Способ определения местоположения устройства и устройство, которое реализует способ

Иллюстрации

Показать все

Изобретение относится к определению местоположения устройства с использованием спутниковой системы позиционирования. Техническим результатом является повышение точности измерения местоположения при максимальном времени работы батареи. Заявленный способ определения местоположения устройства содержит этапы, на которых (a) управляют приемником спутниковой системы позиционирования в устройстве, чтобы собрать несколько наборов сигналов; и когда должно быть определено местоположение устройства, (b) обрабатывают набор сигналов, чтобы определить, будет ли набор вероятно содержать сигналы от спутников в спутниковой системе позиционирования; и (c) если на этапе (b) определено, что набор сигналов вероятно будет содержать сигналы от спутников в спутниковой системе позиционирования, обрабатывают набор сигналов для вычисления местоположения устройства; (d) если на этапе (b) определено, что набор сигналов маловероятно будет содержать сигналы от спутников в спутниковой системе позиционирования, повторяют этапы (b), (c) и (d) с другим набором сигналов. 3 н. и 12 з.п. ф-лы, 5 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к портативным или мобильным устройствам, которые включают в себя приемник, такой как приемник спутниковой системы позиционирования, измерения от которого используются для обеспечения измерения местоположения устройства.

УРОВЕНЬ ТЕХНИКИ

Многие пожилые люди в настоящее время носят персональные кнопки вызова помощи (PHB) или персональные системы экстренного реагирования (PERS), которые они могут активировать, если нуждаются в срочной помощи, например, когда они упали. Также доступны автоматизированные детекторы падения, которые отслеживают движения пользователя и автоматически инициируют предупредительный сигнал, если обнаружено падение.

Эти устройства (то есть, PHB, PERS и детекторы падения) при их активации могут инициировать вызов по наземной линии связи через базовый блок, расположенный вблизи пользователя (то есть, обычно в доме пользователя), в специализированный телефонный центр, и персонал в телефонном центре может пообщаться с пользователем и принять меры, чтобы пользователю была направлена помощь в экстренной ситуации. Поскольку пользователь является зарегистрированным подписчиком сервиса PHB/PERS, местонахождение его дома (или другое местонахождение, в котором находится базовая станция) будет известно, и экстренная помощь может быть направлена персоналом телефонного центра в это местонахождение.

Однако в настоящее время доступны системы, использующие мобильный телефон или другое устройство с поддержкой мобильной связи, которое носит пользователь, чтобы позволить PHB, PERS или устройству детектора падения инициировать вызов в телефонный центр по сети мобильной связи. Эти устройства иногда называются мобильными устройствами PERS (MPERS) и могут использоваться везде, где имеется покрытие сотовой связи. Поскольку типичные пользователи этих устройств MPERS являются пожилыми людьми или имеют некоторые формы физических или умственных нарушений, важно, чтобы устройства были насколько возможно простыми в работе. В результате функциональность мобильной связи предпочтительно интегрирована в специализированный кулон PHB или PERS, который носит пользователь, и который обычно имеет только одну кнопку активации или очень небольшое количество элементов ручного управления. При активации устройства MPERS автоматически выполняется вызов по номеру телефонного центра, предварительно установленному в устройстве.

Также для этих устройств MPERS желательно, чтобы они были в состоянии определять местонахождение устройства (и, таким образом, пользователя), когда произошло событие, такое как падение или нажатие пользователем кнопки PHB для запроса помощи, и передавать это местонахождение в телефонный центр или службы экстренной помощи, чтобы легко определить местонахождение пользователя.

В настоящее время спутниковые системы позиционирования, такие как GPS, являются одним из самых точных источников данных местонахождения, доступных переносным или мобильным электронным устройствам, таким как устройство MPERS. Однако имеется несколько недостатков, связанных со спутниковыми системами позиционирования. Например, может быть невозможно принять сигналы от спутников, когда устройство находится в закрытом помещении, под густой листвой или в "городском каньоне" (то есть, между несколькими высокими зданиями), что лишает возможности получать измерение местонахождения (иногда называемое "привязкой"). Спутниковые системы позиционирования также могут быть предрасположены к погрешностям в измерении местонахождения, которое может произойти вследствие многих различных причин, в том числе "многолучевости", когда сигналы от спутника могут отражаться от зданий, прежде чем достигнуть приемника спутниковой системы позиционирования. Эти погрешности могут привести к тому, что сообщенное местонахождение находится на некотором расстоянием от фактического местонахождения, иногда в нескольких городских кварталах. Другой недостаток спутниковых систем позиционирования состоит в том, что приемник потребляет относительно большое количество мощности, выполняя измерение местонахождения.

