Зонированный катализатор на монолитной подложке

Настоящее изобретение касается монолитной подложки с зонированным катализатором для регулирования газообразного сероводорода, образованного в ловушке обедненного NОх во время обессеривания ловушки обедненного NОх в расширенном температурном диапазоне по сравнению с известными механизмами регулирования сероводорода. Описана монолитная подложка с зонированным катализатором, содержащая первую зону и вторую зону, где первая зона и вторая зона расположены аксиально последовательно, где первая зона содержит металл платиновой группы, нанесенный на носитель, и первый оксид неблагородного металла, выбранный из группы, состоящей из оксида железа, оксида марганца, оксида меди, оксида цинка, оксида никеля и их смесей, или первый неблагородный металл, выбранный из группы, состоящей из железа, марганца, меди, цинка, никеля и их смесей, нанесенный на неорганический оксид, а вторая зона содержит медь или железо, нанесенные на цеолит, и второй оксид неблагородного металла, выбранный из группы, состоящей из оксида железа, оксида марганца, оксида меди, оксида цинка, оксида никеля и их смесей, или второй неблагородный металл, выбранный из группы, состоящей из железа, марганца, меди, цинка, никеля и их смесей, нанесенный на неорганический оксид, где второй неблагородный металл отличается от первого неблагородного металла, при этом первый оксид неблагородного металла или первый неблагородный металл, нанесенный на неорганический оксид, в первой зоне физически отделен от металла платиновой группы, нанесенного на носитель, при этом первая зона содержит композицию ловушки обедненного NOx, где металл платиновой группы, нанесенный на носитель, представляет собой компонент данной композиции ловушки обедненного NOx. Также описаны выхлопная система для двигателя внутреннего сгорания, содержащая (а) ловушку обедненного NOx и (b) вышеописанную монолитную подложку с зонированным катализатором, расположенную ниже по потоку от ловушки обедненного NOx; устройство, содержащее двигатель внутреннего сгорания и данную выхлопную систему, и транспортное средство, содержащее это устройство. Способ обработки выхлопного газа из двигателя внутреннего сгорания включает стадию, на которой направляют выхлопной газ через указанную выхлопную систему. Способ изготовления монолитной подложки с зонированным катализатором заключается в том, что первую и вторую зоны осаждают на монолитную подложку, используя процедуры получения пористого покрытия, в котором первую зону наносят в виде пористого покрытия на монолитную подложку перед нанесением второй зоны в виде пористого покрытия. Технический результат – создание системы, которая способна обрабатывать и NOx, и мелкие частицы, выходящие из выхлопной системы двигателя внутреннего сгорания, также удаляя и/или превращая нежелательные выбросы сероводорода в широком температурном интервале. 6 н. и 15 з.п. ф-лы, 8 пр., 4 табл., 2 ил.

Реферат

Настоящее изобретение касается монолитной подложки с зонированным катализатором для регулирования газообразного сероводорода, образованного в ловушке обедненного NОх во время обессеривания ловушки обедненного NОх в расширенном температурном диапазоне по сравнению с известными механизмами регулирования сероводорода. Данное изобретение также касается выхлопной системы для двигателя внутреннего сгорания, содержащей ловушку обедненного NОх и монолитную подложку с зонированным катализатором, и различных способов изготовления монолитной подложки с зонированным катализатором и обработки выхлопного газа из двигателя внутреннего сгорания.

Автомобильные выбросы, которые являются основными загрязняющими веществами, которые оказывают отрицательное воздействие на здоровье людей и окружающую среду, обычно представляют собой моноксид углерода (СО), углеводороды (НС), оксиды азота (NОх) и мелкие частицы.

Было предложено несколько решений для удаления и/или регулирования этих основных примесей, некоторые из которых обращены к конструкции двигателя и некоторые из которых обращены к регулированию выбросов из выхлопных систем.

