Устройство управления движущей силой для гибридного транспортного средства

Иллюстрации

Показать все

Изобретение относится к гибридным транспортным средствам. Устройство управления движущей силой для гибридного транспортного средства, допускающего изменение режима между EV-режимом, в котором только электромотор используется в качестве источника приведения в движение, и HEV-режимом, в котором электромотор и двигатель внутреннего сгорания используются в качестве источников приведения в движение, и которое не имеет элемента поглощения дифференциального вращения в приводной системе, содержит модуль управления движущей силой на ведущее колесо в соответствии с требуемой движущей силой в диапазоне максимальной выводимой движущей силы источника приведения в движение. Модуль управления движущей силой ограничивает движущую силу, передаваемую на ведущее колесо в HEV-режиме, в соответствии с максимальной выводимой движущей силой в EV-режиме во время изменения режима, когда режим переходит из EV-режима в HEV-режим в то время, когда возникает изменение скорости транспортного средства. Снижается рывок при изменении режима. 3 з.п. ф-лы, 21 ил.

Реферат

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к устройству управления движущей силой для гибридного транспортного средства, которое допускает изменение режима между EV-режимом, в котором только электромотор используется в качестве источника приведения в движение, и HEV-режимом, в котором электромотор и двигатель внутреннего сгорания используются в качестве источников приведения в движение.

Документы предшествующего уровня техники

[0002] Традиционно, известно гибридное транспортное средство, которое содержит двигатель внутреннего сгорания и мотор и которое допускает изменение режима между EV-режимом, в котором только электромотор используется в качестве источника приведения в движение, и HEV-режимом, в котором электромотор и двигатель внутреннего сгорания используются в качестве источников приведения в движение (например, см. патентный документ 1).

Документы предшествующего уровня техники

Патентные документы

[0003] Патентный документ 1. Выложенная заявка на патент Японии № 2014-101065

Сущность изобретения

Задача, решаемая изобретением

[0004] Между тем, в традиционном гибридном транспортном средстве, если приводная система не имеет элемента передачи мощности (элемента поглощения дифференциального вращения), который поглощает дифференциальное вращение фрикционной муфты и т.п., движущая сила, которая выводится посредством двигателя внутреннего сгорания и электромотора, непосредственно передается на ведущие колеса. Таким образом, если двигатель внутреннего сгорания запускается, и режим переходит из EV-режима в HEV-режим при движении, движущая сила двигателя внутреннего сгорания суммируется с движущей силой электромотора, и сумма передается как движущая сила на ведущие колеса. Следовательно, движущая сила, которая передается на ведущие колеса, внезапно увеличивается, и возникает толчок при изменении режима.

С другой стороны, даже если движущая сила, требуемая водителем, не изменена, возникают случаи, в которых режим переходит из EV-режима в HEV-режим вследствие изменения скорости транспортного средства. В такое время, чувствительность водителя к толчку является высокой, и водитель с большой вероятностью должен испытывать дискомфорт.

[0005] С учетом вышеописанных проблем, задача настоящего изобретения состоит в том, чтобы предоставлять устройство управления движущей силой для гибридного транспортного средства, которое не имеет элемента поглощения дифференциального вращения, при этом толчок при изменении режима, который возникает, когда режим переходит из EV-режима в HEV-режим, должен ощущаться с меньшей вероятностью, даже когда чувствительность водителя к толчку является высокой.

Средство решения задачи

[0006] Чтобы решать задачу, описанную выше, гибридное транспортное средство настоящего изобретения допускает изменение режима между EV-режимом, в котором только электромотор используется в качестве источника приведения в движение, и HEV-режимом, в котором электромотор и двигатель внутреннего сгорания используются в качестве источников приведения в движение, и не имеет элемента поглощения дифференциального вращения в качестве части приводной системы. Помимо этого, гибридное транспортное средство содержит модуль управления движущей силой, который управляет движущей силой, передаваемой на ведущие колеса, в соответствии с требуемой движущей силой в диапазоне максимальной выводимой движущей силы источника приведения в движение.

После этого, когда режим переходит из EV-режима в HEV-режим в соответствии с изменением скорости транспортного средства, этот модуль управления движущей силой ограничивает движущую силу, передаваемую на ведущие колеса в HEV-режиме, в соответствии с максимальной выводимой движущей силой в EV-режиме во время изменения режима.