Хотя приемник спутниковой системы позиционирования может быть активирован и деактивирован вручную пользователем устройства, чтобы помочь уменьшить расход энергии, когда происходит некоторое событие, при котором полезно знать точное местонахождение устройства MPERS (например, если пользователь устройства делает экстренный вызов и должен предоставить свое точное местонахождение, или пользователь устройства падает или подвергается другому несчастному случаю, и устройство выполнено с возможностью автоматически запрашивать помощь для пользователя), активация приемника спутниковой системы позиционирования и попытка измерения имеют некоторый риск, поскольку может оказаться невозможно получить измерение в текущем местонахождении устройства.

Таким образом, в таких ситуациях может быть полезно использовать последнее известное местонахождение устройства, полученное с использованием приемника спутниковой системы позиционирования, прежде чем спутниковый сигнал был потерян (это иногда называется "обратным отслеживанием"). Чтобы сделать это, приемник спутниковой системы позиционирования должен либо непрерывно собирать измерения местонахождений (и это означает, что приемник быстро истощит батарею устройства), либо использовать методику "обратного отслеживания", в которой приемник спутниковой системы позиционирования выборочно активируется устройством, чтобы периодически принимать сигналы спутниковой системы позиционирования и выполнять измерения местонахождения. Поскольку приемник не включен или не активен непрерывно, имеется некоторое сокращение потребления энергии устройства. Если приемник не способен определить местонахождение устройства, когда он активирован, в качестве оценки текущего местонахождения устройства используется последнее полученное измерение местонахождения ("хлебная крошка").

Дополнительное затруднение состоит в том, что устройство может находиться в местонахождении, в котором покрытие мобильной сети связи является плохим, и которое позволяет передачу данных только на очень низких скоростях, что препятствует быстрой передаче большого количества данных местонахождения от устройства MPERS в телефонный центр или службы экстренной помощи. Поэтому должна быть минимизирована необходимость передавать большое количество данных местонахождения от устройства MPERS.

Таким образом, имеется необходимость улучшить существующие методики обратного отслеживания для максимизации времени работы батареи и уменьшения частоты, с которой пользователь должен перезаряжать или заменять батареи, максимизируя шанс, что устройство может обеспечить точное измерение местонахождения или местоположения, когда требуется.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В соответствии с первым аспектом изобретения обеспечен способ определения местоположения устройства с использованием спутниковой системы позиционирования, способ содержит этапы, на которых (a) управляют приемником спутниковой системы позиционирования в устройстве для сбора нескольких наборов сигналов; и когда должна быть определено местоположение устройства, (b) обрабатывают набор сигналов, чтобы определить, будет ли набор вероятно содержать сигналы от спутников в спутниковой системе позиционирования; и (c) если на этапе (b) определено, что набор сигналов будет вероятно содержать сигналы от спутников в спутниковой системе позиционирования, обрабатывают набор сигналов для вычисления местоположения устройства; (d) если на этапе (b) определено, что набор сигналов будет маловероятно содержать сигналы от спутников в спутниковой системе позиционирования, повторяют этапы (b), (c) и (d) с другим набором сигналов. Поскольку обработка набора сигналов, чтобы определить, будет ли набор вероятно содержать сигналы от спутников, в соответствии с изобретением требует намного меньшего объема обработки и мощности, чем полная обработка сигналов для определения местоположения устройства, для устройства возможно собрать и оценить требуемую полезность набора дискретных сигналов, максимизируя время работы батареи устройства.

Предпочтительно другой набор сигналов представляет собой набор сигналов, собранных перед набором сигналов, обработанных в этапе (b). Это приводит к тому, что способ выполняет "обратное отслеживание" по собранным наборам дискретных сигналов, пока не будет найден набор, который может использоваться для определения местоположения устройства.

