Электрохирургические системы и способы

Иллюстрации

Показать все

Изобретение относится к медицинской технике, а именно к системам для электрохирургии. Электрохирургическая система содержит электрохирургический контроллер, включающий процессор, запоминающее устройство, генератор напряжения, содержащий активную клемму и соединитель шпателя, выполненный с возможностью соединения с соединителем электрохирургического шпателя, электрохирургический шпатель, содержащий удлиненный стержень, определяющий проксимальный конец и дистальный конец, и первый активный электрод, расположенный на дистальном конце удлиненного стержня. Контроллер выполнен с возможностью соединения с перистальтическим насосом, содержащим ротор, соединенный с электродвигателем, при этом электродвигатель функционально соединен с процессором. В запоминающем устройстве хранится программа, которая, при ее исполнении процессором, побуждает процессор осуществлять по меньшей мере два режима функционирования в ходе электрохирургической операции, при этом процессор осуществляет первый режим функционирования путем регулирования расхода жидкости, подаваемой в отверстие на дистальном конце электрохирургического шпателя, в котором отверстие расположено вблизи первого электрода, и режим регулирования энергии, подаваемой на первый активный электрод электрохирургическим контроллером. Использование изобретения позволяет повысить легкость выполнения хирургических процедур в режиме функционирования, выбранном на основе типа ткани. 12 з.п. ф-лы, 7 ил., 1 табл.

Реферат

УРОВЕНЬ ТЕХНИКИ

Электрохирургические системы используются врачами для выполнения определенных функций во время проведения хирургической операции. В рамках этих операций может понадобиться лечение более чем одного типа ткани или более чем одним способом воздействовать на ткань. Существующие электрохирургические системы обычно рассчитаны на ограниченную функциональность и не всегда достаточно эффективны для лечения различных типов тканей. В случае, когда операция требует лечения нескольких типов ткани, использование одного устройства в некоторых аспектах операции может привести к неудовлетворительным результатам, что вызывает необходимость того, чтобы пользователь имел наличие или мог переключаться между несколькими хирургическими инструментами для получения требуемого результата операции. Например, при выполнении конкретных электрохирургических операций на колене или плече для эффективного лечения различных типов тканей может потребоваться несколько различных режимов работы. Каждый режим может использовать различное количество энергии, а при существующем уровне техники каждый режим может подразумевать использование различных электрохирургических шпателей и различных электрохирургических контроллеров. В некоторых случаях хирург может отказаться от использования соответствующего шпателя и/или электрохирургического контроллера, чтобы сократить затраты на операцию, когда лучшие клинические результаты могут быть достигнуты с использованием многоцелевых электрохирургических шпателей.

Любое усовершенствование, которое позволит облегчить лечение для хирурга и достичь лучших результатов, даст ему преимущества, обеспечивающие конкурентоспособность.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Для подробного описания примерных вариантов воплощения будут сделаны ссылки на прилагаемые чертежи, на которых:

Фиг. 1 иллюстрирует электрохирургическую систему в соответствии с по меньшей мере некоторыми вариантами воплощения.

На Фиг. 2 представлена вертикальная проекция электрохирургического шпателя в соответствии с, по меньшей мере, некоторыми вариантами воплощения.

На Фиг. 3 представлен вертикальный поперечный разрез электрохирургического шпателя в соответствии с, по меньшей мере, некоторыми вариантами воплощения.

На Фиг. 4 представлен вертикальный вид сеточного электрода и вид в перспективе дистального конца электрохирургического шпателя, содержащего сеточный электрод, в соответствии с, по меньшей мере, некоторыми вариантами воплощения.

Фиг. 5 иллюстрирует электрическую блок-схему контроллера в соответствии с по меньшей мере некоторыми вариантами воплощения.

Фиг. 6 иллюстрирует типовой график, связанный с выходной радиочастотной энергией и расходом при аспирации в различных режимах, в соответствии с, по меньшей мере, некоторыми вариантами воплощения.

На фиг. 7 представлена блок-схема способа в соответствии с, по меньшей мере, некоторыми вариантами воплощения.

ТЕРМИНОЛОГИЯ И СИСТЕМА УСЛОВНЫХ ОБОЗНАЧЕНИЙ

Некоторые термины используются во всем последующем описании и формуле изобретения для обозначения конкретных компонентов системы. Специалисту в данной области техники будет понятно, что компании, которые разрабатывают и производят электрохирургические системы, могут присваивать компоненту разные наименования. Этот документ не предназначен для различения компонентов, которые отличаются по наименованию, но не по функции.