Типичные выхлопные системы, которые существуют для удаления и/или регулирования таких выбросов, содержат ловушку NОх, катализатор окисления, чтобы катализировать превращение СО и СН, которые присутствуют в результате неполного сгорания топлива в двигателе, и фильтрующую подложку для удаления мелких частиц.

Ловушки обедненного NОх (LNТ) (также известные как катализатор адсорбер NОх); такие как описано в US5473887, применяют ловушку, например, оксид щелочноземельного металла, которая адсорбирует NОх во время обедненного режима работы. Выхлопной газ обычно обогащен NО, который превращается в NО2 на окисляющем катализаторе, содержащем металл платиновой группы, такой как платина или рутений, а NО2 захватывается и сохраняется на оксиде щелочноземельного металла, таком как карбонат бария, который внедрен в катализатор, содержащий металл платиновой группы. NОх затем освобождается от бария в обогащенных условиях, когда концентрация кислорода в выхлопном выбросе снижается, и восстанавливается подходящим восстановителем, например, дизельным топливом для дизельных двигателей, с использованием родиевого катализатора в качестве промотора. Родиевый катализатор может быть внедрен в катализатор, содержащий металл платиновой группы, или может быть расположен ниже по ходу от LNТ.

Один механизм, обычно представляемый для захвата NOx из обедненного выхлопного газа для данного состава, представляет собой:

NО+0,5 О2→NО2 (1);
ВаО+NО2+0,5 О2→Ва(NО3)2 (2),

где в реакции (1) NО реагирует с кислородом на активных центрах окисления на катализаторе с металлом платиновой группы с образованием NО2. Реакция (2) включает в себя адсорбцию NО2 аккумулирующим материалом в форме неорганического нитрата.

При меньших концентрациях кислорода и/или повышенных температурах нитратные частицы становятся термодинамически нестабильными и разлагаются, давая NО или NО2 согласно реакции (3) ниже. В присутствии подходящего восстановителя эти оксиды азота затем восстанавливаются моноксидом углерода, водородом или углеводородами в N2, что происходит на катализаторе восстановления (смотри реакцию (4)).

Ва(NО3)2→ВаО+2NО+1,5 О2 или Ва(NО3)2→ВаО+2NО2+0,5 О2И (3);
NО+СО→0,5 N2+СО2 (и другие реакции) (4).

В реакциях (1)-(4) выше реакционноспособное бариевое вещество дано в виде оксида.

Однако понятно, что в присутствии воздуха или обедненного выхлопного газа двигателя большая часть бария находится в форме карбоната или, возможно, гидроксида. Специалист может адаптировать вышеприведенные реакционные схемы соответственно для бариевых веществ, иных чем оксид.

Проблема при использовании LNТ, например, для дизельных и бензиновых двигателей, заключается в том, что топливо для двигателя также содержит серу, и она превращается в диоксид серы (SО2) во время горения топлива. SО2 окисляется в триоксид серы (SО3) катализатором окисления из LNТ, и SО3 адсорбируется на адсорбере NOx по механизму, аналогичному механизму для NО2. Существует конечное число активных центров на компоненте для захвата NOx для адсорбции NOx, и поэтому присутствие сульфата на компоненте для захвата NOx снижает способность компонента для захвата NOx адсорбировать NOx. Поэтому, чтобы сохранять достаточную способность захвата NOx, серу необходимо периодически удалять из LNТ. Однако сульфаты компонентов для захвата NOx, таких как барий, более стабильны, чем нитраты в обедненном выхлопном газе, и обычно более высокие температуры и/или более богатые условия в течение больших периодов требуются для удаления SОх, чем для десорбции NOx.

Десульфатация может выполняться с помощью множества технологий, включая последовательность коротких обогащенных импульсов. Существенной проблемой при десульфатации LNТ с использованием составов, более богатых, чем обычный выхлопной газ, является то, что сульфат удаляется в виде сероводорода. Это соединение имеет характерный и неприятный запах тухлых яиц, порог обнаружения составляет 0,0047 ч/млн, концентрация, при которой 50% людей может чувствовать характерный запах сероводорода, и, соответственно, желательно предотвращать/ограничивать его выброс в атмосферу.