Преимущества изобретения

[0007] В случае гибридного транспортного средства, которое не имеет элемента поглощения дифференциального вращения в качестве части приводной системы, движущая сила, которая выводится из источника приведения в движение, непосредственно передается на ведущие колеса. Напротив, в настоящем изобретении, когда режим переходит из EV-режима в HEV-режим в соответствии с изменением скорости транспортного средства, движущая сила, передаваемая на ведущие колеса в HEV-режиме, ограничена в соответствии с максимальной выводимой движущей силой в EV-режиме во время изменения режима.

Соответственно, даже если движущая сила двигателя внутреннего сгорания суммируется с движущей силой электромотора в качестве движущей силы, передаваемой на ведущие колеса вследствие изменения режима на HEV-режим, можно подавлять внезапное увеличение движущей силы, которая передается на ведущие колеса. Толчок при изменении режима в силу этого подавляется, и можно не допускать возникновения у водителя дискомфорта, даже если чувствительность водителя к толчку является высокой, поскольку режим переходит из EV-режима в HEV-режим в соответствии с изменением скорости транспортного средства.

Таким образом, в гибридном транспортном средстве, которое не имеет элемента поглощения дифференциального вращения, можно обеспечивать то, что толчок при изменении режима, который возникает, когда режим переходит из EV-режима в HEV-режим, испытывается с меньшей вероятностью, даже когда чувствительность водителя к толчку является высокой.

Краткое описание чертежей

[0008] Фиг. 1 является общим системным видом, иллюстрирующим приводную систему и систему управления гибридного транспортного средства, к которой применяется устройство управления движущей силой первого варианта осуществления.

Фиг. 2 является блок-схемой системы управления, иллюстрирующей конфигурацию системы управления переключением передач многоступенчатой зубчатой трансмиссии первого варианта осуществления.

Фиг. 3 является кратким схематичным видом карты переключения передач, иллюстрирующей принцип переключения схемы переключения передач многоступенчатой зубчатой трансмиссии первого варианта осуществления.

Фиг. 4 является таблицей состояний зацепления, иллюстрирующей ступени переключения передач согласно позициям переключения трех зацепляющих муфт в многоступенчатой зубчатой трансмиссии первого варианта осуществления.

Фиг. 5A является блок-схемой последовательности операций способа, иллюстрирующей последовательность операций процесса управления движущей силой (этапы S1-S5, этапы S10-S15), который выполняется в первом варианте осуществления.

Фиг. 5B является блок-схемой последовательности операций способа, иллюстрирующей последовательность операций процесса управления движущей силой (этапы S6-S9, этапы S16-S19), который выполняется в первом варианте осуществления.

Фиг. 6 является одним примером карты переключения передач, используемой во время высокого SOC в первом варианте осуществления.

Фиг. 7 является одним примером карты переключения передач, используемой во время низкого SOC в первом варианте осуществления.

Фиг. 8A является пояснительным видом, показывающим максимальное значение движущей силы в HEV-режиме, которое изменяется согласно увеличению градиента.

Фиг. 8B представляет собой карту задания градиента для задания градиента увеличения максимального значения движущей силы в HEV-режиме во время низкого SOC.

Фиг. 9 является временной диаграммой, иллюстрирующей каждую из характеристик из скорости транспортного средства/G транспортного средства/величины открытия позиции педали акселератора/частоты вращения MG1/частоты вращения ICE/крутящего момента MG1/крутящего момента ICE, когда режим переходит из EV --> HEV в соответствии с изменением скорости транспортного средства во время высокого SOC, в первом варианте осуществления.

Фиг. 10 является пояснительным видом, иллюстрирующим траекторию перемещения рабочей точки на карте переключения передач, когда режим переходит из "EV --> HEV" в соответствии с изменением скорости транспортного средства во время высокого SOC.

Фиг. 11A является пояснительным видом, иллюстрирующим тракт передачи мощности в EV-режиме во время высокого SOC.

Фиг. 11B является пояснительным видом, иллюстрирующим тракт передачи мощности в HEV-режиме во время высокого SOC.

Фиг. 12 является временной диаграммой, иллюстрирующей каждую из характеристик из скорости транспортного средства/G транспортного средства/величины открытия позиции педали акселератора/частоты вращения MG1/частоты вращения ICE/крутящего момента MG1/крутящего момента ICE, когда режим переходит из EV --> HEV в соответствии с изменением требуемой движущей силы водителя во время высокого SOC, в первом варианте осуществления.

Фиг. 13 является пояснительным видом, иллюстрирующим траекторию перемещения рабочей точки на карте переключения передач, когда режим переходит из EV --> HEV в соответствии с изменением требуемой движущей силы водителя во время высокого SOC.

