 11 и пятым зубчатым колесом 105, которое выполнено как единое целое со вторым валом 12. Кроме того, второй вал 12 опирается на картер 10 трансмиссии посредством участка 212 двенадцатого подшипника.

[0035] Четвертый вал 14 опирается на картер 10 трансмиссии посредством участка 214 четырнадцатого подшипника. Пятый вал 15 опирается на картер 10 трансмиссии посредством участка 215 пятнадцатого подшипника. Кроме того, шестой вал 16 опирается на картер 10 трансмиссии посредством участка 216 шестнадцатого подшипника.

[0036] Электрический масляный насос 20 подает смазочное масло к участкам подшипников и зубчатым колесам, описанных выше. В частности канал выкида (не показан) электрического масляного насоса 20 соединен с каналом 11а смазочного масла, предусмотренным внутри первого вала 11, а смазочное масло, которое выходит из электрического масляного насоса 20, подается к участку (202, 203, 204, 205 и т.п.) каждого подшипника и каждому зубчатому колесу (101-105, и т.п.) по каналу 11а смазочного масла первого вала 11.

[0037] Кроме того, канал выкида (не показан) электрического масляного насоса 20 также соединен с масляной камерой (не показана), предусмотренной в окрестности шестого вала 16, а смазочное масло, которое хранится в масляной камере, подается к участкам 215, 216 пятнадцатого и шестнадцатого подшипников, и т.п. Многоступенчатая трансмиссия 1 содержит множество участков подшипников и зубчатых колес помимо упомянутых, как изображено на фиг.2, но подробные описания других конфигураций опущены. Кроме того, в данном описании вращающиеся элементы, к которым подается смазочное масло, такие как множество участков подшипников (участки 202, 203 второго и третьего подшипников, и т.д.) и множество зубчатых колес (первое и второе зубчатое колеса 101, 102, и т.д.), описанных выше, собирательно именуются «смазываемыми деталями».

[0038] Конфигурация схемы переключения передач

Многоступенчатая трансмиссия 1 согласно второму варианту осуществления отличается тем, что уменьшение размеров получается за счет уменьшения потерь в силовой трансмиссии вследствие отсутствия поглощающего дифференциальное вращение элемента, такого как гидромуфта, и вследствие сокращения числа ступеней переключения передач ICE (ступеней переключения передач двигателя внутреннего сгорания, ICE) за счет обеспечения содействия двигателю внутреннего сгорания, ICE, моторами (ступени переключения передач электромобиля (EV): 1-2 скорости, ступени переключения передач ICE: 1-4 скорости). Конфигурация схемы переключения передач многоступенчатой трансмиссии 1 описывается ниже на основе фиг.3 и фиг.4.

[0039] Применяется концепция схемы переключения передач, в которой, когда скорость транспортного средства, VSP, находится в начальном диапазоне и равна заранее определенной скорости транспортного средства, VSP0, или меньше нее, поскольку многоступенчатая трансмиссия 1 не имеет поглощающего дифференциальное вращение элемента, запуск мотора посредством лишь движущей силы мотора осуществляется в «режиме электромобиля» («режиме EV») (точнее, в режиме EV первая, который соответствует первой скорости ступени переключения передач EV) как изображено на фиг.3. Затем, когда работа идет в области движения и потребность в движущей силе велика, применяют «параллельный режим гибридного электромобиля» («параллельный режим HEV»), в котором движущей силе двигателя помогает движущая сила моторов, как изображено на фиг.3. То есть, когда скорость транспортного средства, VSP, увеличивается, переключение ступеней переключения передач ICE происходит следующим образом: ICE первая → ICE вторая → ICE третья → ICE четвертая; а переключение ступеней переключения передач EV (ступеней переключения передач первого мотора-генератора MG1) происходит следующим образом: EV первая → EV вторая. Следовательно, как проиллюстрировано на фиг.3, карта переключений для выдачи запросов переключения передач с целью переключения схемы переключения передач создается на основе концепции схемы переключения передач.

[0040] Схемы переключения передач, получаемые посредством многоступенчатой трансмиссии 1, имеющей муфты сцепления С1, С2, С3, являются такими, как показанные на фиг.4. На фиг.4, «Блокировка» представляет схему блокировки, которая не применяется в качестве схемы переключения передач, «EV-» представляет состояние, в котором первый мотор-генератор MG1 не соединен с возможностью привода с ведущими колесами 19, а «ICE-» состояние, в котором двигатель внутреннего сгорания, ICE, не соединен с возможностью привода с ведущими колесами 19. При управлении переключением, не обязательно использовать все схемы переключения передач, показанные на фиг.4, и - конечно же - возможен выбор из этих схем переключения передач в соответствии с потребностью. Ниже приводится описание каждой из схем переключения передач.

[0041] Когда вторая муфта сцепления, С2, находится в положении «Н» и третья муфта сцепления, С3, находится в положении «Н», получаются следующие схемы переключения передач, соответствующие положению первой муфты сцепления, С1. «EV- ICEgen» получается, если первая муфта сцепления, С1, находится в положении «Левое»; «Нейтраль» получается, если первая муфта сцепления, С1, находится в положении «Н», а «EV- ICE третья» получается, если первая муфта сцепления, С1, находится в положении «Правое».

В данном случае, схема переключения передач «EV- ICEgen» - это схема, выбираемая во время генерирования мощности холостого хода MG1, в которое мощность генерируется в первом моторе-генераторе MG1 посредством двигателя внутреннего сгорания, ICE, когда транспортное средство остановлено, или во время генерирования удвоенной мощности холостого хода, в которое осуществляется генерирование мощности MG2 в дополнение к генерированию мощности MG1. Схема переключения передач «Нейтраль» - это схема, выбираемая во время генерирования мощности холостого хода MG2, в которое мощность генерируется во втором моторе-генераторе MG2 посредством двигателя внутреннего сгорания, ICE, когда транспортное средство остановлено.

[0042] Когда вторая муфта сцепления, С2, находится в положении «Н», а третья муфта сцепления, С3, находится в положении «Левое», получаются следующие схемы переключения, соответствующие положению первой муфты сцепления, С1. «EV первая ICE первая» получается, если первая муфта сцепления, С1, находится в положении «Левое»; «EV первая ICE-» получается, если первая муфта сцепления, С1, находится в положении «Н», а «EV первая ICE третья» получается, если первая муфта сцепления, С1, находится в положении «Правое».

В данном случае, схема переключения передач «EV первая ICE-» представляет собой схему «режим EV», в котором двигатель внутреннего сгорания, ICE, остановлен, а движение осуществляется посредством первого мотора-генератора MG1, или схему «последовательный режим HEV», котором движение EV на первой скорости осуществляется первым мотором-генератором MG1, а мощность генерируется во втором моторе-генераторе MG2 посредством двигателя внутреннего сгорания, ICE.

Например, когда движение происходит при выборе «последовательного режима HEV» посредством схемы «EV первая ICE-», первая муфта сцепления, С1, переключается из положения «Н» в положение «Левое» на основе замедления из-за недостаточной движущей силы. В этом случае, транспортное средство переходит на движение посредством «параллельного режима HEV (на первой скорости)», соответствующего «схеме переключения передач «EV первая ICE первая», в которой движущая сила обеспечивается.

[0043] Когда вторая муфта сцепления, С2, находится в положении «Левое» и третья муфта сцепления, С3, находится в положении «Левое», получается «EV первая ICE вторая», если первая муфта сцепления, С1, находится в поло