Устройство управления демпфированием для электрического транспортного средства

Иллюстрации

Показать все

Изобретение относится к электромобилям. Устройство управления демпфированием для электрического транспортного средства, имеющего трансмиссию между мотором и ведущими колесами, причем устройство управления демпфированием содержит средство подавления вибрации при переключении передач. Это средство вычитает компонент компенсационного крутящего момента для подавления вибрации, вызываемой посредством переключения передач, из компенсационного крутящего момента для подавления вибрации, вызываемой посредством возмущений частоты вращения мотора, чтобы управлять выходным крутящим моментом мотора. Также имеется средство вычисления дифференциала второго порядка передаточного отношения трансмиссии. Средство подавления вибрации при переключении передач выполняет управление выходным крутящим моментом мотора, когда абсолютное значение дифференциала второго порядка равно или выше предварительно определенного значения. Повышается точность определения изменения передаточного отношения. 9 з.п. ф-лы, 10 ил.

Реферат

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к устройству управления демпфированием для электрического транспортного средства, имеющего мотор в качестве источника приведения в движение и устройство управления демпфированием, которое подавляет вибрацию приводной системы из источника приведения в движение на ведущие колеса.

Уровень техники

[0002] Традиционно, известно устройство управления демпфированием для электрического транспортного средства, которое комбинирует управление с обратной связью, которое подавляет вибрацию посредством фактических возмущений, и управление с прямой связью, которое подавляет вибрацию вследствие возмущений, которые предполагаются заранее (например, см. патентный документ 1).

Согласно этому предшествующему уровню техники, флуктуация в частоте вращения мотора, которая накладывает возмущения, корректируется по обратной связи относительно крутящего момента мотора, чтобы подавлять вибрацию.

Документы предшествующего уровня техники

Патентные документы

[0003] Патентный документ 1. Выложенная заявка на патент Японии № 2000-217209

Сущность изобретения

Задача, решаемая изобретением

[0004] Между тем, электрическое транспортное средство, содержащее трансмиссию, оснащенную выходным валом, соединенным с мотором, и ведущим валом, соединенным с ведущими колесами, причем они соединяются посредством ремня, имеет такую конфигурацию, в которой передаточное отношение является бесступенчатым; в силу этого возникают случаи, в которых возникает вибрация, сопровождающая изменения передаточного отношения.

Тем не менее, в предшествующем уровне техники, хотя известен демпфирующий крутящий момент, подавляющий вибрацию, сопровождающую переключение передач, средство для точного определения изменений передаточного отношения не предоставляется.

Следовательно, возникают случаи, в которых изменение передаточного отношения ошибочно определяется в предшествующем уровне техники, и возникает риск того, что управление демпфированием не работает точно.

[0005] С учетом вышеописанных проблем, задача настоящего изобретения заключается в том, чтобы предоставлять устройство управления демпфированием для электрического транспортного средства, которое допускает управление демпфированием, которое соответствует точному определению присутствия или отсутствия изменений передаточного отношения.

Средство решения задачи

[0006] Чтобы решить вышеописанную задачу, устройство управления демпфированием для электрического транспортного средства настоящего изобретения содержит:

- средство подавления вибрации при переключении передач, которое вычитает компенсационный крутящий момент для подавления вибрации, вызываемой посредством переключения передач, из компенсационного крутящего момента для подавления вибрации, вызываемой посредством возмущений частоты вращения мотора, чтобы управлять выходным крутящим моментом мотора. Помимо этого, устройство управления демпфированием в настоящем изобретении представляет собой устройство управления демпфированием для электрического транспортного средства, в котором средство подавления вибрации при переключении передач выполняет управление, когда абсолютное значение дифференциала второго порядка передаточного отношения равно или выше предварительно определенного значения.

Преимущества изобретения

[0007] В устройстве управления демпфированием для электрического транспортного средства согласно настоящему изобретению, можно точно определять переключение передач на основе дифференциала второго порядка передаточного отношения, с тем чтобы предотвращать ошибочное определение переключения передач. Следовательно, согласно настоящему изобретению, можно предотвращать ошибочное определение переключения передач, с тем чтобы точно осуществлять управление демпфированием относительно переключения передач.