Эта проблема в последние годы была в определенной степени уменьшена для дизельного топлива, так как дизельное топливо со сверхнизким содержанием серы (топливо с максимальным содержанием серы 15 ч/млн (масс)) сейчас доступно в США. В Европе дизельное топливо с максимальным пределом серы 10 ч/млн доступно с начала 2010. В результате процедуры десульфатации LNТ требуются менее часто. Однако исключительно низкий порог запаха сероводорода означает, что даже небольшие выбросы в атмосферу нежелательны.

Было показано, что фильтры мелких частиц очень эффективны для удаления мелких частиц во всем диапазоне размера частиц. Однако эти фильтры имеют ограниченную емкость для захвата мелких частиц перед тем, как перепад давления становится чрезмерным. Поэтому необходимо периодически регенерировать фильтр мелких частиц. Пассивная регенерация может быть затруднена, так как сгорание захваченных мелких частиц в присутствии кислорода требует более высоких температур, чем температуры, обычно обеспечиваемые выхлопом двигателя, особенно в случае выхлопов дизельных легковых автомобилей. Один эффективный способ снизить температуру сгорания захваченных мелких частиц на фильтре мелких частиц заключается в добавлении каталитического пористого покрытия (washcoat) на фильтрующую подложку. Составы применяемых каталитических пористых покрытий аналогичны составам, используемым в катализаторах окисления, и обычно содержат, по меньшей мере, один металл платиновой группы, нанесенный на подходящий носитель. Подходящие носители включают в себя оксид алюминия, диоксид кремния-оксид алюминия, диоксид церия или смешанный оксид или композит диоксидов церия и циркония, и их смеси. Такие фильтры обычно известны как каталитические фильтры сажи (СSF).

Известна выхлопная дизельная система, содержащая LNТ и СSF ниже по ходу. Например, SАЕ 2001-01-2065, озаглавленный "Cummins Light Truck Diesel Engine Progress Report", описывает такую систему. Авторы этого доклада признают, что не рассматривали влияние ухудшения или загрязнения из-за отравления серой и не делали попыток десульфатации во время какого-либо из циклов движения.

WО2008/075111 раскрывает устройство, содержащее двигатель внутреннего сгорания на бедной смеси, которое содержит выхлопную систему для обработки текущего выхлопного газа из двигателя, имеющую LNТ, СSF, средство для обогащения выхлопного газа, чтобы периодически обеспечивать обогащенный выхлопной газ во время работы, чтобы удалят сульфат, который адсорбируется на LNТ, и соединение, расположенное ниже по ходу от, по меньшей мере, части LNТ, которое эффективно для удаления и/или превращения сероводорода, который получается во время процесса удаления сульфата. Материал для удаления и/или превращения сероводорода выбирают из группы, состоящей из оксидов никеля, кальция, железа и бария. Материал для удаления и/или превращения сероводорода может быть расположен в разных местах выхлопной системы, включая, например, между LNТ и СSF, на СSF, между СSF и выходом выхлопной системы. Единственное обсуждение, почему материал для удаления и/или превращения сероводорода помещается в выбранном положении к катализаторам окисления с металлами платиновой группы, заключается в том, что оксид никеля может отравлять активность катализатора с металлами платиновой группы в отношении углеводорода и моноксида углерода.

US5196390 раскрывает способ подавления образования сероводорода с помощью трехмаршрутного катализатора путем введения одного или нескольких соединений из оксидов никеля, железа и марганца в нижележащий слой, расположенный на монолитной подложке. Верхний слой, покрывающий данный нижний слой, содержит стандартный материал трехмаршрутного катализатора. Эта структура избегает любого взаимодействия между трехмаршрутным катализатором и материалом для подавления сероводорода.

Документ SАЕ 2005-01-1116, представленный во время 2005 Society of Automotive Engineers (SAE) World Congress in Detroit, Michigan, USA (April 11-14, 2005), озаглавлен "H2S Suppression During the Desulfation of a lean NOx Trap with a Nickel-Containing Catalyst". Трое из его авторов указаны как изобретатели патентной публикации США № US 2005/0160720.