Предпочтительно этап (b) содержит поиск в наборе сигналов кодов, используемых одним или более спутниками в спутниковой системе позиционирования. Каждый код обычно уникален для конкретного спутника в спутниковой системе позиционирования. В случае, когда способ применен к GPS, код представляет собой код PRN.

Предпочтительно этап (b) содержит определение кодов, соответствующих одному или более спутникам в спутниковой системе позиционирования, ожидаемые в поле видимости устройства в то время, когда был собран набор сигналов. Это означает, что вычислительная мощность и время не потрачены впустую при поиске кодов, связанных со спутниками, которые маловероятно будут находиться в поле видимости устройства.

Этап определения кодов может содержать получение кодов из таблицы поиска, что уменьшает обработку, требуемую устройством для определения кодов.

В предпочтительном варианте осуществления этап (b) дополнительно содержит этапы, на которых (i) перемножают определенные коды для одного или более спутников в спутниковой системе позиционирования вместе для формирования объединенного кода; (ii) умножают поднабор набора сигналов в окне на объединенный код; и (iii) анализируют выходной сигнал этапа (ii), чтобы определить, имеется ли соответствие между объединенным кодом и набором сигналов в окне. Объединение кодов для формирования объединенного кода означает, что количество отдельных операций умножения может быть минимизировано.

В альтернативном варианте осуществления этап (b) содержит этапы, на которых (i) умножают поднабор набора сигналов в окне на один из определенных кодов; (ii) повторяют этап (i) для каждого из определенных кодов; (iii) перемножают выходной сигнал каждой итерации этапа (i) вместе; и (iv) анализируют выходной сигнал этапа (iii), чтобы определить, имеется ли соответствие между каким-либо из определенных кодов и набором сигналов в окне.

В любом варианте осуществления окно может охватывать поднабор сигналов, продолжительность которых равна целому N, кратному продолжительности кода, где N=1, 2, 3, ..., N предпочтительно больше 1, так как это улучшает чувствительность способа, поскольку поиск кода выполняется в большей части набора дискретных сигналов.

Предпочтительно этап анализа содержит этапы, на которых фильтруют выходной сигнал с помощью фильтра низкой частоты; определяют амплитуду, мощность или среднеквадратичное значение (RMS) выходного сигнала фильтра низкой частоты; сравнивают определенную амплитуду, мощность или RMS с пороговым значением; и определяют, что имеется соответствие между одним из определенных кодов и набором сигналов в окне, если определенная амплитуда, мощность или RMS превышают пороговое значение.

В некоторых вариантах осуществления пороговое значение является фиксированным значением. Однако в предпочтительных вариантах осуществления пороговое значение корректируется на основе уровня шума в наборе сигналов.

Предпочтительно, если на этапе анализа определено, это нет соответствия между определенными кодами и набором сигналов в окне, этап (b) дополнительно содержит этап, на котором смещают окна по набору сигналов на первую величину и повторяют этапы умножения для поднабора сигналов в смещенном окне. Предпочтительно первая величина соответствует времени, потраченному спутником для передачи до одного бита кода.

Если на этапе анализа определено, что имеется соответствие между определенными кодами и набором сигналов в окне, и этап (b) требует, чтобы были найдены два или более соответствий, то этап (b) дополнительно содержит этап, на котором смещают окно по набору сигналов на вторую величину и повторяют этапы умножения для поднабора сигналов в смещенном окне. Предпочтительно вторая величина соответствует или в значительной степени соответствует времени, потраченному спутником для передачи кода.

В некоторых вариантах осуществления этап (c) содержит этап, на котором передают набор сигналов, который вероятно будет содержать сигналы от спутников в спутниковой системе позиционирования, удаленному терминалу, причем обработка набора сигналов для вычисления местоположения устройства выполняется удаленным терминалом. В качестве альтернативы, обработка на этапе (c) может быть выполнена устройством.

Предпочтительно этап (a) содержит этап, на котором активируют приемник спутниковой системы позиционирования в устройстве на предварительно определенный период времени и дискретизируют принятые сигналы для формирования набора сигналов. Предпочтительно активирование приемника спутниковой системы позиционирования в устройстве содержит схему активирования в приемнике для преобразования принятого высокочастотного аналогового сигнала в цифровой сигнал промежуточной частоты.