В последующем обсуждении и в формуле изобретения термины «включающий» и «содержащий» используются в неограничивающей форме, и, таким образом, их следует интерпретировать в значении «включающий, но не ограничивающийся…». Кроме того, термин «соединяются» или «соединяется» означает непрямое или прямое соединение. Таким образом, если первое устройство соединяется со вторым устройством, это соединение может быть образовано с помощью прямого соединения или с помощью непрямого соединения через другие устройства и соединения.

Упоминание отдельного элемента включает возможность существования множества имеющихся аналогичных элементов. В частности, используемые здесь и в прилагаемой формуле изобретения формы единственного числа подразумевают и множественное число, если из контекста явно не следует иное. Также следует отметить, что из формулы изобретения могут быть исключены любые необязательные элементы. Таким образом, данное утверждение служит предварительным обоснованием использования таких исключающих терминов как «исключительно», «только» и терминов, аналогичных используемым, для перечисления элементов формулы изобретения или использования «отрицательного» ограничения. Наконец, следует понимать, что, если не указано иное, все технические и научные термины, используемые здесь, имеют такое же значение, как обычно их понимает специалист с обычной квалификацией в данной области, к которой принадлежит это изобретение.

Под «абляцией» понимают удаление ткани в результате взаимодействия ткани с плазмой.

«Режим абляции» относится к одной или более характеристик абляции. Отсутствие абляции (т.е. отсутствие плазмы) не считается «режимом абляции». Режим, в котором выполняется коагуляция, не считается «режимом абляции».

Под «активным электродом» понимают электрод электрохирургического шпателя, который производит электрически индуцируемое хирургическое воздействие на ткань с целью ее изменения при контакте с тканью, подлежащей лечению, или при нахождении в непосредственной близости к ткани, подлежащей лечению.

Под «возвратным электродом» понимают электрод электрохирургического шпателя, который служит для обеспечения токопрохождения для электрических зарядов относительно активного электрода, и/или электрод электрохирургического шпателя, который сам по себе не производит электрически индуцируемого хирургического воздействия на ткань, подлежащую лечению, с целью ее изменения.

Понятие «электродвигатель» включает двигатели переменного тока (АС), двигатели постоянного тока (DC), а также шаговые двигатели.

«Регулирование расхода жидкости» означает регулирование объемного расхода. Управление давлением, прилагаемым для поддержания уставки давления (например, давления всасывания) независимо от объемного расхода жидкости, обусловленного приложенным давлением, не считается «регулированием расхода жидкости». Однако изменение давления, прилагаемого для поддержания уставки объемного расхода жидкости, считается «регулированием расхода жидкости».

Понятие «в основном» в отношении подверженных воздействию областей поверхности электродов означает, что подверженные воздействию области поверхности, как, например, между двумя электродами, являются одинаковыми или отличаются не более чем на двадцать пять (25) процентов.

Жидкостный канал, упомянутый как находящийся «внутри» удлиненного стержня, включает не только отдельный жидкостный канал, который физически находится в пределах всего или части внутреннего объема удлиненного вала, но также ситуации, когда внутренний объем удлиненного вала сам по себе является жидкостным каналом, или когда отдельный жидкостный канал присоединен вдоль всей длины или части удлиненного стержня.

Если указывается диапазон значений, следует понимать, что каждое промежуточное значение между верхним и нижним пределами этого диапазона и любое другое заданное или промежуточное значение в этом заданном диапазоне охватывается настоящим изобретением. Кроме того, предполагается, что любой описываемый в вариантах изобретения необязательный признак может быть изложен и заявлен независимо или в сочетании с любым одним или более признаков, описанных здесь.