Краткое описание чертежей

[0008] Фиг. 1 является общей принципиальной схемой, иллюстрирующей общую конфигурацию гибридного транспортного средства, содержащего устройство управления демпфированием для гибридных транспортных средств согласно первому варианту осуществления.

Фиг. 2 является блок-схемой, иллюстрирующей конфигурацию интегрального контроллера устройства управления демпфированием для электрического транспортного средства согласно первому варианту осуществления.

Фиг. 3 является блок-схемой, иллюстрирующей модуль вычисления крутящего момента мотора в устройстве управления демпфированием для электрического транспортного средства согласно первому варианту осуществления.

Фиг. 4 является блок-схемой последовательности операций способа, иллюстрирующей последовательность операций процесса подавления вибрации устройства управления демпфированием для электрического транспортного средства согласно первому варианту осуществления.

Фиг. 5 является блок-схемой, иллюстрирующей конфигурацию модуля определения функционального режима в устройстве управления демпфированием для электрического транспортного средства согласно первому варианту осуществления.

Фиг. 6 является блок-схемой, иллюстрирующей конфигурацию секции определения запросов на ускорение/передаточное отношение в устройстве управления демпфированием для электрического транспортного средства согласно первому варианту осуществления.

Фиг. 7A является временной диаграммой, иллюстрирующей пример работы в ходе ручного переключения "вверх" согласно сравнительному примеру, в котором компонент изменения частоты вращения, вызываемый посредством изменения передаточного отношения, не вычитается.

Фиг. 7B является временной диаграммой, иллюстрирующей пример работы в ходе ручного переключения "вверх" в настоящем варианте осуществления, в котором компонент изменения частоты вращения, вызываемый посредством изменения передаточного отношения, вычитается в устройстве управления демпфированием для электрического транспортного средства согласно первому варианту осуществления.

Фиг. 8A является временной диаграммой, иллюстрирующей работу согласно сравнительному примеру, в котором которую операция вычитания посредством модуля вычитания не выполняется при переключении передач с большим передаточным отношением/ускорением.

Фиг. 8B является временной диаграммой, иллюстрирующей пример работы, в котором операция вычитания посредством модуля вычитания выполняется при переключении передач с большим передаточным отношением/ускорением в устройстве управления демпфированием для электрического транспортного средства согласно первому варианту осуществления.

Фиг. 9A является временной диаграммой, иллюстрирующей изменения в целевом передаточном отношении (до переключения передач, после переключения передач), целевом передаточном отношении (значение команды управления) и фактическом передаточном отношении, в ходе работы по фиг. 8A и фиг. 8B.

Фиг. 9B является временной диаграммой, иллюстрирующей изменения в дифференциальном значении первого порядка целевого передаточного отношения (значения команды управления), проиллюстрированного на фиг. 9A.

Фиг. 9C является временной диаграммой, иллюстрирующей изменения в дифференциальном значении второго порядка целевого передаточного отношения (значения команды управления), проиллюстрированного на фиг. 9A.

Фиг. 10 является временной диаграммой, иллюстрирующей взаимосвязь между функциональным запросом (заданием) и нефункциональным запросом (сбросом) в модуле определения функционального режима.

Подробное описание иллюстративных вариантов осуществления изобретения

[0009] Ниже описывается предпочтительный иллюстративный вариант осуществления для реализации устройства управления демпфированием для электрического транспортного средства настоящего изобретения на основе иллюстративных вариантов осуществления, показанных на чертежах.

Первый вариант осуществления

Во-первых, описывается конфигурация устройства управления демпфированием для электрического транспортного средства первого варианта осуществления.

Устройство управления демпфированием для электрического транспортного средства согласно первому варианту осуществления применяется к гибридному транспортному средству FF-типа (в дальнейшем называемому просто "гибридным транспортным средством"), имеющему левое и правое передние колеса в качестве ведущих колес и ременную бесступенчатую трансмиссию.

[0010] Ниже отдельно описываются "общая конфигурация системы гибридного транспортного средства", "система управления гибридного транспортного средства", "конфигурация управления посредством интегрального контроллера", "конфигурация управления демпфированием", "конфигурация определения функционального режима посредством модуля определения функционального режима" и "подробности конфигурации модуля определения функционального режима", относительно конфигурации устройства управления транспортного средства для гибридных транспортных средств согласно первому варианту осуществления.