В некоторых вариантах осуществления этап (a) содержит этап, на котором управляют приемником спутниковой системы позиционирования в устройстве, чтобы собрать набор сигналов, по истечении предварительно определенного временного интервала с момента сбора последнего набора сигналов. В качестве альтернативы этап (a) может содержать этап, на котором оценивают расстояние, пройденное устройством с того момента, когда был собран самое последний набор сигналов, и управляют приемником спутниковой системы позиционирования, чтобы собрать дополнительный набор сигналов, когда предполагаемое пройденное расстояние превышает пороговое значение.

Предпочтительно местоположение устройства должно быть определено в соответствии с этапами (b), (c) и (d), когда произошло событие. В некоторых вариантах осуществления событие может включать в себя падение пользователя устройства, активацию пользователем кнопки вызова помощи на устройстве, инициирование предупредительного сигнала устройством, и/или когда устройство иным образом не способно определить свое местоположение.

В соответствии со вторым аспектом изобретения обеспечен компьютерный программный продукт, имеющий воплощенный в нем машиночитаемый код, машиночитаемый код выполнен таким образом, что при его исполнении подходящим процессором или компьютером процессор или компьютер выполнены с возможностью выполнять описанный выше способ.

В соответствии с третьим аспектом изобретения обеспечено устройство, которое содержит приемник спутниковой системы позиционирования; и процессор, выполненный с возможностью (a) управлять приемником спутниковой системы позиционирования для сбора нескольких наборов сигналов; и когда должно быть определено местоположение устройства: процессор дополнительно выполнен с возможностью (b) обрабатывать набор сигналов, чтобы определить, будет ли набор вероятно содержать сигналы от спутников в спутниковой системе позиционирования; и (c) если на этапе (b) определено, что набор сигналов будет вероятно содержать сигналы от спутников в спутниковой системе позиционирования, активировать обработку набор сигналов для вычисления местоположения устройства; (d) если на этапе (b) определено, что набор сигналов маловероятно будет содержать сигналы от спутников в спутниковой системе позиционирования, повторять этапы (b), (c) и (d) с другим набором сигналов. Поскольку обработка набора сигналов, чтобы определить, будет ли набор вероятно содержать сигналы от спутников, посредством процессора в соответствии с изобретением требует намного меньшего объема обработки и мощности, чем полная обработка сигналов для определения местоположения устройства, для устройства возможно собрать и оценить требуемую полезность набора дискретных сигналов, максимизируя время работы батареи устройства.

Предпочтительно другой набор сигналов представляет собой набор сигналов, собранных перед набором сигналов, обработанных процессором на этапе (b). Это приводит к тому, что процессор выполняет "обратное отслеживание" по собранным наборам дискретных сигналов, пока не будет найден набор, который может использоваться для определения местоположения устройства.

Предпочтительно процессор выполнен с возможностью выполнять поиск в наборе сигналов кодов, используемых одним или более спутниками в спутниковой системе позиционирования. Каждый код обычно уникален для конкретного спутника в спутниковой системе позиционирования. В случае, когда приемник спутниковой системы позиционирования предназначен для приема сигналов GPS, код представляет собой код PRN.

Предпочтительно процессор выполнен с возможностью определять, что коды, связанные с одним или более спутниками в спутниковой системе позиционирования, ожидаемые в поле видимости устройства в то время, когда было собран набор сигналов. Это означает, что вычислительная мощность и время не потрачены впустую при поиске кодов, связанных со спутниками, которые маловероятно будут находиться в поле видимости устройства.

Процессор может определять коды посредством получения кодов из таблицы поиска, сохраненной в запоминающем устройстве, что уменьшает обработку, требуемую устройством для определения кодов.

В предпочтительном варианте осуществления процессор выполнен с возможностью обрабатывать набор сигналов, чтобы определить, будет ли набор вероятно содержать сигналы от спутников в спутниковой системе позиционирования, посредством (i) перемножения определенных кодов для одного или более спутников в спутниковой системе позиционирования вместе для формирования объединенного кода; (ii) умножения поднабора набора сигналов в окне на объединенный код; и (iii) анализа выходного сигнала этапа (ii), чтобы определить, имеется ли соответствие между объединенным кодом и набором сигналов в окне. Объединение кодов для формирования объединенного кода означает, что количество отдельных операций умножения может быть минимизировано.