Все существующие объекты изобретения, упомянутые здесь (например, публикации, патенты, патентные заявки и оборудование), полностью включены сюда посредством ссылки, за исключением случаев, когда объект изобретения может вступать в противоречие с настоящим изобретением (в этом случае информация, изложенная в настоящем документе, имеет преимущественную силу). Упоминаемые признаки описаны исключительно для их раскрытия до даты подачи настоящей заявки. Ничто из содержащегося в настоящем документе не должно быть истолковано как признание того, что настоящее изобретение не может датировать задним числом такие документы на основании предшествующего изобретения.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Перед подробным описанием различных вариантов воплощения отметим, что данное изобретение не ограничивается конкретными вариантами, изложенными в данном документе как различные возможные изменения или модификации, а эквиваленты могут быть замещены без отхода от сущности и объема изобретения. Как будет очевидно для специалистов в данной области техники после прочтения этого раскрытия, каждый из отдельных вариантов воплощения, описанных и проиллюстрированных здесь, имеет дискретные компоненты и признаки, которые могут быть легко отделены от признаков или комбинироваться с признаками любого из нескольких других вариантов воплощения без отхода от объема или сущности настоящего изобретения. Кроме того, могут быть предложены многие различные модификации для адаптации к конкретной ситуации материала, композиции, способа, действия(й) или этапа(ов) способа для достижения цели(ей), соответствия сущности или объему настоящего изобретения. Все такие модификации находятся в пределах объема формулы изобретения, приведенной в данном документе.

Различные варианты воплощения связаны с электрохирургическими способами и связанными с ними электрохирургическими системами. В частности, различные варианты воплощения связаны с электрохирургической системой, имеющей несколько режимов функционирования, которые настроены для лечения конкретного целевого типа ткани или достижения требуемого электрохирургического воздействия, и реализуемой простым электрохирургическим шпателем и простым электрохирургическим контроллером. В примерных вариантах воплощения несколько режимов функционирования реализуются простым активным электродом на электрохирургическом шпателе. В описании сначала рассматривается типовая система, чтобы сориентировать читателя.

Фиг. 1 иллюстрирует электрохирургическую систему 100 в соответствии с, по меньшей мере, некоторыми вариантами воплощения. В частности, электрохирургическая система 100 содержит электрохирургический шпатель 102 (далее «шпатель 102»), соединенный с электрохирургическим контроллером 104 (далее «контроллер 104»). Шпатель 102 содержит удлиненный стержень 106, который образует дистальный конец 108. Удлиненный стержень 106 дополнительно образует ручку или проксимальный конец 110, за который врач удерживает шпатель 102 во время хирургических операций. Шпатель 102 дополнительно содержит гибкий многожильный кабель 112, вмещающий один или более электрических проводов (не показаны на Фиг. 1), и этот гибкий многожильный кабель 112 заканчивается в соединителе шпателя 114. Как показано на Фиг. 1, шпатель 102 соединен с контроллером 104, например, с помощью соединителя контроллера 120 на внешней поверхности корпуса 122 (в иллюстративном примере на Фиг. 1 - на передней поверхности).

Хотя это и не видно на Фиг. 1, в некоторых вариантах воплощения шпатель 102 имеет один или более внутренних жидкостных каналов, присоединенных к доступным снаружи трубчатым элементам. Согласно иллюстрации, шпатель 102 имеет гибкий трубчатый элемент 116, используемый для аспирации на дистальном конце 108 шпателя. В соответствии с различными вариантами воплощения, трубчатый элемент 116 присоединяется к перистальтическому насосу 118, этот перистальтический насос 118 иллюстративно показан как компонент, встроенный в контроллер 104 (т.е. находящийся, по меньшей мере, частично внутри корпуса 122 контроллера 104). В других вариантах воплощения корпус перистальтического насоса 118 может быть отдельным от корпуса 122 контроллера 104 (как показано пунктирными линиями на фигуре), но в любом случае перистальтический насос функционально связан с контроллером 104.

Перистальтический насос 118 содержит узел ротора 124 (далее просто «ротор 124»), а также узел статора 126 (далее просто «статор 126»). Гибкий трубчатый элемент 116 присоединяется внутри перистальтического насоса 118 между ротором 124 и статором 126, а перемещение ротора 124 по отношению к гибкому трубчатому элементу 116 вызывает перемещение жидкости в направлении слива 128. Притом, что иллюстративный перистальтический насос 118 показан с двухголовочным ротором 124, могут быть использованы различные виды перистальтических насосов 118 (например, пятиголовочный перистальтический насос). В контексте различных вариантов воплощения перистальтический насос 118 создает аспирацию с регулируемым объемом из хирургического поля на дистальном конце 108 шпателя 102 с управлением, основанным на изменении скорости ротора 124, производимым контроллером 104.