[0011] Общая конфигурация системы гибридного транспортного средства

Фиг. 1 является общим системным видом гибридного транспортного средства, к которому применяется устройство управления демпфированием первого иллюстративного варианта осуществления. Ниже описывается общая конфигурация системы гибридного транспортного средства на основе фиг. 1.

[0012] Приводная система гибридного транспортного средства включает в себя двигатель Eng, первую муфту CL1, мотор-генератор MG (в дальнейшем называемый "мотором MG"), вторую муфту CL2 и бесступенчатую трансмиссию CVT.

[0013] Таким образом, приводная система гибридного транспортного средства имеет такую конфигурацию, в которой можно переключать выходные мощности двигателя Eng и мотора MG в качестве источников приведения в движение на предварительно определенное передаточное отношение посредством бесступенчатой трансмиссии CVT и передавать их на левое и правое передние колеса FL и FR в качестве ведущих колес.

[0014] Дополнительно, в приводной системе гибридного транспортного средства, первая муфта CL1, которая в состоянии соединять/разъединять приводную трансмиссию, предоставляется между двигателем Eng и мотором MG, и вторая муфта CL2, которая в состоянии соединять/разъединять приводную трансмиссию, предоставляется между мотором MG и бесступенчатой трансмиссией CVT. За счет этого можно формировать HEV-режим движения, в котором обе муфты CL1 и CL2 зацепляются, и движение выполняется посредством движущей силы двигателя Eng и мотора MG. Помимо этого, можно формировать EV-режим, в котором первая муфта CL1 расцепляется, а вторая муфта CL2 зацепляется, и движение выполняется посредством движущей силы только мотора MG.

[0015] Двигатель Eng допускает сгорание бедной смеси, и крутящий момент двигателя управляется таким образом, чтобы согласовываться со значением команды управления, посредством управления объемом всасываемого воздуха посредством актуатора дросселя, объемом впрыска топлива посредством инжектора и распределением зажигания посредством актуатора свечи зажигания.

[0016] Двигатель Eng может запускаться посредством проворачивания с помощью мотора MG в то время, когда первая муфта CL1 зацепляется с проскальзыванием. Помимо этого, может быть предусмотрена такая конфигурация, в которой можно начинать движение посредством стартерного мотора, который не показан, в низкотемпературном режиме или высокотемпературном режиме и т.д.

[0017] Первая муфта CL1 представляет собой фрикционный зацепляющий элемент, который размещается между двигателем Eng и мотором MG. Муфта, которая имеет возможность переключаться между полным зацеплением, частичным зацеплением и расцеплением посредством управления длиной хода на основе гидравлического давления первой муфты, подаваемого из схемы 110 управления гидравлическим давлением, описанной ниже, используется в качестве этой первой муфты CL1.

[0018] Мотор MG имеет конструкцию в форме синхронного мотора переменного тока, которая служит в качестве источника приведения в движение для обеспечения движения и выполняет управление крутящим моментом приведения в движение и управление частотой вращения при начале движения и движении, а также восстановление кинетической энергии транспортного средства, формируемой посредством управления рекуперативным торможением для аккумулятора BAT с высоким уровнем мощности при торможении и замедлении.

Инвертор INV преобразует постоянный ток в трехфазный переменный ток в ходе подачи мощности и преобразует трехфазный переменный ток в постоянный ток в ходе рекуперации, размещается между мотором MG и аккумулятором BAT с высоким уровнем мощности.

[0019] Вторая муфта CL2 представляет собой фрикционный зацепляющий элемент, размещенный между мотором MG и левым и правым передними колесами FL и FR, которые представляют собой ведущие колеса. Вторая муфта CL2 также управляется таким образом, что она находится в полном зацеплении или зацеплении с проскальзыванием, или расцеплении, посредством управления длиной хода согласно гидравлическому давлению второй муфты, которое подается из схемы 110 управления гидравлическим давлением.