Фиг. 14 является временной диаграммой, иллюстрирующей каждую из характеристик из скорости транспортного средства/G транспортного средства/величины открытия позиции педали акселератора/частоты вращения MG1/частоты вращения ICE/крутящего момента MG1/крутящего момента ICE, когда режим переходит из EV --> HEV в соответствии с изменением скорости транспортного средства во время низкого SOC, в первом варианте осуществления.

Фиг. 15 является пояснительным видом, иллюстрирующим траекторию перемещения рабочей точки на карте переключения передач, когда режим переходит из EV --> HEV в соответствии с изменением скорости транспортного средства во время низкого SOC.

Фиг. 16A является пояснительным видом, иллюстрирующим тракт передачи мощности в EV-режиме во время низкого SOC.

Фиг. 16B является пояснительным видом, иллюстрирующим тракт передачи мощности в HEV-режиме во время низкого SOC.

Фиг. 17 является одним примером карты переключения передач, используемой во время высокого SOC во втором варианте осуществления.

Фиг. 18 является временной диаграммой, иллюстрирующей каждую из характеристик из скорости транспортного средства/G транспортного средства/величины открытия позиции педали акселератора/частоты вращения MG1/частоты вращения ICE/крутящего момента MG1/крутящего момента ICE, когда режим переходит из EV --> HEV в соответствии с изменением скорости транспортного средства во время высокого SOC, во втором варианте осуществления.

Фиг. 19 является пояснительным видом, иллюстрирующим траекторию перемещения рабочей точки на карте переключения передач, когда режим переходит из EV --> HEV в соответствии с изменением скорости транспортного средства во время высокого SOC.

Фиг. 20 является временной диаграммой, иллюстрирующей каждую из характеристик из скорости транспортного средства/G транспортного средства/величины открытия позиции педали акселератора/частоты вращения MG1/частоты вращения ICE/крутящего момента MG1/крутящего момента ICE, в случае если крутящий момент ICE ограничен, когда режим переходит из EV --> HEV в соответствии с изменением скорости транспортного средства во время высокого SOC, в первом варианте осуществления.

Фиг. 21 является временной диаграммой, иллюстрирующей каждую из характеристик из скорости транспортного средства/G транспортного средства/величины открытия позиции педали акселератора/частоты вращения MG1/частоты вращения ICE/крутящего момента MG1/крутящего момента ICE, в случае если крутящий момент ICE ограничен, когда режим переходит из EV --> HEV в соответствии с изменением скорости транспортного средства во время высокого SOC, во втором варианте осуществления.

Подробное описание вариантов осуществления изобретения

[0009] Ниже описывается предпочтительный вариант осуществления для реализации устройства управления движущей силой для гибридного транспортного средства согласно настоящему изобретению на основе первого варианта осуществления и второго варианта осуществления, проиллюстрированных на чертежах.

[0010] Первый вариант осуществления

Сначала описывается конфигурация.

Устройство управления движущей силой первого варианта осуществления применяется к гибридному транспортному средству (одному примеру гибридного транспортного средства), содержащему, в качестве компонентов приводной системы, один двигатель, два мотора/генератора и многоступенчатую зубчатую трансмиссию, имеющую три зацепляющих муфты. Ниже отдельно описываются "общая конфигурация системы", "конфигурация системы управления переключением передач", "конфигурация ступеней переключения передач" и "конфигурация процесса управления движущей силой" относительно конфигурации устройства управления движущей силой для гибридного транспортного средства в первом варианте осуществления.

[0011] Общая конфигурация системы

Фиг. 1 иллюстрирует приводную систему и систему управления гибридного транспортного средства, к которому применяется устройство управления движущей силой первого варианта осуществления. Ниже описывается общая конфигурация системы первого варианта осуществления на основе фиг. 1.

[0012] Приводная система гибридного транспортного средства первого варианта осуществления содержит двигатель ICE внутреннего сгорания, первый мотор/генератор MG1, второй мотор/генератор MG2 и многоступенчатую зубчатую трансмиссию 1, имеющую три зацепляющих муфты C1, C2 и C2, как проиллюстрировано на фиг. 1. "ICE" является аббревиатурой для "двигателя внутреннего сгорания".