JР 2001-070754 касается проблемы подавления величины выброса Н2S из двигателя внутреннего сгорания на бедной смеси без ухудшения обрабатывающей способности катализатора окклюзии NOx. Данная публикация раскрывает устройство обработки выхлопного газа, содержащее трехмаршрутный катализатор ниже по ходу от катализатора окклюзии NOx, где трехмаршрутный катализатор содержит оксид никеля с 10-35 г на 1 установленный литр в качестве устройства каталитического подавления выброса Н2S, или оксид никеля вместе с другим агентом подавления выброса Н2S добавляется к трехмаршрутному катализатору с мольной долей 30-300% относительно Ва, добавленного в качестве агента окклюзии в катализатор NOx.

Европейский парламент директивой Совета 94/27/ЕС от 30 июня 1994 (впоследствии измененная директивой Комиссии 2004/96/ЕС от 27 сентября 2004) ограничивает применение никеля из-за сенсибилизации людей, которая может приводить к аллергическим реакциям. Комитет по лекарственным средствам для человека (СНМР) Европейского агентства по медицине выпустил проект директивы по допустимым пределам остатков металлических катализаторов, включая никелевые катализаторы, в январе 2007. Понятно, что сейчас существует добровольный запрет на использование никеля в автомобильных катализаторах в автомобильной промышленности и ее поставщиках.

WО 2012/175948 А1 заявителя была зарегистрирована раньше, но опубликована позднее, чем настоящая заявка. Она раскрывает выхлопную систему для двигателей внутреннего сгорания и подложку с катализатором для использования в выхлопной системе. Данная выхлопная система содержит ловушку обедненного NOx и подложку с катализатором, расположенную ниже по ходу от ловушки обедненного NOx. Подложка с катализатором имеет первую зону и вторую зону, где первая зона содержит металл платиновой группы, нанесенный на носитель, а вторая зона содержит медь или железо, нанесенные на цеолит. Первая зона или вторая зона дополнительно содержит оксид неблагородного металла или неблагородный металл, нанесенный на неорганический оксид, где данный неблагородный металл предпочтительно представляет собой железо, марганец, медь, никель или их смеси. Подложка с катализатором может быть ориентирована в выхлопной системе так, что первая зона находится выше по ходу от второй зоны или наоборот. Предпочтительно, однако, первая зона ориентирована так, что первая зона находится выше по ходу, чтобы принимать выхлопной газ из ловушки NOx прежде второй зоны. Выхлопная система способна запасать NН3, генерированный в обогащенной продувке, вызывать реакцию данного NН3 с остаточным NOx из ловушки NOx, регулировать Н2S, выделившийся при десульфатации ловушки NOx, и окислять остаточные углеводороды и моноксид углерода. Когда подложка с катализатором представляет собой фильтрующую подложку, она также способна удалять сажу из выхлопной системы.

Различные материалы, которые доступны для удаления и/или превращения сероводорода, наиболее эффективно работают в заданном температурном интервале. Например, известно, что оксиды железа эффективны при меньших температурах, обычно 400-800°С, и известно, что оксиды марганца эффективны при более высоких температурах, которые, в некоторых случаях, превышают 1000°С. Смешивание вместе некоторых из этих разных материалов может не быть достаточным, чтобы расширить температурный интервал удаления и/или превращения сероводорода, так как могут быть отрицательные взаимодействия в таких комбинациях.

Авторы обнаружили систему, которая способна обрабатывать и NOx, и мелкие частицы, выходящие из выхлопной системы двигателя внутреннего сгорания, также удаляя и/или превращая нежелательные выбросы сероводорода в широком температурном интервале. Это достигается путем обеспечения монолитной подложки с катализатором ниже по ходу от LNТ, процесс десульфатации которого приводит к образованию нежелательного сероводорода, где отдельные зоны в подложке с катализатором содержат разные материалы для удаления и/или превращения выбросов сероводорода. Мелкие частицы могут захватываться на отдельной фильтрующей подложке или, более предпочтительно, монолитная подложка с катализатором представляет собой каталитический фильтр сажи.