Как показано на Фиг. 1, устройство отображения или интерфейсное устройство 130 находится в корпусе 122 контроллера 104, а в некоторых вариантах воплощения пользователь может выбрать режимы работы контроллера 104 посредством интерфейсного устройства 130 и/или связанных кнопок 132. Например, с помощью одной или более кнопок 132 хирург может выбрать один из режимов абляции, таких как: режим малой мощности, который может быть использован для удаления частей хряща; режим средней мощности, который может быть использован для удаления мениска; режим высокой мощности для интенсивного удаления ткани и вакуумный режим для удаления свободно плавающей и/или улавливаемой ткани. Различные режимы работы обсуждаются более подробно ниже.

В некоторых вариантах воплощения электрохирургическая система 100 также содержит узел ножной педали 134. Узел ножной педали 134 может содержать одно или более педальных устройств 136 и 138, гибкий многожильный кабель 140 и соединитель педали 142. Притом, что показаны только два педальных устройства 136 и 138, может быть реализовано одно или более педальных устройств. Корпус 122 контроллера 104 может содержать соответствующий соединитель 144, который присоединяется к соединителю педали 142. Врач может использовать узел ножной педали 134 для управления различными аспектами контроллера 104, например, режимом абляции. Например, педальное устройство 136 может использоваться для управления включением-выключением подачи радиочастотной (РЧ) энергии на шпатель 102 и, в частности, для управления энергией в режиме абляции. Кроме того, педальное устройство 138 может быть использовано для управления и/или установки режима абляции электрохирургической системы. Например, нажатие педального устройства 138 может переключать уровень энергии, посредством контроллера 104, и, соответственно, изменять интенсивность аспирации, производимой перистальтическим насосом 118. В некоторых вариантах воплощения управление различными аспектами функционирования или производительности контроллера 104 может быть активировано путем выборочного нажатия нажимных кнопок, расположенных на ручке 110 шпателя 102.

Электрохирургическая система 100 по различным вариантам воплощения может иметь различные режимы работы, которые используют технологию Coblation®. В частности, патентообладатель настоящего раскрытия является владельцем технологии Coblation®. Технология Coblation® предполагает применение радиочастотного (РЧ) сигнала между одним или более активных электродов и одним или более возвратных электродов шпателя 102 для создания высокой напряженности электрического поля в непосредственной близости от целевой ткани. Напряженности электрического поля могут быть достаточными для испарения электропроводящей жидкости с помощью по меньшей мере части одного или более активных электродов в области между одним или более активных электродов и целевой тканью. Электропроводящая жидкость может изначально присутствовать в организме, например, в виде крови или, в некоторых случаях, внеклеточной или внутриклеточной жидкости. В других вариантах воплощения электропроводящая жидкость может быть жидкостью или газом, например, изотоническим раствором. В некоторых вариантах воплощения, например, при хирургических операциях, связанных с коленом или плечом, электропроводящая жидкость подается к месту, расположенному в непосредственной близости от активного электрода, и/или к целевому месту с помощью системы доставки, помимо и отдельно от системы 100.

Когда электропроводящая жидкость находится под напряжением и при этом атомы жидкости испаряются быстрее, чем повторно конденсируются, образуется газ. При приложении достаточной энергии к газу атомы сталкиваются друг с другом, в процессе чего происходит отдача электронов и образуется ионизированный газ или плазма (возникает так называемое «плазменное состояние»). Иначе говоря, плазма может быть образована путем нагрева газа и его ионизации при прохождении электрического тока через газ или при прохождении электромагнитных волн через газ. Способы создания плазмы подают энергию для непосредственного высвобождения свободных электронов в плазме, электронно-атомные столкновения высвобождают больше электронов и процесс каскадирует до тех пор, пока не будет достигнута требуемая степень ионизации. Более полное описание плазмы приведено в работе Plasma Physics («Физика плазмы») Р. Дж. Голдстона (R.J. Goldston) и П.X. Резерфорда (Р.Н. Rutherford) из лаборатории физики плазмы Принстонского университета (1995), полное раскрытие которой включено в данный документ посредством ссылки.