[0013] Двигатель ICE внутреннего сгорания выступает в качестве источника приведения в движение гибридного транспортного средства и представляет собой, например, бензиновый двигатель или дизельный двигатель, который располагается в переднем отсеке транспортного средства таким образом, что направление коленчатого вала находится в направлении ширины транспортного средства. Этот двигатель ICE внутреннего сгорания соединяется с картером 10 трансмиссии многоступенчатой зубчатой трансмиссии 1, и выходной вал двигателя внутреннего сгорания соединяется с первым валом 11 многоступенчатой зубчатой трансмиссии 1. При запуске двигателя ICE внутреннего сгорания, второй мотор/генератор MG2 используется в качестве стартерного мотора. Тем не менее, стартерный мотор 2 предоставляется при подготовке к тому, что не может обеспечиваться запуск посредством второго мотора/генератора MG2 с использованием аккумулятора 3 с высоким уровнем мощности, к примеру, во время экстремального холода.

[0014] Первый мотор/генератор MG1 (электромотор) представляет собой синхронный мотор с постоянными магнитами, использующий трехфазный переменный ток, который выступает в качестве источника приведения в движение в гибридном транспортном средстве во время подачи мощности и выступает в качестве генератора во время рекуперации. Помимо этого, второй мотор/генератор MG2 представляет собой синхронный мотор с постоянными магнитами, использующий трехфазный переменный ток, который выступает в качестве мотора, который вращает вал-шестерню многоступенчатой зубчатой трансмиссии 1 и стартерного мотора двигателя ICE внутреннего сгорания во время подачи мощности и выступает в качестве генератора во время приведения в движение посредством двигателя ICE внутреннего сгорания. Как первый мотор/генератор MG1, так и второй мотор/генератор MG2 имеют аккумулятор 3 с высоким уровнем мощности в качестве общего источника мощности в ходе подачи мощности. Дополнительно, электрическая мощность, вырабатываемая посредством первого мотора/генератора MG1 и второго мотора/генератора MG2, заряжается в этот аккумулятор 3 с высоким уровнем мощности.

Статор первого мотора/генератора MG1 крепится к картеру первого мотора/генератора MG1, и картер крепится к картеру 10 трансмиссии для многоступенчатой зубчатой трансмиссии 1. Затем вал первого мотора, интегрированный с ротором первого мотора/генератора MG1, соединяется со вторым валом 12 многоступенчатой зубчатой трансмиссии 1. Статор второго мотора/генератора MG2 крепится к картеру второго мотора/генератора MG2, и картер крепится к картеру 10 трансмиссии для многоступенчатой зубчатой трансмиссии 1. Затем вал второго мотора, интегрированный с ротором второго мотора/генератора MG2, соединяется с шестым валом 16 многоступенчатой зубчатой трансмиссии 1. Первый инвертор 4, который преобразует постоянный ток в трехфазный переменный ток в ходе подачи мощности и преобразует трехфазный переменный ток в постоянный ток в ходе рекуперации, соединяется с обмоткой статора первого мотора/генератора MG1 через первый жгут 5 проводов переменного тока. Второй инвертор 6, который преобразует постоянный ток в трехфазный переменный ток в ходе подачи мощности и преобразует трехфазный переменный ток в постоянный ток в ходе выработки мощности, соединяется с обмоткой статора второго мотора/генератора MG2 через второй жгут 7 проводов переменного тока.

Аккумулятор 3 с высоким уровнем мощности, первый инвертор 4 и второй инвертор 6 соединяются посредством жгута 8 проводов постоянного тока через распределительную коробку 9.

[0015] Гибридное транспортное средство первого варианта осуществления содержит "EV-режим" и "HEV-режим" в качестве режимов движения. EV-режим представляет собой режим движения, в котором только первый мотор/генератор MG1 используется в качестве источника приведения в движение. HEV-режим представляет собой режим движения, в котором первый мотор/генератор MG1 и двигатель ICE внутреннего сгорания используются в качестве источников приведения в движение. Изменение режима между EV-режимом и HEV-режимом является возможным, на основе скорости транспортного средства и требуемой движущей силы водителя (движущей силы), отраженной в величине открытия позиции педали акселератора и операции торможения.

[0016] Многоступенчатая зубчатая трансмиссия 1 содержит несколько зубчатых пар, имеющих различные передаточные числа, и элементы переключения передач, которые переключаются между ступенями переключения передач, и представляет собой трансмиссию с нормальным вводом в зацепление, которая реализует несколько ступеней переключения передач. Эта многоступенчатая зубчатая трансмиссия 1 располагается в тракте передачи мощности из двигателя ICE внутреннего сгорания, первого мотора/генератора MG1 и второго мотора/генератора MG2 на ведущие колеса 19.