Соответственно, в первом аспекте данное изобретение обеспечивает монолитную подложку с зонированным катализатором, содержащую первую зону и вторую зону, где первая зона и вторая зона расположены аксиально последовательно, где первая зона содержит металл платиновой группы, нанесенный на носитель, и первый оксид неблагородного металла, выбранный из группы, состоящей из оксида железа, оксида марганца, оксида меди, оксида цинка, оксида никеля и их смесей, или первый неблагородный металл, выбранный из группы, состоящей из железа, марганца, меди, цинка, никеля и их смесей, нанесенный на неорганический оксид, а вторая зона содержит медь или железо, нанесенные на цеолит, и второй оксид неблагородного металла, выбранный из группы, состоящей из оксида железа, оксида марганца, оксида меди, оксида цинка, оксида никеля и их смесей, или второй неблагородный металл, выбранный из группы, состоящей из железа, марганца, меди, цинка, никеля и их смесей, нанесенный на неорганический оксид, где второй неблагородный металл отличается от первого неблагородного металла.

Предпочтительно, содержание пористого покрытия из меди или железа, нанесенных на цеолит, во второй зоне составляет 0,5≤3,0 г дюйм-3 (0,03≤0,18 г/см3), предпочтительно 1,0≤2,0 г дюйм-3 (0,06≤0,12 г/см3).

Предпочтительно, первый неблагородный металл или второй неблагородный металл не является никелем; и первый оксид неблагородного металла или второй оксид неблагородного металла не является оксидом никеля. Причина этого в добровольном европейском запрете на включение никеля в катализаторы.

Предпочтительными первыми неблагородными металлами или вторыми неблагородными металлами являются марганец и цинк; и предпочтительными первыми оксидами неблагородных металлов или вторыми оксидами неблагородных металлов являются оксид марганца и оксид цинка. Это потому, что изобретатели обнаружили, что эти неблагородные металлы и оксиды неблагородных металлов являются хорошими подавителями Н2S, но они также оказывают большее отрицательное воздействие на окисление СО при меньших температурах для металла платиновой группы в первой зоне по сравнению с медью (или оксидом меди) или железом (или оксидом железа); и большее отрицательное воздействие на селективное каталитическое превращение NOx (с использованием NН3 в качестве восстановителя) на Сu или Fе цеолитном катализаторе второй зоны, чем (дополнительные) Сu или СuО или (дополнительные) Fе или Fе2О3. Можно использовать оксид Сu или оксид Fе в качестве подавителей Н2S в первой зоне (содержащей металлы платиновой группы), но предпочтительно, когда Сu или Fе физически отделены от металла платиновой группы, нанесенного на носитель (смотри ниже). Предпочтительно не использовать оксиды Сu или оксиды Fе в качестве подавителей Н2S во второй зоне, так как эти материалы (дополнительные к Fе или Сu, ион-замещенным в решетке цеолита) могут нежелательно конкурентно окислять NН3, тем самым снижая эффективность реакции селективного каталитического восстановления (т.е. 4NН3+4NО+О2→4N2+6Н2О (т.е. 1:1 NН3:NО); 4NН3+2NО+2NО2→4N2+6Н2О (т.е. 1:1 NН3:NОх); и 8NН3+6NО2→7N2+12Н2О (т.е. 4:3 NН3:NОх) предпочтительно перед нежелательными, неселективными побочными реакциями, такими как 2NН3+2NО2→N2О+3Н2О+N2) на Сu или Fе цеолитных катализаторах.