[0020] Бесступенчатая трансмиссия CVT известна и содержит, хотя не показано, первичный шкив, вторичный шкив и ремень, намотанный вокруг обоих шкивов. Кроме того, бесступенчатая трансмиссия CVT представляет собой трансмиссию, которая достигает передаточного отношения бесступенчатой трансмиссии посредством изменения диаметров намотки шкивов посредством первичного давления и вторичного давления, подаваемых из схемы 110 управления гидравлическим давлением в первичную масляную камеру и вторичную масляную камеру.

[0021] Схема 110 управления гидравлическим давлением содержит, в качестве источников гидравлической мощности, главный масляный насос MOP (механическое приведение в действие) и вспомогательный масляный насос SOP (приведение в движение за счет мотора).

Главный масляный насос MOP вращательно приводится в действие посредством вала мотора для мотора MG (= входного вала трансмиссии). Помимо этого, вспомогательный масляный насос SOP приводится в действие посредством встроенного мотора и в основном используется в качестве вспомогательного насоса для формирования смазочного и охлаждающего масла. Вспомогательный масляный насос SOP приводится в действие посредством мощности, предоставляемой из преобразователя 80 постоянного тока, описанного ниже.

[0022] Схема 110 управления гидравлическим давлением содержит соленоидный клапан 111 первой муфты, соленоидный клапан 112 второй муфты и регулирующий клапанный механизм 113 трансмиссии.

Соленоидный клапан 111 первой муфты и соленоидный клапан 112 второй муфты используют давление PL в магистрали, сформированное посредством регулирования давления на выходе из насоса из источника гидравлической мощности, в качестве исходного давления и, соответственно, формируют давление первой муфты и давление второй муфты на основе величины хода.

[0023] Регулирующий клапанный механизм 113 трансмиссии содержит соленоидный клапан, управляемый посредством контроллера 11 трансмиссии и использующий давление PL в магистрали в качестве исходного давления, чтобы создавать первичное давление и вторичное давление согласно величине хода.

[0024] Как описано выше, гибридное транспортное средство содержит "EV-режим", "HEV-режим" и" (HEV) WSC-режим" в качестве основных режимов приведения в движение, и в нем сконфигурирована гибридная приводная система, называемая "системой с одним мотором и двумя муфтами".

[0025] "EV-режим" представляет собой режим электрического транспортного средства, имеющий только мотор MG в качестве источника приведения в движение посредством расцепления первой муфты CL1 и зацепления второй муфты CL2.

"HEV-режим" представляет собой режим гибридного транспортного средства, имеющий двигатель Eng и мотор MG в качестве источников приведения в движение посредством зацепления обеих муфт CL1 и CL2.

"WSC-режим" представляет собой режим зацепления с проскальзыванием CL2, в котором частота вращения мотора MG управляется в "HEV-режиме", и вторая муфта CL2 зацепляется с проскальзыванием с перегрузочной способностью по крутящему моменту зацепления, соответствующей требуемой движущей силе. "WSC-режим" выбирается, чтобы поглощать разность частот вращения между левым и правым передними колесами FL и FR и двигателем Eng, который вращается с частотой вращения, равной или большей частоты вращения на холостом ходу двигателя, в областях от остановки до начала движения или областях от низкой скорости до остановки, при нахождении в "HEV-режиме" посредством зацепления с проскальзыванием CL2. "WSC-режим" требуется, поскольку приводная система не имеет стыкового узла поглощения разности частот вращения, такого как преобразователь крутящего момента.

[0026] Система управления гибридным транспортным средством

Далее описывается система управления гибридным транспортным средством.

Система управления гибридного транспортного средства содержит инвертор INV, аккумулятор BAT с высоким уровнем мощности, интегрированный контроллер 10, контроллер 11 трансмиссии, контроллер 12 муфты, контроллер 13 двигателя, контроллер 14 мотора, контроллер 15 аккумулятора и контроллер 16 переменного тока. В настоящем варианте осуществления, система управления выполнена с возможностью отдельно содержать различные контроллеры; тем не менее, система управления может быть интегрирована в один контроллер.

[0027] Система электропитания гибридного транспортного средства содержит аккумулятор BAT с высоким уровнем мощности в качестве источника мощности мотора-генератора и 12-вольтовый аккумулятор (не показан) в качестве источника мощности 12-вольтовой нагрузки.