Многоступенчатая зубчатая трансмиссия 1 содержит шесть валов-шестерней 11-16, содержащих шестерни и расположенных параллельно друг другу в картере 10 трансмиссии, и три зацепляющих муфты C1, C2, C3 для выбора зубчатой пары. Первый вал 11, второй вал 12, третий вал 13, четвертый вал 14, пятый вал 15 и шестой вал 16 предоставляются в качестве валов-шестерней. Первая зацепляющая муфта C1, вторая зацепляющая муфта C2 и третья зацепляющая муфта C3 предоставляются в качестве зацепляющих муфт. Здесь, первая, вторая и третья зацепляющие муфты C1, C2, C3 представляют собой кулачковые муфты, которые зацепляют/расцепляют состояние зацепления во время переключения передач. Картер 10 трансмиссии содержит электрический масляный насос 20, который подает смазочное масло в участки ввода в зацепление шестерней и участки осевого подшипника внутри картера.

[0017] Первый вал 11 представляет собой вал, который соединяется с выходным валом двигателя внутреннего сгорания для двигателя ICE внутреннего сгорания. Первая шестерня 101, вторая шестерня 102 и третья шестерня 103 располагаются на этом первом валу 11 в порядке от правой стороны, как показано на фиг. 1. Первая шестерня 101 предоставляется как единое целое (что включает в себя закрепление как единого целого) для первого вала 11. Вторая шестерня 102 и третья шестерня 103 представляют собой промежуточные шестерни, в которых участок утолщения, который выступает в осевом направлении, вставляется во внешний периметр первого вала 11, и предоставляются таким образом, что они могут соединяться с возможностью приведения в действие с первым валом 11 через вторую зацепляющую муфту C2.

[0018] Второй вал 12 соединяется с валом первого мотора для первого мотора/генератора MG1 и представляет собой цилиндрический вал, который располагается коаксиально с осью, совмещенной с позицией внешней стороны первого вала 11. Четвертая шестерня 104 и пятая шестерня 105 располагаются на этом втором валу 12 в порядке от правой стороны, как показано на фиг. 1. Четвертая шестерня 104 и пятая шестерня 105 предоставляются как единое целое (что включает в себя закрепление как единого целого) для второго вала 12.

[0019] Третий вал 13 представляет собой вал, расположенный на стороне выходного вала многоступенчатой зубчатой трансмиссии 1, в котором оба конца поддерживаются на картере 10 трансмиссии. Шестая шестерня 106, седьмая шестерня 107, восьмая шестерня 108, девятая шестерня 109 и десятая шестерня 110 располагаются на этом третьем валу 13 в порядке от правой стороны, как показано на фиг. 1. Шестая шестерня 106, седьмая шестерня 107 и восьмая шестерня 108 предоставляются как единое целое (что включает в себя закрепление как единого целого) для третьего вала 13. Девятая шестерня 109 и десятая шестерня 110 представляют собой промежуточные шестерни, в которых участок утолщения, который выступает в осевом направлении, вставляется во внешний периметр третьего вала 13, и предоставляются таким образом, что они могут соединяться с возможностью приведения в действие с третьим валом 13 через третью зацепляющую муфту C3.

Затем шестая шестерня 106 вводится в зацепление со второй шестерней 102, предоставленной на первом валу 11, седьмая шестерня 107 вводится в зацепление с шестнадцатой шестерней 116 дифференциала 17, и восьмая шестерня 108 вводится в зацепление с третьей шестерней 103, предоставленной на первом валу 11. Девятая шестерня 109 вводится в зацепление с четвертой шестерней 104, предоставленной на втором валу 12, и десятая шестерня 110 вводится в зацепление с пятой шестерней 105, предоставленной на втором валу 12.

[0020] Четвертый вал 14 представляет собой вал, в котором оба конца поддерживаются на картере 10 трансмиссии, и одиннадцатая шестерня 111, двенадцатая шестерня 112 и тринадцатая шестерня 113 располагаются на этом четвертом валу 14 в порядке с правой стороны, как показано на фиг. 1. Одиннадцатая шестерня 111 предоставляется как единое целое (что включает в себя закрепление как единого целого) для четвертого вала 14. Двенадцатая шестерня 112 и тринадцатая шестерня 113 представляют собой промежуточные шестерни, в которых участок утолщения, который выступает в осевом направлении, вставляется во внешний периметр четвертого вала 14, и предоставляются таким образом, что они могут соединяться с возможностью приведения в действие с четвертым валом 14 через первую зацепляющую муфту C1.