Поскольку плотность плазмы становится достаточно низкой (т.е. меньше приблизительно 1020 атомов/см3 для водных растворов), средняя длина свободного пробега электрона увеличивается таким образом, что впоследствии инжектированные электроны вызывают ударную ионизацию в плазме. Когда ионные частицы в плазменном слое обладают достаточной энергией (например, от 3,5 электрон-вольт (эВ) до 5 эВ), столкновения ионных частиц с молекулами, которые составляют целевую ткань, разрушают молекулярные связи целевой ткани, выделяя молекулы в свободные радикалы, которые затем объединяются в газообразные или жидкие соединения. Путем молекулярной диссоциации (в отличие от термического испарения или карбонизации) целевая ткань объемно удаляется способом молекулярной диссоциации больших органических молекул в меньшие молекулы и/или атомы, например, водорода, кислорода, оксидов углерода, углеводородов и соединений азота. Молекулярная диссоциация полностью устраняет структуру ткани, в отличие от дегидратации тканевого материала удалением жидкости внутри клеток ткани и внеклеточных жидкостей, как это происходит при электрохирургическом обезвоживании и испарении в предшествующем уровне техники. Более подробное описание молекулярной диссоциации приведено в принадлежащем тому же правообладателю патенте США №5697882, полное раскрытие которого включено в данный документ посредством ссылки.

Плотность энергии, производимой электрохирургической системой 100 на дистальном конце 108 шпателя 102 можно варьировать, регулируя различные факторы, такие как: количество активных электродов, размер электрода и межэлектродное расстояние, площадь поверхности электрода, неровности и/или острые кромки на поверхности электродов, электродные материалы, приложенное напряжение; ограничение тока, проходящего через один или более электродов (например, путем установки индуктивности последовательно с электродом); электропроводность жидкости, контактирующей с электродами; плотность электропроводящей жидкости и другие факторы. Соответственно, этими факторами можно манипулировать, чтобы управлять уровнем энергии возбужденных электронов. Поскольку различные тканевые структуры имеют различные молекулярные связи, электрохирургическая система 100 может быть выполнена с возможностью получения энергии, достаточной для того, чтобы разорвать молекулярные связи определенной ткани, но недостаточной, чтобы разорвать молекулярные связи другой ткани. Например, жировая ткань (например, жир) имеет двойные связи, для разрыва которых требуется уровень энергии выше 4-5 эВ (т.е. порядка около 8 эВ). Соответственно, технология Coblation® в некоторых режимах работы не удаляет такую жировую ткань, однако технология Coblation® может быть использована с более низкими уровнями энергии для эффективного удаления клеток, чтобы выделить внутренний жир в жидком виде. Другие режимы работы позволяют увеличить энергию таким образом, что двойные связи могут быть нарушены аналогично одинарным связям (например, повышением напряжения или изменением конфигурации электродов для увеличения плотности тока на электродах). Более полное описание этих различных явлений приведено в принадлежащих тому же правообладателю патентах США №6355032, №6149120 и №6296136, полное раскрытие которых включено в данный документ посредством ссылки.

Далее авторы изобретения представят теоретическое обоснование для объяснения того, как несколько режимов функционирования могут быть реализованы с помощью одного шпателя 102 и одного контроллера 104. Однако теоретические основы представлены исключительно в качестве одного из возможных объяснений и их не следует понимать как ограничение касательно функционирования для различных вариантов воплощения. Эквивалентно может быть предложена другая теоретическая основа с целью попытаться объяснить функционирование устройства с использованием другой теоретической основы, которая не должна устранять любое такое устройство в пределах прилагаемой формулы изобретения. В частности, цепь электрода, включающая плазму, создаваемую в функциональной взаимосвязи с активным электродом шпателя, жидкость между активным и возвратным электродом и поверхность контакта электрод-жидкость имеет или создает импеданс определенной величины потоку энергии от активного электрода к возвратному электроду. Импеданс, создаваемый цепью электрода, может зависеть от многих факторов, включая, но не ограничиваясь ими, толщину и объем самой плазмы, площадь поверхности активного электрода, не покрытого слоем пара и не находящегося в непосредственном контакте с электропроводящей жидкостью, а также объемный расход жидкости и/или газа за пределы от места расположения плазмы.

В устройствах предшествующего уровня техники для управления аспирацией используется только вакууметрическое давление (например, предусматриваются гнезда с подачей вакуума в настенных розетках в операционной больницы). Однако вакуум, доступный в гнезде настенной розетки, может быть очень непостоянным от одного помещения к другому, а во многих случаях и в пределах одного помещения с течением времени. Кроме того, применяемое управление вакууметрическим давлением не подразумевает управление объемом аспирации. Таким образом, в то время как устройства предшествующего уровня техники могут управлять вакууметрическим давлением (или могут указывать предпочтительное вакууметрическое давление), они не управляют объемным расходом при аспирации.

