Порошковый сплав для изготовления объемных изделий методом селективного спекания

Изобретение относится к порошковым сплавам для изготовления объемных изделий селективным спеканием. Сплав содержит 0,4-0,6 мас.% углерода, 11,0-13,2 мас.% хрома; 0,1-0,4 мас.% кремния; 0,4-0,9 мас.% марганца, 0,08-0,12 мас.% алюминия, 0,4-0,8 мас.% азота; 0,03-0,1 мас.% молибдена и остальное железо. Обеспечивается повышение прочности объемных изделий до 61-63 HRC и 1200 МПа.

Реферат

Изобретение относится к металлургии и может быть использовано при изготовлении новых объемных изделий, восстановлении и увеличении срока службы изношенных деталей методами плазменного, лазерного селективного спекания, а также другими способами наплавки высококонцентрированными источниками энергии.

Известны плазменные методы формообразования деталей машин и их поверхностей, сущность которых состоит в том, что плазму направляют на обрабатываемую поверхность. Известен метод изготовления деталей плазменным напылением с целью получения заданных размеров [Технология конструкционных материалов: Учебник для студентов машиностроительных специальностей вузов / A.M. Дальский, Т.М. Барсукова, Л.Н. Бухаркин и др. / Под общей ред. A.M. Дальского. - 5-е изд., исправленное. М.: Машиностроение, 2003. - 512 с.], в котором в камеру плазмотрона подают порошкообразный конструкционный материал и одновременно инертный газ под высоким давлением. Под действием дугового разряда конструкционный материал плавится и переходит в состояние плазмы. Струя плазмы сжимается в плазмотроне плазмообразующим газом. Выходя из сопла, струя плазмы наплавляется на обрабатываемую заготовку. Системы вертикальной и горизонтальной разверток обеспечивают перемещение струи по поверхности обработки.

Плазменное напыление применяют и для получения деталей из напыляемого материала. Детали получаются в результате наращивания микрочастиц конструкционного материала в определенных местах экрана. Иногда вместо экрана используют тонкостенную заготовку, на которую направляется плазма, и происходит наращивание металла [Технология конструкционных материалов: Учебник для студентов машиностроительных специальностей вузов / A.M. Дольский, Т.М. Барсукова, Л.Н. Бухаркин и др. / Под общей ред. A.M. Дольского. - 5-е изд., исправленное. М.: Машиностроение, 2003. - 512 с.].

Известны также методы селективного лазерного спекания - методы аддитивного производства, которые заключаются в спекании мелкодисперсного порошкового (обычно, металлического) материала с помощью лазера. Процесс нацеливания лазера осуществляется автоматически по заранее созданной 3D-модели, которая может быть создана в графическом редакторе (например, AutoCAD).

Известен состав материала [патент РФ №2322335, МПК В23К 35/32. Композиционный материал для износостойкой наплавки электронным лучом / С.Ф. Гнюсов, В.Г. Дураков, Д.А. Маков, Б.Ф. Советченко. - №2006122734/02; заявл. 26.06.2006; опубл. 20.04.2008, бюл. №11] для восстановления и увеличения срока службы изношенных деталей, работающих в условиях абразивного и ударно-абразивного износа, содержащий: углерод - 0,9-1,0 мас. %, марганец - 20 мас. %, молибден - 4,0 мас. %, ванадий - 4,0 мас. %, железо - остальное, и частицы упрочнителя, в качестве которых могут использоваться карбид титана или карбид ванадия. Использование такого состава при совмещении операций электронно-лучевой наплавки и старения приводит к мультимодальному распределению упрочняющей фазы в объеме упрочненного слоя, что обеспечивает высокую пластичность и ударно-абразивную износостойкость наплавленного покрытия.

Недостаток данного материала - сложная, дорогостоящая технология изготовления, включающая операции: смешения порошков исходных компонентов, спекания, дробления полученных спеков и рассева их на фракции. Кроме того, неравномерное распределение компонентов при рассеве, связанное с невозможностью получения однородного расплава при спекании, приводит к непостоянству химического состава композиционного материала, поступающего в сварочную ванну при наплавке, и, как следствие, к неоднородному по химическому составу и свойствам наплавленному покрытию.

Известен порошковый сплав [патент РФ №2607066, МПК С22С 38/36. Порошковый сплав на основе железа для износостойкой наплавки и напыления / С.П. Нефедьев, P.P. Дёма, А.В. Горбунов, Н.Ш. Тютеряков, К.Н. Вдовий, А.Н. Емелюшин. - №2015108589; заявл. 11.03.2015; опубл. 10.01.2017, бюл. №1] на основе железа, содержащий углерод, хром, кремний, марганец и алюминий, отличающийся тем, что он содержит ванадий, барий, серу и фосфор при следующем содержании компонентов, мас. %: углерод 2,9-3,3; кремний 0,4-1,0; марганец 0,4-1,2; хром 17-21; алюминий 0,15-1,2; сера не более 0,06; фосфор не более 0,07; ванадий 3-4,5; барий 0,02-0,12; железо - остальное. Он используется в области газотермического нанесения износостойкого и коррозионно-стойкого покрытия методами дуговой, лазерной, плазменной или электронно-лучевой наплавки, а также высокоскоростного, детонационного, плазменного или газопламенного напыления.