[0028] Инвертор INV выполняет преобразование постоянного тока в переменный и формирует ток приведения в действие для мотора MG. Инвертор также инвертирует вращение выходного вала мотора MG посредством инвертирования фазы сформированного тока приведения в действие.

Аккумулятор BAT с высоким уровнем мощности представляет собой аккумуляторную батарею, смонтированную в качестве источника мощности для мотора MG, и, например, для этого используется литий-ионный аккумулятор, в котором модуль гальванических элементов, сконфигурированный с множеством гальванических элементов, задается внутри кожуха аккумуляторного источника мощности. В настоящем варианте осуществления, аккумулятор с высоким уровнем мощности не ограничен литий-ионным аккумулятором и может представлять собой такое средство накопления мощности, как никель-водородный аккумулятор.

[0029] Инвертор INV преобразует мощность постоянного тока из аккумулятора BAT с высоким уровнем мощности в трехфазный переменный ток и подает его в мотор MG, во время подачи мощности, в которое мотор MG приводится в действие посредством разряда аккумулятора BAT с высоким уровнем мощности, посредством управления подачей мощности/рекуперацией посредством контроллера 14 мотора. Помимо этого, инвертор преобразует трехфазную мощность переменного тока из мотора MG в мощность постоянного тока, во время рекуперации для заряда аккумулятора BAT с высоким уровнем мощности, посредством выработки мощности посредством мотора MG.

[0030] Интегрированный контроллер 10 сконфигурирован из электронного модуля управления (ECU), содержащего микрокомпьютер, и вычисляет целевой крутящий момент приведения в движение и т.п. из оставшейся емкости аккумулятора (SOC аккумулятора); величины APO открытия позиции педали акселератора; скорости VSP транспортного средства и т.п. После этого, на основе результата вычисления интегрированный контроллер 10 вычисляет значения команд управления для каждого из актуаторов (мотора MG, двигателя Eng, первой муфты CL1, второй муфты CL2 и бесступенчатой трансмиссии CVT), которые передаются в соответствующие контроллеры 11-15.

[0031] SOC аккумулятора вводится из контроллера 15 аккумулятора. Величина APO открытия позиции педали акселератора определяется посредством датчика 21 величины открытия позиции педали акселератора. Скорость VSP транспортного средства является значением, которое синхронизируется с частотой вращения выходного вала трансмиссии и определяется посредством датчика 22 частоты вращения выходного вала трансмиссии.

Помимо этого, интегрированный контроллер 10 управляет расходом на выходе главного масляного насоса MOP, расходом на выходе вспомогательного масляного насоса SOP и давлением PL в магистрали.

[0032] Контроллер 11 трансмиссии выполняет управление переключением передач таким образом, чтобы достигать команды управления переключением передач из интегрированного контроллера 10. Управление переключением передач выполняется посредством управления гидравлическим давлением, подаваемым в первичный шкив, и гидравлическом давлением, подаваемым во вторичный шкив бесступенчатой трансмиссии CVT, на основе управления регулирующим клапанным механизмом 113 трансмиссии, с использованием давления PL в магистрали, подаваемого через схему 110 управления гидравлическим давлением, в качестве исходного давления.

Затем избыточное давление, сформированное при создании гидравлического давления, подаваемого в первичный шкив, и гидравлического давления, подаваемого во вторичный шкив из давления PL в магистрали, передаются для охлаждения и смазки первой муфты CL1 и второй муфты CL2.

[0033] Кроме того, контроллер 11 трансмиссии выполняет управление трансмиссией посредством "режима бесступенчатой трансмиссии" и управление трансмиссией посредством "режима псевдоступенчатой трансмиссии", в качестве управления трансмиссией для бесступенчатой трансмиссии CVT.

Управление трансмиссией в "режиме бесступенчатой трансмиссии" представляет собой управление для того, чтобы изменять передаточное отношение бесступенчато в диапазоне передаточных чисел от наименьшего передаточного отношения до наибольшего передаточного отношения, которые являются возможными для бесступенчатой трансмиссии CVT.

[0034] С другой стороны, управление трансмиссией в "режиме псевдоступенчатой трансмиссии" представляет собой управление трансмиссией, которое моделирует ступенчатую трансмиссию для изменения передаточного отношения бесступенчатой трансмиссии CVT ступенчато.