Могут быть реализованы различные режимы работы, по меньшей мере, частично и в некоторых вариантах воплощения, посредством регулирования расхода жидкости в ходе аспирации, а не только лишь регулирования прикладываемого вакуумметрического давления. В некоторых вариантах воплощения и как показано на Фиг. 1, регулирование расхода жидкости осуществляется с помощью перистальтического насоса 118, но эквивалентно могут быть использованы и другие механизмы для управления расходом, включая регулирование давления. К тому же, регулируя расход жидкости при аспирации, можно, по меньшей мере, частично управлять импедансом в цепи электрода. В то время, как другие параметры также могут оказывать влияние на импеданс, авторы изобретения обнаружили, что понижение объемного расхода жидкости при аспирации приводит к повышению импеданса в цепи электрода за счет генерирования большего количества плазмы и уменьшения степени непосредственного контактирования активного электрода с электропроводящей жидкостью, и, следовательно, к меньшей диссипации (рассеиванию) энергии, а повышение объемного расхода жидкости при аспирации приводит к понижению импеданса и, таким образом, большей диссипации энергии. Более высокий объемный расход уменьшает объем плазмы и, следовательно, увеличивает силу электрического поля внутри плазмы.

Авторы настоящего изобретения обнаружили, что отношение объемного расхода жидкости при аспирации к диссипации энергии противоречит общепринятому пониманию. То есть устройства и способы предшествующего уровня техники работают с предположением, что, как правило, высокий расход быстрее отводит энергию и, следовательно, уменьшает тепловые аспекты абляции. В противоположность этому авторы настоящего изобретения обнаружили, что большой объемный расход при аспирации имеет тенденцию к тому, чтобы приводить в целом к более высокой диссипации энергии. То есть большой объемный расход приводит к понижению импеданса цепи электрода, а понижение импеданса ведет к увеличению диссипации энергии. Кроме того, повышение значения объемного расхода вызывает «мерцание» плазмы. Рассмотрим аналогию в виде свечи. Если свеча горит в комнате с очень слабым движением воздуха, пламя может сохранять устойчивую форму, размер и расположение. Однако при наличии потока воздуха (например, при включении потолочного вентилятора) пламя начинает «мерцать». Если учесть, что в периоды разрушения плазмы (т.е. отсутствия плазмы) больше энергии рассеивается в тепловом режиме через окружающую жидкость и ткань, «мерцание» плазмы (плазма, которая периодически разрушается и образуется вновь), вызванное высоким объемным расходом, может привести к большей (а не меньшей) диссипации энергии в ткани и окружающей жидкости. Другими словами, не только «мерцание» плазмы будет приводить к понижению среднего импеданса и, следовательно, повышению диссипации энергии, но также тепловой режим, который преобладает во время кратковременного разрушения плазмы при «мерцании», вызывает повышение диссипации энергии, кроме тех периодов времени, когда плазма присутствует.

Соответственно, варианты воплощения, описанные в данном документе, относятся к системе, где импеданс (или ток высокой частоты, проходящий через активный электрод, который может быть использован для вычисления импеданса) на электроде отслеживается и используется в качестве параметра для управления объемным расходом при аспирации для управления полем плазмы таким образом, который требуется для конкретного типа ткани или операции. Например, если в некоторой точке наблюдается снижение импеданса активного электрода во время операции (возможно, указывает на неустойчивость плазмы), блок управления системы может выдать команду аспирационному насосу уменьшить расход при аспирации, чтобы позволить стабилизировать поле плазмы. С другой стороны, может потребоваться измерение тока высокой частоты, проходящего через активный электрод и регулирующего расход жидкости при аспирации, чтобы поддерживать ток на определенном заранее заданном и требуемом уровне, связанном с эксплуатационными предпочтениями пользователя. Кроме того, при некоторых операциях может потребоваться уменьшение расхода жидкости вместо стабилизации поля плазмы, чтобы уменьшить тепловыделение в месте лечения и повысить степень сохранности ткани. Настоящим также ссылаемся на принадлежащий тому же правообладателю патент США №8192424, озаглавленный "ELECTROSURGICAL SYSTEM WITH SUCTION CONTROL APPARTUS, SYSTEM AND METHOD" (ЭЛЕКТРОХИРУРГИЧЕСКАЯ СИСТЕМА С УСТРОЙСТВОМ УПРАВЛЕНИЯ ОТСАСЫВАНИЕМ, СИСТЕМА И СПОСОБ), полное раскрытие которого включено в данный документ посредством ссылки для любых целей. С другой стороны, для некоторых типов операций может потребоваться поступиться стабильностью плазменного поля, чтобы в целом достичь большего объемного расхода жидкости при аспирации для удаления пузырьков и остатков из хирургического поля.