Недостатки данного материала - невозможность получения его методом плазменного распыления, так как проволоки с указанным содержанием углерода (фактически из чугуна) не выпускаются; невозможность азотирования его поверхности; повышенная крупность получаемого фракционного состава; склонность к трещинообразованию при изготовлении из него изделий.

В связи с этим задачей данного изобретения является создание порошкового сплава для изготовления объемных изделий методом селективного спекания, использование которого повысило бы прочностные свойства объемных изделий получаемых плазменным, лазерным селективным спеканием, а также другими способами наплавки высококонцентрированными источниками энергии.

Технический результат, достигаемый в заявленном изобретении, заключается в повышении твердости и временного сопротивления получаемых из порошка объемных изделий способами плазменного, лазерного селективного спекания, а также другими способами наплавки высококонцентрированными источниками энергии.

Указанный технический результат достигается тем, что порошковый сплав для изготовления объемных изделий методом селективного спекания, содержащий железо, углерод, хром, кремний, марганец, алюминий, согласно изобретению дополнительно содержит азот и молибден при следующем соотношении компонентов, мас. %: углерод 0,4-0,6; хром 11,0-13,2; кремний 0,1-0,4; марганец 0,4-0,9; алюминий 0,08-0,12; азот 0,4-0,8; молибден 0,03-0,1; железо - остальное.

Азот снижает энергию дефектов упаковки, что повышает пластические свойства стали вместе с увеличением прочностных характеристик. Введение азота (азотирование) повышает склонность металлической основы наплавленного металла к полидеформационному превращению при воздействии ударных нагрузок, способствует лучшему закреплению карбидных частиц в аустените. Это приводит к формированию структуры изделия, способной подстраиваться под условия эксплуатации - внешнее воздействие (нагрузка и удары), и повышать свою твердость за счет протекания процессов деформационного упрочнения. При этом отсутствует охрупчивание и не образуются трещины, так как азот расширяет область существования аустенита и сужает область существования охрупчивающего сталь дельта-феррита. Применение азота также дало возможность исключить никель из состава сплава.

Молибден обладает большей энергией связи с азотом, чем с железом. Поэтому дополнительный ввод добавки молибдена позволяет удержать азот в твердом растворе, предотвратить его выделение, повысить качество металла. Ввод молибдена совместно с уже присутствующим марганцем и хромом в большей мере качественно улучшает характеристики наплавленного слоя за счет усиления мер, препятствующих выделению азота.

Для порошкового сплава целесообразно следующее соотношение компонентов, мас. %: углерод 0,4-0,6; хром 11,0-13,2; кремний 0,1-0,4; марганец 0,4-0,9; алюминий 0,08-0,12; азот 0,4-0,8; молибден 0,03-0,1; железо - остальное, способствующее равномерному распределению в матрице дисперсных нитридов и обеспечивающее оптимальные условия для получения наплавленного металла.

Данный порошковый материал может использоваться при создании объемных 3D-изделий, в которых снижаются внутренние напряжения, а сами изделия отличаются низкой пористостью и повышенной прочностью.

Как пример использования на практике данного порошкового сплава можно привести восстановление штока пневматического цилиндра диаметром 40 мм, изготавливаемого из стали марки 45.

Процесс наплавки осуществляли в следующей последовательности:

- зачищали обдиркой на токарно-винторезном станке 16К20 изношенную поверхность штока для увеличения контактной поверхности наплавленного слоя и подложки и усиления адгезии;

- осуществляли наплавку нанесением порошкового материала с помощью высококонцентрированного источника энергии в четыре захода по винтовой линии и получали покрытие толщиной 2-4 мм;

- охлаждали наплавленный шток на воздухе до комнатной температуры;

- наплавляли второй слой толщиной 2-4 мм по винтовой линии в четыре захода;

- охлаждали наплавленный шток на воздухе до комнатной температуры;

-осуществляли доводку диаметра штока шлифованием;

- контролировали визуально деталь на наличие дефектов.

В результате получали бездефектные покрытия, обладающие прочностью 61-63 HRC, временным сопротивлением 1200 МПа, абразивной стойкостью в 1,5-1,6 раз выше, чем стойкость нового штока.

Технический результат изобретения - повышение прочностных свойств (твердости и временного сопротивления) объемных изделий, получаемых из порошка плазменным, лазерным селективным спеканием, а также другими способами наплавки высококонцентрированными источниками энергии, до уровня 61-63 HRC и 1200 МПа.

Порошковый сплав для изготовления объемных изделий методом селективного спекания, содержащий железо, углерод, хром, кремний, марганец и алюминий, отличающийся тем, что он содержит азот и молибден при следующем соотношении компонентов, мас. %:

углерод 0,4-0,6
хром 11,0-13,2
кремний 0,1-0,4
марганец 0,4-0,9
алюминий 0,08-0,12
азот 0,4-0,8
молибден 0,03-0,1
железо остальное