Затем одиннадцатая шестерня 111 вводится в зацепление с первой шестерней 101, предоставленной на первом валу 11, двенадцатая шестерня 112 вводится в зацепление со второй шестерней 102, предоставленной на первом валу 11, и тринадцатая шестерня 113 вводится в зацепление с четвертой шестерней 104, предоставленной на втором валу 12.

[0021] Пятый вал 15 представляет собой вал, в котором оба конца поддерживаются на картере 10 трансмиссии. Четырнадцатая шестерня 114, которая вводится в зацепление с одиннадцатой шестерней 111, предоставленной на четвертом валу 14, предоставляется как единое целое (что включает в себя закрепление как единого целого) для этого пятого вала 15.

[0022] Шестой вал 16 представляет собой вал, соединенный с валом второго мотора для второго мотора/генератора MG2. Пятнадцатая шестерня 115, которая вводится в зацепление с четырнадцатой шестерней 114, предоставленной на пятом валу 15, предоставляется как единое целое (что включает в себя закрепление как единого целого) для этого шестого вала 16.

[0023] После этого, второй мотор/генератор MG2 и двигатель ICE внутреннего сгорания механически соединяются друг с другом посредством зубчатой передачи, сконфигурированной из пятнадцатой шестерни 115, четырнадцатой шестерни 114, одиннадцатой шестерни 111 и первой шестерни 101, которые вводятся в зубчатое зацепление друг с другом. Эта зубчатая передача служит в качестве редукторной передачи, которая замедляет частоту вращения второго мотора/генератора MG2 (частоту вращения MG2) при запуске двигателя ICE внутреннего сгорания посредством второго мотора/генератора MG2, и служит в качестве повышающей передачи, которая ускоряет частоту вращения двигателя внутреннего сгорания (частоту вращения ICE) при выработке мощности посредством второго мотора/генератора MG2 с приведением в действие двигателя ICE внутреннего сгорания.

[0024] Первая зацепляющая муфта C1 размещается между двенадцатой шестерней 112 и тринадцатой шестерней 113, предоставленными на четвертом валу 14. Эта первая зацепляющая муфта C1 представляет собой кулачковую муфту, которая зацепляется посредством хода зацепления во вращательно синхронизированном состоянии без наличия механизма синхронизации. Когда первая зацепляющая муфта C1 находится в левой позиции зацепления (слева), четвертый вал 14 и тринадцатая шестерня 113 соединяются с возможностью приведения в действие. Помимо этого, в нейтральной позиции (N), эта первая зацепляющая муфта C1 расцепляет как двенадцатую шестерню 112, так и тринадцатую шестерню 113 относительно четвертого вала 14. Кроме того, когда эта первая зацепляющая муфта C1 находится в правой позиции зацепления (справа), четвертый вал 14 и двенадцатая шестерня 112 соединяются с возможностью приведения в действие.

[0025] Вторая зацепляющая муфта C2 размещается между второй шестерней 102 и третьей шестерней 103, предоставленными на первом валу 11. Эта вторая зацепляющая муфта C2 представляет собой кулачковую муфту, которая зацепляется посредством хода зацепления во вращательно синхронизированном состоянии без наличия механизма синхронизации. Когда вторая зацепляющая муфта C2 находится в левой позиции зацепления (слева), первый вал 11 и третья шестерня 103 соединяются с возможностью приведения в действие. Помимо этого, в нейтральной позиции (N), эта вторая зацепляющая муфта C2 расцепляет как вторую шестерню 102, так и третью шестерню 103 относительно первого вала 11. Кроме того, когда эта вторая зацепляющая муфта C2 находится в правой позиции зацепления (справа), первый вал 11 и вторая шестерня 102 соединяются с возможностью приведения в действие.

[0026] Третья зацепляющая муфта C3 размещается между девятой шестерней 109 и десятой шестерней 110, предоставленными на третьем валу 13. Эта третья зацепляющая муфта C3 представляет собой кулачковую муфту, которая зацепляется посредством хода зацепления во вращательно синхронизированном состоянии без наличия механизма синхронизации. Когда третья зацепляющая муфта C3 находится в левой позиции зацепления (слева), третий вал 13 и десятая шестерня 110 соединяются с возможностью приведения в действие. Помимо этого, в нейтральной позиции (N), эта третья зацепляющая муфта C3 расцепляет как девятую шестерню 109, так и десятую шестерню 110 относительно третьего вала 13. Кроме того, когда эта третья зацепляющая муфта C3 находится в правой позиции зацепления (справа), третий вал 13 и девятая шестерня 109 соединяются с возможностью приведения в действие.