Кроме того, "режим D-ступенчатого переключения передач" и "режим ручного переключения передач" предоставляются в качестве "режима псевдоступенчатой трансмиссии".

"Режим D-ступенчатого переключения передач" представляет собой режим для того, чтобы автоматически переключать "вверх" от псевдопервой скорости до псевдошестой скорости ступенчато, в соответствии с величиной APO открытия позиции педали акселератора и скоростью VSP транспортного средства, в ходе движения с ускорением таким образом, что скорость транспортного средства увеличивается в диапазоне высоких величин открытия позиции педали акселератора.

[0035] "Режим ручного переключения передач" представляет собой режим для вручную управления передаточным отношением посредством операции переключения передач водителем. Например, в этом режиме, если водитель выбирает режим ручного переключения передач, и водитель выполняет операцию переключения "вверх" или операцию переключения "вниз" в этом состоянии, ступень переключения передач (фиксированное передаточное отношение) изменяется, и передаточное отношение управляется до передаточного отношения, которое соответствует выбранной ступени переключения передач.

[0036] Как описано выше, поскольку передаточное отношение изменяется ступенчато при переключении передач согласно "режиму D-ступенчатого переключения передач" и "режиму ручного переключения передач" в "режиме псевдоступенчатой трансмиссии", изменение передаточного отношения становится относительно большим, по сравнению с переключением передач в режиме бесступенчатого переключения передач.

[0037] Контроллер 12 муфты принимает частоты вращения входного и выходного вала, температуру масла муфты и т.д. для муфты и выполняет управление первой муфтой и управление второй муфтой таким образом, чтобы достигать команды управления первой муфтой и команды управления второй муфтой из интегрированного контроллера 10.

[0038] Это управление первой муфтой выполняется посредством управления гидравлическим давлением, подаваемым в первую муфту CL1, на основе управления соленоидным клапаном 111 первой муфты, с использованием давления PL в магистрали, подаваемого через схему 110 управления гидравлическим давлением, в качестве исходного давления.

[0039] Помимо этого, управление второй муфтой выполняется посредством управления гидравлическим давлением, подаваемым во вторую муфту CL2, на основе управления соленоидным клапаном 112 второй муфты, с использованием давления PL в магистрали, подаваемого через схему 110 управления гидравлическим давлением, в качестве исходного давления.

[0040] Затем избыточное давление, которое формируется при создании гидравлического давления, подаваемого в первую муфту CL1, и гидравлическое давление, подаваемое во вторую муфту CL2 из давления PL в магистрали, передаются для охлаждения и смазки первой муфты CL1 и второй муфты CL2.

[0041] Контроллер 13 двигателя вводит частоту вращения двигателя, определенную посредством датчика 23 частоты вращения двигателя, команды управления целевым крутящим моментом двигателя из интегрированного контроллера 10 и т.п. Затем контроллер 13 двигателя выполняет управление запуском, управление впрыском топлива, управление зажиганием, управление отсечкой топлива и т.п., чтобы управлять крутящим моментом двигателя таким образом, чтобы достигать значения команды управления целевым крутящим моментом двигателя.

[0042] Контроллер 14 мотора вводит значения команд управления целевым крутящим моментом мотора и значения команд управления частотой вращения мотора из интегрированного контроллера 10, частоту вращения мотора, определенную посредством датчика 24 частоты вращения мотора, и т.п. Затем контроллер 14 мотора выполняет такие виды управления, как управление подачей мощности и рекуперативное управление, управление оборотами мотора в режиме медленного движения и управление оборотами мотора на холостом ходу для мотора MG, с тем чтобы достигать значения команды управления целевым крутящим моментом мотора и значения команды управления частотой вращения мотора.

[0043] Контроллер 15 аккумулятора управляет температурой аккумулятора, SOC аккумулятора, которое представляет собой оставшуюся емкость аккумулятора BAT с высоким уровнем мощности, и т.п. на основе входной информации из датчика 25 напряжения аккумулятора, датчика 26 температуры аккумулятора и т.п. и передает информацию в интегрированный контроллер 10.