На основании теоретического обоснования в вышеприведенных пунктах различные варианты воплощения относятся к системам и соответствующим способам, реализующим по меньшей мере два режима функционирования во время проведения электрохирургических операций, в некоторых вариантах воплощения с использованием одного шпателя (и в некоторых случаях одного активного электрода) наряду с одним контроллером. В конкретном варианте воплощения могут быть реализованы четыре различных режима функционирования, такие как: «режим малой мощности», который может быть использован для лечения и удаления чувствительной ткани, такой как части суставного хряща; «режим средней мощности», который может быть использован для лечения и удаления мениска; «режим высокой мощности» для интенсивного удаления ткани любого вида и «вакуумный режим» для удаления свободно плавающей и/или улавливаемой ткани. Более подробная информация об иллюстративных режимах абляции представлена ниже после рассмотрения иллюстративного шпателя 102 и внутренних компонентов контроллера 104.

На Фиг. 2 представлена вертикальная проекция шпателя 102, соответствующего типовым системам. В частности, шпатель 102 содержит удлиненный стержень 106, который может быть гибким или жестким, ручку 110, соединенную с проксимальным концом удлиненного стержня 106, и опорный элемент электрода 200, соединенный с дистальным концом удлиненного стержня 106. Также на Фиг. 2 виден гибкий трубчатый элемент 116, простирающийся от шпателя 102 и многожильного кабеля 112. Шпатель 102 содержит активный электрод 202, расположенный на дистальном конце 108 удлиненного стержня 106. Активный электрод 202 может быть соединен с активной или пассивной сетью управления в контроллере 104 (Фиг. 1) посредством одного или более изолированных электрических соединителей (не показаны) в многожильном кабеле 112. Активный электрод 202 электрически изолирован от общего или возвратного электрода 204, который расположен на стержне вблизи активного электрода 202, в некоторых типовых системах расположен в пределах от 1 миллиметра (мм) до 25 мм от дистального конца. Вблизи дистального конца возвратный электрод 204 соосен с удлиненным стержнем 106 шпателя 102. Опорный элемент 200 расположен дистально по отношению к возвратному электроду 204 и может быть выполнен из электроизолирующего материала, например, эпоксидной смолы, пластмассы, керамики, силикона, стекла и т.п. Опорный элемент 200 простирается от дистального конца 108 удлиненного стержня 106 (обычно около 1-20 мм) и удерживает активный электрод 202.

На Фиг. 3 представлен вертикальный поперечный разрез шпателя 102 в соответствии с типовыми вариантами воплощения. В частности, шпатель 102 содержит всасывающую полость 206, формируемую удлиненным стержнем 106. В типовом шпателе 102 по Фиг. 3 внутренний диаметр удлиненного стержня 106 образует секционную полость 206, но в других случаях всасывающую полость 206 может образовывать отдельная трубка внутри удлиненного стержня 106. Всасывающая полость 206 может быть использована для аспирации избыточной жидкости, пузырьков, фрагментов ткани и/или продуктов абляции из целевого места вблизи активного электрода 202. Всасывающая полость 206 продолжается и переходит в ручку 110 и гидравлически соединяется с гибким трубчатым элементом 116 для соединения с перистальтическим насосом 118. Ручка 110 также образует внутреннюю полость 208, внутри которой могут находиться электрические проводники 210, при этом электрические проводники 210 могут проходить внутри многожильного кабеля 112 и в конечном итоге соединяться с контроллером 104. Электрические проводники аналогично проходят через удлиненный стержень и соединяются, по одному, с возвратным электродом 204 и активным электродом 202, но на фигуре не показано, что электрические проводники 210 находятся внутри удлиненного стержня 106, чтобы излишне не усложнять чертеж.