[0027] Затем шестнадцатая шестерня 116, которая вводится в зацепление с седьмой шестерней 107, предоставленной как единое целое (что включает в себя закрепление как единого целого) для третьего вала 13 многоступенчатой зубчатой трансмиссии 1, соединяется с левым и правым ведущими колесами 19 через дифференциал 17 и левый и правый ведущие валы 18.

[0028] Система управления транспортного средства первого варианта осуществления содержит гибридный модуль 21 управления, модуль 22 управления мотором, модуль 23 управления трансмиссией и модуль 24 управления двигателем, как проиллюстрировано на фиг. 1.

[0029] Гибридный модуль 21 управления (аббревиатура: "HCM") представляет собой интегральный модуль управления, имеющий функцию для того, чтобы надлежащим образом управлять энергопотреблением всего транспортного средства. Этот гибридный модуль 21 управления соединяется с другими модулями управления (модулем 22 управления мотором, модулем 23 управления трансмиссией, модулем 24 управления двигателем и т.д.) таким образом, чтобы допускать двунаправленный обмен информацией посредством линии 25 CAN-связи. "CAN" в линии 25 CAN-связи является аббревиатурой для "сети блоков управления".

[0030] Помимо этого, этот гибридный модуль 21 управления управляет движущей силой, которая передается на ведущие колеса 19 в соответствии с требуемой движущей силой водителя, в диапазоне максимальной движущей силы, которая может выводиться посредством источника приведения в движение (максимальной выводимой движущей силы). Таким образом, движущая сила, которая выводится из источника приведения в движение (в EV-режиме, только выходной крутящий момент первого мотора/генератора MG1 (крутящий момент MG1), в HEV-режиме, полный крутящий момент из крутящего момента MG1 и выходного крутящего момента из двигателя ICE внутреннего сгорания (крутящего момента ICE)) управляется таким образом, чтобы удовлетворять требуемой движущей силе, которая отражается в величине открытия позиции педали акселератора. Если требуемая движущая сила превышает максимальную выводимую движущую силу источника приведения в движение, движущая сила, которая выводится из источника приведения в движение, задается равной максимальному значению, так что требование по движущей силе может удовлетворяться в максимально возможной степени.

[0031] Кроме того, когда режим движения переходит из EV-режима в HEV-режим в соответствии с изменением скорости транспортного средства, гибридный модуль 21 управления первого варианта осуществления задает максимальное значение движущей силы, передаваемой на ведущие колеса 19 в HEV-режиме, равным значению, которое является эквивалентным максимальной выводимой движущей силе в EV-режиме во время изменения режима. Дополнительно, когда режим движения переходит из EV-режима в HEV-режим в соответствии с изменением требуемой движущей силы водителя, максимальное значение движущей силы, передаваемой на ведущие колеса 19 в HEV-режиме, задается равным максимальной выводимой движущей силе в HEV-режиме.

Таким образом, этот гибридный модуль 21 управления соответствует модулю управления движущей силой и ограничивает движущую силу, передаваемую на ведущие колеса 19 в HEV-режиме во время изменения режима из EV-режима в HEV-режим в соответствии с изменением скорости транспортного средства, и не ограничивает движущую силу, передаваемую на ведущие колеса 19 в HEV-режиме во время изменения режима из EV-режима в HEV-режим в соответствии с изменением требуемой движущей силы.

[0032] Модуль 22 управления мотором (аббревиатура: "MCU") выполняет управление подачей мощности, управление рекуперацией (выработкой мощности) и т.п. первого мотора/генератора MG1 и второго мотора/генератора MG2, посредством команд управления в первый инвертор 4 и второй инвертор 6. Режимы управления для первого мотора/генератора MG1 и второго мотора/генератора MG2 представляют собой "управление крутящим моментом" и "FB-управление по частоте вращения".

При "управлении крутящим моментом", выполняется управление, при котором фактический крутящий момент мотора принудительно следует целевому крутящему моменту мотора, когда определяется целевой крутящий момент мотора, который должен совместно использоваться относительно целевой движущей силы в ходе подачи мощности. При "FB-управлении по частоте вращения", выполняется управление, в котором определяется целевая частота вращения мотора, с которой синхронизируются частоты вращения входного/выходного вала муфты, и крутящий FB-момент выводится для того, чтобы обеспечивать схождение фактической частоты вращения мотора с целевой частотой вращения мотора, когда имеется запрос на переключение передач, чтобы вводить в зацепление и зацеплять любую из зацепляющих муфт C1, C2, C3 в ходе движения.