В альтернативном варианте осуществления процессор выполнен с возможностью обрабатывать набор сигналов, чтобы определить, будет ли набор вероятно содержать сигналы от спутников в спутниковой системе позиционирования, посредством (i) умножения поднабора набора сигналов в окне на один из определенных кодов; (ii) повторения этапа (i) для каждого из определенных кодов; (iii) перемножения выходного сигнала каждой итерации этапа (i) вместе; и (iv) анализа выходного сигнала этапа (iii), чтобы определить, имеется ли соответствие между каким-либо из определенных кодов и набором сигналов в окне.

В любом варианте осуществления окно может охватывать поднабор сигналов, продолжительность которых равна целому N, кратному продолжительности кода, где N=1, 2, 3, ..., N предпочтительно больше 1, так как это улучшает чувствительность способа, поскольку поиск кода выполняется в большей части набора дискретных сигналов.

Предпочтительно процессор выполнен с возможностью анализировать выходной сигнал этапа (iii) посредством фильтрации выходного сигнала с помощью фильтра низкой частоты; определения амплитуды, мощности или среднеквадратичного значения (RMS) выходного сигнала фильтра низкой частоты; сравнения определенной амплитуды, мощности или RMS с пороговым значением; и определения, что имеется соответствие между одним из определенных кодов и набором сигналов в окне, если определенная амплитуда, мощность или RMS превышают пороговое значение.

В некоторых вариантах осуществления пороговое значение является фиксированным значением. Однако в предпочтительных вариантах осуществления процессор выполнен с возможностью корректировать пороговое значение на основе уровня шума в наборе сигналов.

Предпочтительно, если процессор на основе анализа выходного сигнала этапа (iii) определяет, что нет соответствия между определенными кодами и набором сигналов в окне, процессор выполнен с возможностью смещать окно по набору сигналов на первую величину и повторять умножение для поднабора сигналов в смещенном окне. Предпочтительно первая величина соответствует времени, потраченному спутником для передачи до одного бита кода.

Если процессор на основе анализа определяет, что имеется соответствие между определенными кодами и набором сигналов в окне, и требуется найти два или более соответствий, то процессор дополнительно выполнен с возможностью смещать окно по набору сигналов на вторую величину и повторять умножение для поднабора сигналов в смещенном окне. Предпочтительно вторая величина соответствует или в значительной степени соответствует времени, потраченному спутником для передачи кода.

Предпочтительно процессор может быть выполненным с возможностью активировать приемник спутниковой системы позиционирования в устройстве на предварительно определенный период времени, чтобы приемник сформировал набор сигналов. Предпочтительно приемник спутниковой системы позиционирования содержит схему для преобразования принятого высокочастотного аналогового сигнала в цифровой сигнал промежуточной частоты, и процессор выполнен с возможностью активировать упомянутую схему.

В некоторых вариантах осуществления процессор выполнен с возможностью активировать приемник спутниковой системы позиционирования, чтобы собрать набор сигналов, по истечении предварительно определенного временного интервала с момента сбора последнего набора сигналов. В качестве альтернативы, процессор может быть выполнен с возможностью оценивать расстояние, пройденное устройством с того момента, когда был собран самый последний набор сигналов, и активировать приемник спутниковой системы позиционирования, чтобы собрать дополнительный набор сигналов, когда предполагаемое пройденное расстояние превышает пороговое значение.

Предпочтительно местоположение устройства должно быть определено, когда произошло событие. В некоторых вариантах осуществления событие может включать в себя падение пользователя устройства, активацию пользователем кнопки вызова помощи на устройстве, инициирование предупредительного сигнала устройством, и/или когда устройство иным образом не способно определить свое местоположение.