На Фиг. 4 представлена вертикальная проекция типового активного электрода (слева), а также вид в перспективе дистального конца шпателя 102 (справа) в соответствии с типовыми системами. В частности, активный электрод 202 может быть активным сетчатым электродом 400, показанным на Фиг. 4. Сетчатый электрод 400 может содержать электропроводящий материал, такой как вольфрам, титан, молибден, платина или тому подобное. Сетчатый электрод 400 может иметь диаметр в диапазоне от около 0,5 до 8 мм, в некоторых случаях может иметь около 1-4 мм, а также толщину от около 0,05 до около 2,5 мм, в некоторых случаях - около 0,1-1 мм. Сетчатый электрод 400 может содержать множество отверстий 402, выполненных с возможностью находиться над дистальным отверстием 404 всасывающей полости. Отверстия 402 предназначены для обеспечения прохождения избыточной аспирируемой жидкости, пузырьков и газов из места абляции и достаточно велики для возможности прохождения фрагментов удаляемой ткани внутрь всасывающей полости 206 (Фиг. 3). Согласно фигуре, сетчатый электрод 400 имеет сложную форму, которая позволяет увеличить соотношение площади периферии к площади поверхности сетчатого электрода 400. Большое соотношение площади периферии к площади поверхности повышает способность сетчатого электрода 400 инициировать и поддерживать слой плазмы в электропроводящей жидкости, поскольку края генерируют более высокую плотность тока, а большая площадь поверхности электрода имеет тенденцию рассеивать энергию в электропроводной среде.

В типовом варианте воплощения, показанном на Фиг. 4, сетчатый электрод 400 содержит основную часть 406, которая находится над изолирующим опорным элементом 200 и дистальным отверстием 404 всасывающей полости 206. Сетчатый электрод 400 дополнительно содержит выступы 408; на типовом сетчатом электроде 400 по Фиг. 4 показано пять выступов 408. Выступы 408 могут находиться, быть прикрепленными к и/или быть встроенными в изолирующий опорный элемент 200. В некоторых вариантах воплощения электрические соединители проходят через изоляционный опорный элемент 200 и присоединяются (например, с помощью приклеивания, пайки, сварки или т.п.) к одному или более выступам 408 для прикрепления сетчатого электрода 400 к изоляционному опорному элементу 200, и электрически соединяют сетчатый электрод 400 с контроллером 104 (Фиг. 1). В типовых системах сетчатый электрод 400 образует в основном плоскую поверхность для лечения ткани с плавной резекцией, абляцией и приданием требуемой формы мениску, хрящевой и другим видам тканей. При изменении формы хряща и мениска врач часто стремится сгладить неровную и рваную поверхность ткани, формируя в основном гладкую поверхность. В таких случаях в основном плоская поверхность лечения на сетчатом электроде обеспечивает достижение желаемого эффекта. Далее будет более подробно описан контроллер 104.

Фиг. 5 иллюстрирует электрическую блок-схему контроллера 104 в соответствии с, по меньшей мере, некоторыми вариантами воплощения. В частности, контроллер 104 содержит процессор 500. Процессор 500 может быть микроконтроллером, а, соответственно, микроконтроллер может быть объединен с постоянным запоминающим устройством (ПЗУ) 502, оперативным запоминающим устройством (ОЗУ) 504, цифроаналоговым преобразователем (D/A) 506, аналогово-цифровым преобразователем (A/D) 514, цифровыми выходами (D/O) 508 и цифровыми входами (D/I) 510. Процессор 500 может быть дополнительно оснащен одной или более доступными снаружи периферийными шинами, такими, как последовательная шина (например, I2C), параллельная шина или другая шина, и соответствующим режимом приема и передачи данных. Процессор 500 может быть дополнительно объединен с логикой приема и передачи данных 512, для того чтобы процессор 500 мог поддерживать связь с внешними устройствами, а также внутренними устройствами, такими как устройства отображения 130. Хотя в некоторых вариантах воплощения процессор 500 может быть реализован в виде микроконтроллера, в других вариантах воплощения процессор 500 может быть реализован в виде обособленного центрального процессора в сочетании с отдельным ОЗУ, ПЗУ, каналом связи, устройствами A/D, D/A, D/О и D/I, а также коммуникационным оборудованием для осуществления связи с периферийными компонентами.

ПЗУ 502 хранит инструкции, выполняемые процессором 500. В частности, ПЗУ 502 может содержать программу, которая, при ее исполнении, обуславливает выполнение контроллером двух или более режимов функциониров