Первая зона может дополнительно содержать металл платиновой группы, нанесенный на носитель. Данный металл платиновой группы предпочтительно представляет собой платину, палладий, родий или их смеси; наиболее предпочтительно металл платиновой группы представляет собой платину, палладий и их смеси. Носителем предпочтительно является цеолит, неорганический оксид или их смеси. Более предпочтительно, носителем является неорганический оксид, такой как оксид алюминия, диоксид кремния, диоксид титана, диоксид циркония, диоксид церия, диоксид ниобия, оксиды тантала, оксиды молибдена, оксиды вольфрама, смешанные оксиды или композитные оксиды любых двух или более из них (например, диоксид кремния-оксид алюминия, диоксид церия-диоксид циркония или оксид алюминия-диоксид церия-диоксид циркония) и их смеси. Смешанные оксиды оксид алюминия и диоксид церия-диоксид циркония особенно предпочтительны.

Когда первая зона дополнительно содержит металл платиновой группы, нанесенный на носитель, предпочтительно, когда первый оксид неблагородного металла или первый неблагородный металл, нанесенный на неорганический оксид, физически отделены от металла платиновой группы, нанесенного на носитель. Это может достигаться путем предварительного формирования порошка нанесенного металла платиновой группы, включая его прокаливание, чтобы зафиксировать металл платиновой группы на носителе, перед введением предварительно сформированного порошка в пористое покрытие типа "washcoat". Это потому, что первый оксид неблагородного металла может отравлять способность окисления углеводорода и моноксида углерода катализатором с металлом платиновой группы. Таким образом, раздельные частицы нанесенного металла платиновой группы и первого оксида неблагородного металла или первого неблагородного металла, нанесенного на неорганический оксид, добавляют в первую зону, чтобы физически разделить два катализатора в первой зоне.

В предпочтительном варианте осуществления, в котором предполагается ориентировать первую зону в выхлопной системе согласно второму аспекту данного изобретения выше по ходу, первая зона содержит композицию ловушки обедненного NOx, включая адсорбент NOx для сохранения/захвата NOx и катализатор окисления/восстановления, описанный ниже, где металл платиновой группы, нанесенный на носитель, представляет собой данный катализатор окисления/восстановления. Содержание ловушки обедненного NOx может быть 10≤100 г фут-3 (353≤3531 г/м3), предпочтительно 25≤75 г фут-3 (883≤2649 г/м3) или 35≤65 г фут-3 (1236≤2295 г/м3). Содержание пористого покрытия ловушки обедненного NOx может быть 0,5≤3,0 г дюйм-3 (0,03≤0,183 г/см3), предпочтительно 1,0≤2,0 г дюйм-3 (0,06≤0,12 г/см3).

Цеолит во второй зоне, т.е. с нанесенной медью или железом, предпочтительно является цеолитом бета, фожазитом (таким как Х-цеолит или Y-цеолит, включая NаY и USY), L-цеолитом, ZSМ цеолитом (например, ZSМ-5, ZSМ-48), SSZ-цеолитом (например, SSZ-13 (шабазит), SSZ-41, SSZ-33), ферриеритом, морденитом, шабазитом, оффретитом, эрионитом, клиноптилолитом, силикалитом, алюминий-фосфатным цеолитом (включая металлоалюмофосфаты, такие как SАРО-34 (шабазит)), мезопористым цеолитом (например, МСМ-41, МСМ-49, SВА-15) или их смесью; более предпочтительно данный цеолит является цеолитом бета, ферриеритом или шабазитом.

Первая зона и вторая зона содержат оксид неблагородного металла или неблагородный металл, нанесенный на неорганический оксид. Неорганический оксид в каждой зоне из первой зоны и второй зоны может быть независимо выбран из группы, состоящей из оксида алюминия, диоксида кремния, диоксида титана, диоксида циркония, диоксида церия, диоксида ниобия, оксидов тантала, оксидов молибдена, оксидов вольфрама, смешанного оксида или композитного оксида любых двух или более из них и их смесей. Оксид алюминия является особенно предпочтительным.