В некоторых вариантах осуществления процессор выполнен с возможностью обрабатывать набор сигналов для вычисления местоположения устройства. В альтернативных вариантах осуществления устройство содержит передатчик или схему приемопередатчика, и если процессором определено, что набор сигналов вероятно будет содержать сигналы от спутников в спутниковой системе позиционирования, процессор выполнен с возможностью передавать набор сигналов удаленному терминалу через передатчик или схему приемопередатчика, чтобы удаленный терминал мог обработать набор сигналов для определения местоположения устройства.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Для лучшего понимания изобретения, и чтобы более ясно продемонстрировать, как оно может быть приведено в исполнение, теперь только в качестве примера будет сделана ссылка на сопроводительные чертежи, на которых:

Фиг. 1 - блок-схема устройства в соответствии с вариантом осуществления изобретения;

Фиг. 2 - блок-схема последовательности операций, иллюстрирующая способ сбора данных «хлебной крошки» в соответствии с изобретением;

Фиг. 3 - блок-схема последовательности операций, иллюстрирующая способ обработки данных «хлебной крошки» в соответствии с изобретением;

Фиг. 4 - блок-схема последовательности операций, показывающая иллюстративный способ реализации этапа 117 на фиг. 3, в соответствии с вариантом осуществления изобретения; и

Фиг. 5 - блок-схема, иллюстрирующая обработку, выполняемую в соответствии со способом на фиг. 4.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Хотя изобретение будет описано ниже со ссылкой на определения местоположения устройства с использованием системы глобального позиционирования (GPS), будет понятно, что изобретение применимо к глобальной навигационной спутниковой системе (GNSS) или спутниковой системе позиционирования (SPS) любого другого типа, такой как спутниковые системы позиционирования GLONASS или Galileo.

Иллюстративное устройство MPERS в соответствии с вариантом осуществления изобретения показано на фиг. 1. Однако очевидно, что изобретение может быть реализовано в переносном или мобильном электронном устройстве любого типа, которое включает в себя функциональность спутниковой системы позиционирования, таком как мобильный телефон, смартфон, детектор падения или навигационный прибор для транспортного средства.

Устройство 2 MPERS обычно имеет вид устройства, которое пользователь может носить на себе или переносить. Устройство 2 может быть обеспечено в виде кулона со шнурком для размещения вокруг шеи пользователя, но в качестве альтернативы устройство 2 может быть выполнено с возможностью его ношения на другой части тела пользователя, например, на запястье, талии, туловище или груди, и может содержать подходящую конфигурацию для присоединения пользовательского устройства 4 к этой части тела (например, пояс или ремень).

Устройство 2 содержит программно определяемый приемник GPS, который в предпочтительных вариантах осуществления содержит аппаратный входной каскад 4 приемника, включающий в себя антенну 5, которая может принимать сигналы, передаваемые спутниками GPS, и входную схему 6 приемника GNSS, соединенную с процессором 8, который исполняет программное обеспечение, чтобы произвести обработку принятых сигналов. Входная схема 6 приемника может содержать схему входного радиокаскада GNSS с высокой интеграцией, например, один или более полосовых фильтров, фильтров с низким уровнем шума (lna), микшеров и аналого-цифровых преобразователей для обеспечения низкой промежуточной частоты (IF) и приспособленный интерфейс для программных реализаций GPS или обработки сигнала основной полосы GNSS.

Входная схема 6 приемника в основном преобразовывает высокочастотный сигнал GPS, принятый от спутников GPS, в низкочастотный промежуточный сигнал, сохраняя модулированную структуру сигнала. Это делается для того, чтобы привести частоту к применимым диапазонам, в которых сигнал может обрабатываться.

Процессор 8 принимает исходный сигнал GNSS промежуточной частоты от входной схемы 6 приемника и в требуемое время (например, когда необходимо определить местоположение устройства 2) выполняет обработку сигналов, чтобы определить, присутствуют ли сигналы от спутников GPS. В некоторых вариантах осуществления процессор 8 также способен определять местоположение и/или скорость устройства 2 на основе обнаруженных сигналов спутника GPS.

В дополнение к обработке принятых спутниковых сигналов процессор 8 управляет общей работой устройства 2.

В альтернативных вариантах осуществления устройство 2 может содержать специализированный аппаратный модуль приемника GPS, содержащий аппаратные средства, соответствующие входному каскаду 4 приемника, и соответствующий процессор для обработки принятых сигналов для определения местоположения устройства 2.