[0044] Контроллер 16 переменного тока управляет работой электрического кондиционера 70, на основе определения датчика (не показан), который определяет различные факторы окружающей среды, связанные с температурой в салоне. Электрический кондиционер 70 управляется посредством подачи мощности из аккумулятора BAT с высоким уровнем мощности таким образом, чтобы регулировать температуру внутри транспортного средства, и электрический компрессор 71, который сжимает хладагент, предоставляется в электрическом кондиционере 70. Электрический компрессор 71 включает инвертор (не показан), преобразует мощность постоянного тока, подаваемую из аккумулятора BAT с высоким уровнем мощности, в мощность переменного тока и приводится в действие посредством мотора (не показан). Преобразователь 80 постоянного тока соединяется с аккумулятором BAT с высоким уровнем мощности параллельно с электрическим кондиционером 70. Преобразователь 80 постоянного тока подает мощность постоянного тока в бортовые электрические устройства, такие как вспомогательный масляный насос SOP, после преобразования напряжения аккумулятора BAT с высоким уровнем мощности.

[0045] Конфигурация управления интегрального контроллера

Далее кратко описывается общая конфигурация для выполнения различных видов управления интегрированного контроллера 10.

Интегрированный контроллер 10 содержит модуль 100 вычисления целевого крутящего момента приведения в движение, модуль 200 выбора режима, модуль 300 вычисления целевой выходной мощности заряда-разряда и модуль 400 выдачи команд управления в рабочей точке, как проиллюстрировано на фиг. 2.

[0046] В модуль 100 вычисления целевого крутящего момента приведения в движение, вводятся величина APO открытия позиции педали акселератора, скорость транспортного средства и т.д., и целевой крутящий момент tTd приведения в движение (целевой полный крутящий момент транспортного средства) вычисляется из карты целевого стационарного крутящего момента (одного примера карты крутящего момента двигателя) и карты вспомогательного крутящего момента (одного примера карты крутящего момента мотора-генератора).

[0047] Модуль 200 выбора режима вычисляет то, какой режим приведения в движение должен представлять собой целевой режим приведения в движение, т.е. HEV-режим или EV-режим. Задание режима приведения в движение посредством модуля 200 выбора режима, например, может представлять собой выбор между EV-режимом и HEV-режимом согласно скорости транспортного средства и величине открытия позиции педали акселератора на основе карты выбора режима, которая задается заранее; тем не менее, подробности опускаются.

[0048] Модуль 300 вычисления целевой выходной мощности заряда-разряда увеличивает величину выработки мощности, когда SOC аккумулятора является низким, уменьшает величину выработки мощности, когда SOC аккумулятора является высоким, и вычисляет целевую мощность tP заряда-разряда, с тем чтобы повышать использование усиления мотора.

[0049] Модуль 400 выдачи команд управления в рабочей точке вычисляет целевые показатели наступления рабочей точки из величины APO открытия позиции педали акселератора, целевого крутящего момента tTd приведения в движение, режима приведения в движение, скорости VSP транспортного средства и целевой мощности заряда-разряда, которые выводятся в качестве значений команд управления. Целевой крутящий момент двигателя, целевой крутящий момент мотора, целевая перегрузочная способность по крутящему моменту CL2, целевое передаточное отношение, команда управления соленоидным током первой муфты и команда управления соленоидным током второй муфты вычисляются в качестве этих целевых показателей наступления рабочей точки. В настоящем варианте осуществления, модуль 400 выдачи команд управления в рабочей точке интегрально вычисляет целевой крутящий момент двигателя, целевой крутящий момент мотора, целевую перегрузочную способность по крутящему моменту CL2, целевое передаточное отношение, команду управления соленоидным током первой муфты и команду управления соленоидным током второй муфты; тем не менее, средства для того, чтобы вычислять значения команд управления, могут предоставляться для каждого из означенного.

[0050] Конфигурация управления демпфированием

Интегрированный контроллер 10 содержит модуль 30 вычисления крутящего момента мотора, проиллюстрированный на фиг. 3, который корректирует команду управления крутящим моментом мотора, прикладываемым к мотору MG (целевым крутящим моментом (tTm) мотора) таким образом, чтобы подавлять вибрацию транспортного средства, и выводит его в качестве конечного целевого крутящего момента мотора, в качестве конфигурации, которая выполняет управление демпфированием.

Модуль 30 вычисления крутящего момента мотора содержит модуль 31 управления с прямой связью и модуль 32 управления с обратной связью.