Подложка с зонированным катализатором представляет собой подложку, которая содержит каталитические компоненты. Монолитная подложка предпочтительно представляет собой керамическую монолитную подложку или металлическую монолитную подложку, более предпочтительно керамическую монолитную подложку. Керамическая монолитная подложка может быть сделана из любого подходящего тугоплавкого материала, например, оксида алюминия, диоксида кремния, диоксида титана, диоксида церия, диоксида циркония, оксида магния, цеолитов, нитрида кремния, карбида кремния, силикатов циркония, силикатов магния, алюмосиликатов и металлоалюмосиликатов (таких как кордиерит и сподумен), или смеси или смешанного оксида любых двух или более из них. Кордиерит, который является алюмосиликатом магния, и карбид кремния являются особенно предпочтительными керамическими монолитными подложками.

Металлическая монолитная подложка может быть сделана из любого подходящего металла и, особенно термостойких металлов и металлических сплавов, таких как титан и нержавеющая сталь, а также ферритные сплавы, содержащие железо, никель, хром и/или алюминий в добавление к другим следовым металлам.

Монолитная подложка предпочтительно является фильтрующей подложкой, но также может быть проточной монолитной подложкой. Когда монолитная подложка является фильтрующей подложкой, содержание пористого покрытия типа "washcoat" из металла платиновой группы (ловушка не обедненного NOx), нанесенного на носитель, в первой зоне предпочтительно составляет 0,1≤1,0 г дюйм-3 (0,006≤0,06 г/см3), например, 0,3≤0,7 г дюйм-3 (0,018≤0,043 г/см3). В вариантах осуществления, где первая зона (ловушка не обедненного NOx) ориентирована к стороне выше по ходу в выхлопной системе согласно второму аспекту настоящего изобретения, и монолитная подложка является фильтрующей подложкой, содержание нанесенного металла платиновой группы предпочтительно составляет 10≤50 г фут-3 (353≤1766 г/м3); или где первая зона ориентирована к стороне ниже по ходу, содержание металла платиновой группы составляет 1≤20 г фут-3 (35≤706 г/м3), например, 5≤15 г фут-3 (177≤530 г/м3) или 1≤10 г фут-3 (35≤353 г/м3).

Когда монолитная подложка монолитной подложки с зонированным катализатором является фильтрующей подложкой, чтобы снизить противодавление в выхлопной системе согласно настоящему изобретению, предпочтительно размещать зону, имеющую меньшее содержание пористого покрытия, на стороне ниже по ходу. На практике, медь или железо, нанесенные на цеолит, будут присутствовать в большем содержании в пористом покрытии, и поэтому предпочтительно, когда первая зона находится при меньшем содержании и ориентирована к стороне ниже по ходу. Меньшее содержание пористого покрытия также обычно означает меньшее содержание металла платиновой группы. В целях бортовой диагностики современные выхлопные системы разработаны так, что процесс регенерации фильтра выполняется с интервалом приблизительно 5000 км, возвращая, тем самым, систему к "базовой линии" продвигающегося диагностического тестирования. Такие процессы регенерации могут давать относительно высокие температуры выхлопного газа, что выгодно для обработки вторичных выбросов от сгорания сажи во время процесса регенерации фильтра даже при первой зоне с относительно низким содержанием, ориентированной к стороне ниже по ходу, и медь и/или железо могут быть использованы для подавителя Н2S. Это возможно потому, что, даже, хотя Сu и Fе могут отравлять, например, активность окисления СО металла платиновой группы, Сu-отравленный катализатор с металлом платиновой группы способен вспыхивать при более высоких температурах, обрабатывая, тем самым, вторичные выбросы, во время процесса регенерации фильтра.