В проиллюстрированном варианте осуществления устройство 2 дополнительно содержит схему 10 приемопередатчика, которая присоединена к процессору 8, и соответствующую антенну 12 для беспроводной связи с сетью мобильной связи. Схема 10 приемопередатчика может использоваться для установления голосовых вызовов и/или сеансов передачи данных между устройством 2 и телефонным центром и/или службами экстренной помощи.

Устройство 2 дополнительно содержит модуль 14 запоминающего устройства, соединенный с процессором 8, который используется для хранения исходных сигналов GNSS промежуточной частоты, принятых модулем 4 приемника GNSS, как описано более подробно ниже.

В проиллюстрированном варианте осуществления устройство 2 дополнительно содержит один или более датчиков 16, которые могут использоваться для контроля за пользователем устройства 2 или устройством 2 непосредственно, чтобы определить, когда происходит событие, для которого пользователю может потребоваться помощь. Подходящие датчики 16 включают в себя датчики для измерения перемещения и/или ориентации устройства 2, такие как акселерометр, магнитометр или гироскоп, которые выдают соответствующий сигнал процессору 8, а также датчики для измерения состояния здоровья пользователя, такие как монитор частоты сердечных сокращений, монитор кровяного давления и т.д. Хотя не показано на фиг. 1, один или более датчиков 16 могут быть присоединены к процессору низкой мощности, связанному с процессором 8, для обработки и анализа сигналов от датчика (датчиков) 16.

В этом проиллюстрированном варианте осуществления устройство 2 MPERS дополнительно содержит персональную кнопку 18 вызова помощи (PHB), которую пользователь может использовать для быстрого вызова помощи. Однако очевидно, что кнопка 18 PHB не обязательно должна быть в виде кнопки, а может являться, например, вариантом выбора в графическом пользовательском интерфейсе устройства 2.

Хотя на фиг. 1 не показано, в некоторых вариантах осуществления устройство 2 MPERS может быть выполнено с возможностью принимать сигналы от спутниковых систем позиционирования других типов (таких как GLONASS или Galileo) и/или может содержать приемники для приема сигналов других типов (таких как сигналы Wi-Fi) от других источников, которые могут быть обработаны для определения местоположения устройства 2.

Как описано в разделе "Предшествующий уровень техники", чтобы помочь смягчить "проблему мертвой точки" (то есть, точки, в которой нет доступного сигнала GPS, когда модуль приемника GPS активирован и должен определить местоположение устройства), устройства могут использовать алгоритм обратного отслеживания, в котором сохраняется по меньшей мере самое последнее измерение местоположения, и это измерение используется в качестве оценки местоположения устройства, если текущее измерение местоположения не доступно. Однако в обычном модуле приемника GPS или даже в модуле приемника GPS, работающем в соответствии с алгоритмом обратного отслеживания, мощность, потребляемая при необходимости вычислить местоположение устройства, когда каждый набор сигналов собирается в соответствии с алгоритмом обратного отслеживания, означает, что батареи в доступных на настоящий момент устройствах могут проработать только несколько недель, тогда как вследствие особенностей типичных пользователей таких устройств желательно, чтобы батареи в устройствах MPERS проработали в течение нескольких месяцев. Поэтому изобретение обеспечивает улучшения существующей методики обратного отслеживания, которые в значительной степени уменьшают количество времени и энергии, требуемое для сбора данные для каждой «хлебной крошки», без увеличения времени или энергии, требуемых в других частях устройства 2.

Блок-схема последовательности операций на фиг. 2 иллюстрирует способ сбора данных «хлебных крошек» в соответствии с изобретением.

На этапе 101, когда должны быть собраны «хлебные крошки», процессор 8 активирует входную схему 6 приемника GNSS на предварительно определенный период времени и дискретизирует принятые сигналы. Как только предварительно определенный период времени истек, входная схема 6 приемника GNSS отключается. Набор сигналов, принятых и дискретизированных в предварительно определенном периоде времени, здесь называется "хлебными крошками".