[0051] Модуль 31 управления с прямой связью ослабляет вибрации, вызываемые посредством возмущений, которые предполагаются заранее, и содержит модуль 31a компенсации с прямой связью, который ослабляет целевой крутящий момент tTm мотора (команду управления крутящим моментом мотора), посредством обратного фильтра (не показан) и выводит его в сумматор 33.

[0052] Модуль 32 управления с обратной связью ослабляет предварительно определенную вибрацию, вызываемую посредством фактических возмущений, и содержит модуль 32a компенсации с обратной связью, который выводит компенсационный крутящий момент Tm(F/B), который подавляет предварительно определенный компонент вибрации частоты ωm вращения мотора, выводимой из объекта 34 (приводной системы транспортного средства).

[0053] Помимо этого, модуль 32 управления с обратной связью содержит модуль 32b вычитания, который вычитает компонент (Ss) изменения частоты вращения вибрации, вызываемой посредством переключения передач, описанный позднее, из характерного компонента (Sm+Ss) вибрации посредством возмущений частоты ωm вращения мотора, которые вводятся посредством модуля 32a компенсации с обратной связью.

[0054] Модуль 32 управления с обратной связью содержит модуль 32c переключения, который переключает рабочий режим модуля 32b вычитания между операцией вычитания (заданием), при которой компонент (Ss) изменения частоты вращения вычитается, и отсутствием операции вычитания (очисткой), при котором вычитаемое значение задается равным нулю, и компонент (Ss) изменения частоты вращения не вычитается.

[0055] Таким образом, операция вычитания модуля 32b вычитания выполняется не всегда, а выполняется, когда управляющая команда выводится из модуля 301 определения функционального режима в модуль 32c переключения. Хотя ниже описываются вывод и прекращение вывода управляющей команды, по существу, определяется присутствие или отсутствие переключения передач с большим передаточным отношением/ускорением, и управляющая команда для операции коррекции выводится, когда определяется то, что переключение передач присутствует.

[0056] Модуль 35 вычисления обусловленного переключением передач изменения частоты вращения вычисляет компонент Ss изменения частоты вращения посредством переключения возмущений, включенных в частоту ωm вращения мотора, на основе изменений фактического передаточного отношения RT, которое вводится из модуля 37 вычисления передаточного отношения CVT-трансмиссии, и переключения передач, вычисленного посредством модуля 38 вычисления переключения передач.

[0057] Следовательно, модуль 32a компенсации с обратной связью вводит компонент (Sm+Ss) вибрации посредством возмущений, включенных в частоту ωm вращения мотора, и выводит компенсационный крутящий момент Tm(F/B) для подавления вибрации, во время отсутствия операции вычитания модуля 32b вычитания.

С другой стороны, модуль 32a компенсации с обратной связью вводит компонент Sm вибрации, полученный посредством вычитания компонента Ss изменения частоты вращения вследствие переключения передач, во время операции вычитания модуля 32b вычитания. В это время, компенсационный крутящий момент Tm(F/B), вычисленный посредством модуля 32a компенсации с обратной связью, является значением, полученным посредством вычитания крутящего момента величины компенсации для подавления вибрации посредством компонента Ss изменения частоты вращения вследствие переключения передач.

[0058] Модуль 37 вычисления передаточного отношения CVT-трансмиссии вычисляет передаточное отношение из частоты ωpri вращения первичного шкива, которая представляет собой частоту вращения первичного шкива (не показан) бесступенчатой трансмиссии CVT, и частоты ωsec вращения вторичного шкива, которая представляет собой частоту вращения вторичного шкива (не показан). Хотя эти частоты вращения могут непосредственно определяться посредством предоставления датчика, частоты вращения также могут получаться из частоты вращения мотора, которая определяется посредством датчика 24 частоты вращения мотора, и частоты вращения выходного вала трансмиссии, которая определяется посредством датчика 22 частоты вращения выходного вала трансмиссии.

[0059] Конфигурация модуля определения функционального режима

Далее описывается модуль 301 определения функционального режима, который выводит управляющую команду в модуль 32b вычитания.

Во-первых, описывается последовательность операций определения функционального режима посредством модуля 301 опред