[0033] Модуль 23 управления трансмиссией (аббревиатура "TMCU") выполняет управление переключением передач для переключения схемы переключения передач многоступенчатой зубчатой трансмиссии 1, посредством вывода команды управления током в первый, второй и третий электрические актуаторы (исполнительные механизмы) 31, 32, 33 (см. фиг. 2), на основе предварительно определенной входной информации. При этом управлении переключением передач первая, вторая и третья зацепляющие муфты C1, C2, C3 избирательно полностью зацепляются/расцепляются, и зубчатая пара, участвующая в передаче мощности, выбирается из нескольких зубчатых пар. Здесь, во время запроса на переключение передач, чтобы зацеплять любую из расцепленных зацепляющих муфт C1, C2, C3, с тем чтобы подавлять частоту дифференциального вращения между входным/выходным валом муфты, чтобы обеспечивать ввод в зацепление и зацепление, FB-управление по частоте вращения (управление синхронизацией вращения) первого мотора/генератора MG1 или второго мотора/генератора MG2 используется в комбинации.

[0034] Модуль 24 управления двигателем (аббревиатура: "ECU") выполняет управление запуском двигателя ICE внутреннего сгорания, управление остановкой двигателя ICE внутреннего сгорания, управление отсечкой топлива и т.п., посредством вывода команды управления в модуль 22 управления мотором, свечу зажигания, актуатор впрыска топлива и т.п., на основе предварительно определенной входной информации.

[0035] Конфигурация системы управления переключением передач

Многоступенчатая зубчатая трансмиссия 1 согласно первому варианту осуществления достигает эффективности посредством уменьшения сопротивления вследствие торможения муфты посредством использования, в качестве элементов переключения передач, первой, второй и третьей зацепляющих муфт C1, C2, C3 (кулачковой муфты), которые вводятся в зацепление и зацепляются. Далее, когда имеется запрос на переключение передач, чтобы вводить в зацепление и зацеплять любую из первой, второй и третьей зацепляющих муфт C1, C2, C3, частоты дифференциального вращения входного/выходного вала муфты синхронизируются посредством первого мотора/генератора MG1 (когда третья зацепляющая муфта C3 зацепляется) или второго мотора/генератора MG2 (когда первая и вторая зацепляющие муфты C1, C2 зацепляются), и ход зацепления начинается, как только частота вращения попадает в диапазон частот вращения для определения синхронизации, чтобы реализовывать переключение передач. Помимо этого, когда имеется запрос на переключение передач, чтобы расцеплять любую из зацепленных первой, второй и третьей зацепляющих муфт C1, C2, C3, передаточный крутящий момент муфты для муфты, которая должна расцепляться, уменьшается, и ход расцепления начинается, как только крутящий момент становится равным или меньше значения определения крутящего момента расцепления, чтобы реализовывать переключение передач. Ниже описывается конфигурация системы управления переключением передач многоступенчатой зубчатой трансмиссии 1 на основе фиг. 2.

[0036] Система управления переключением передач содержит, в качестве зацепляющих муфт, первую зацепляющую муфту C1, вторую зацепляющую муфту C2 и третью зацепляющую муфту C3, как проиллюстрировано на фиг. 2. Первый электрический актуатор 31 для операции переключения передач с помощью C1, C2, второй электрический актуатор 32 для операции выбора C1, C2 и третий электрический актуатор 33 для операции переключения передач с помощью C3 предоставляются в качестве актуаторов. Рабочий механизм 40 выбора C1/C2, рабочий механизм 41 переключения передач с помощью C1, рабочий механизм 42 переключения передач с помощью C2 и рабочий механизм 43 переключения передач с помощью C3 предоставляются в качестве механизмов переключения передач, которые преобразуют операции актуатора в операции зацепления/расцепления муфты. Кроме того, модуль 23 управления трансмиссией предоставляется в качестве средства управления первого электрического актуатора 31, второго электрического актуатора 32 и третьего электрического актуатора 33.

[0037] Первая зацепляющая муфта C1, вторая зацепляющая муфта C2 и третья зацепляющая муфта C3 представляют собой кулачковые муфты, которые переключаются между позицией нейтрали (N: расцепленной позицией), левой позицией зацепления (слева: позицией полного зацепления муфты с левой стороны) и правой позицией зацепления (справа: позицией полного зацепления муфты с правой стороны). Зацепляющие муфты C1, C2, C3 имеют идентичную конфигура