Активирование входной схемы 6 приемника GNSS может содержать подачу питания на схему 6, чтобы схема 6 принимала и дискретизировала данные исходного сигнала, и эти данные дискретного сигнала подаются на процессор 8 и/или в модуль 14 запоминающего устройства. В качестве альтернативы, входная схема 6 приемника может поддерживаться в режиме низкой мощности, когда она не преобразовывает или снабжает данными сигнала процессор 8 или модуль 14 запоминающего устройства, когда «хлебные крошки» не требуются, и она может быть переключена в режим «включено», когда должны быть собраны »хлебные крошки».

Очевидно, что «хлебные крошки» должны иметь достаточную длину, чтобы позволить процессору, исполняющему подходящее программное обеспечение для обработки GNSS, или другой внутренней схеме приемника GNSS или GPS обработать «хлебные крошки» и определить местоположение устройства 2 в то время, когда «хлебная крошка» была получена (при условии, что сигналы спутника GPS присутствуют в «хлебной крошке»). Подходящая длина для «хлебной крошки» находится в диапазоне от 100 мс до 200 мс, хотя очевидно, что могут быть собраны более длинные или более короткие «хлебные крошки». Безусловно, очевидно, что чем дольше входная схема 6 приемника GNSS является активной (и чем длиннее «хлебная крошка»), тем больше потребляется мощности и памяти, таким образом, длина «хлебной крошки» является компромиссом между потребностью минимизировать потребление энергии и потребностью получить достаточно длинный набор дискретных сигналов, в которых будут вероятно найдены сигналы спутника GPS.

Принятые сигналы могут быть дискретизированы с частотой, которая находится в диапазоне от 2 МГц до 8 МГц, и каждая выборка имеет длину от 1 до 4 битов (хотя очевидно, что могут использоваться другие частоты и/или длины битов). Таким образом, при длине «хлебной крошки», находящейся в диапазоне от 100 мс до 200 мс, каждая «хлебная крошка» по размеру составит от 25 кБ до 800 кБ. Может потребоваться сохранить несколько десятков или сотен «Хлебных крошек» в модуле 14 запоминающего устройства, таким образом, модуль 14 запоминающего устройства должен быть способен хранить по меньшей мере от 2500 кБ до 80000 кБ данных.

Дискретные сигналы сохраняются в модуле 14 запоминающего устройства (этап 103). На данном этапе никакая дополнительная обработка над дискретными сигналами не выполняется (то есть, дискретные сигналы не обрабатываются для определения, присутствуют ли сигналы спутника GPS в дискретных сигналах, или для определения местоположения устройства 2). Это особенно выгодно для устройства MPERS, поскольку измерение местоположения требуется только тогда, когда происходит событие, и поэтому мощность, израсходованная при сборе и сохранении данных «хлебной крошки», минимизирована. В иллюстративных вариантах осуществления для аппаратного входного каскада 4 приемника, который использует 100 мА в активном состоянии и собирает приблизительно сто «хлебных крошек» с длительностью 100 мс в день, средний расход энергии аппаратного входного каскада 4 приемника составит около 12 мкА. Это выгодно отличается от приемника GNSS, работающего обычно (то есть, без использования алгоритма «хлебные крошки»), который будет использовать мощность в диапазоне мА, и от приемника, который не принимает сигналы от спутника и работает в режиме поиска (постоянно используя около 30 мА).

После этапа 103 процессор 8 ожидает, пока следующая «хлебная крошка» не должна быть собрана (этап 105), и когда следующая «хлебная крошка» должна быть собран, способ возвращается на этап 101. Время между сбором последовательных «хлебных крошек» будет определено алгоритмом «хлебные крошки», исполняемым процессором 8. В некоторых случаях «хлебные крошки» могут быть собраны после фиксированного временного интервала, но в других, предпочтительных случаях алгоритм «хлебные крошки» может быть динамическим, и интервал между «хлебными крошками» может устанавливаться на основе величины перемещения устройства с момента сбора предыдущей «хлебной крошки» (например, новая «хлебная крошка» собирается только тогда, когда датчик 16 перемещения в устройстве 2 указывает, что устройство 2 переместилось на более чем предварительно определенное расстояние от того места, где была собрана предыдущая «хлебная крошка»).

Способ на фиг. 2 повторяется, пока устройство 2 не активировано или, например, пока устройство 2 не находится дома, где дополнительная информация местонахождения не нужна в любой момент. Это может произо