В предпочтительном варианте осуществления первого аспекта данного изобретения, в котором вторая зона ориентирована к стороне выше по ходу в выхлопной системе второго аспекта данного изобретения, и монолитная подложка является проточной монолитной подложкой или фильтрующей подложкой, и первая зона является ловушкой не обедненного NOx, металл платиновой группы предпочтительно представляет собой Рt или Рt и Рd при относительно низком содержании, например, 5≤15 г фут-3 (177≤530 г/м3), или 1≤10 г фут-3 (35≤353 г/м3), или 1≤5 г фут-3 (35≤177 г/м3), первая зона содержит первый слой, нанесенный на монолитную подложку, и первый слой покрыт вторым слоем из меди или железа, нанесенных на цеолит, второй зоны. Это расположение особенно предпочтительно, так как катализатор окисления для снижения или предотвращения проскока NН3 находится после монолитной подложки с зонированным катализатором данного изобретения (так называемый, катализатор проскока аммиака или "АSС").

Если подложка представляет собой проточную монолитную подложку, то данная проточная монолитная подложка является проточной монолитной подложкой, предпочтительно имеющей сотовую структуру с многочисленными небольшими параллельными тонкостенными каналами, аксиально проходящими сквозь подложку и распространяющимися по всей подложке. Сечение каналов подложки может быть любой формы, но предпочтительно квадратным, синусоидальным, треугольным, прямоугольным, шестиугольным, трапециевидным, круглым или овальным.

Если монолитная подложка представляет собой фильтрующую подложку, она предпочтительно является монолитным фильтром с проточными стенками. Монолитный фильтр с проточными стенками имеет входной конец, выходной конец, аксиальную длину подложки, распространяющуюся между входным концом и выходным концом, и множество каналов, заданных внутренними стенками стенно-проточной подложки. Данное множество каналов содержит входные каналы, имеющие открытый входной конец и закрытый выходной конец, и выходные каналы, имеющие закрытый входной конец и открытый выходной конец.

Следовательно, каналы фильтра с проточными стенками являются попеременно блокированными, что позволяет потоку выхлопного газа входить в канал от входного конца, затем протекать через стенки канала и выходить из фильтра из другого канала, ведущего к открытому концу. Частицы в потоке выхлопного газа, таким образом, захватываются в фильтре.

Монолитная подложка содержит, по меньшей мере, две каталитических зоны, где каждая зона содержит другую каталитическую композицию, осажденную на монолитной подложке. В одном варианте осуществления, по существу, нет перекрытия данных двух зон на подложке. Например, первая зона может покрывать от 10 до 90 процентов всей длины подложки, а вторая зона будет покрывать оставшуюся длину подложки (т.е. оставшиеся 90-10 процентов, которые не покрыты первой зоной). Предпочтительно, первая зона покрывает от 20 до 80 процентов всей длины подложки, а вторая зона покрывает от 80 до 20 процентов всей длины подложки. Более предпочтительно, первая зона покрывает от 30 до 70 процентов всей длины подложки, а вторая зона покрывает от 70 до 30 процентов всей длины подложки. Более предпочтительно, первая зона покрывает от 40 до 60 процентов всей длины подложки, а вторая зона покрывает от 60 до 40 процентов всей длины подложки.

В менее предпочтительном, альтернативном варианте осуществления может быть некоторое перекрытие двух зон подложки. Например, может быть перекрытие до 20% или больше.

Когда подложка является фильтрующей подложкой, предпочтительно она является монолитным фильтром с проточными стенками. Когда применяется такой монолитный фильтр с проточными стенками, одна зона может осаждаться в/на внутренние стенки входных каналов, а другая зона может осаждаться в/на внутренние стенки выходных каналов, таким образом, эффективно разделяя первую и вторую зоны.

В определенных случаях может быть предпочтительно добавлять небольшую третью зону в подложку, так что третья зона (предпочтительно занимающая меньше чем 20 процентов и более предпочтительно меньше чем 10 процентов аксиальной длины подложки) расположена после второй зоны и на противоположном конце подложки от первой зоны. Третья зона может быть особенно полезна, когда монолитная подложка является фильтрующей подложкой, и первая зона расположена в выхлопной системе так, чтобы контактировать с выхлопным газом до второй зоны, так что углеводороды и СО, образованные во время горения сажи при высокой температуре, могут не полностью сгорать над второй зоной. Если применяется, третья зона будет содержать нанесенные металлы платиновой группы, предпочтительно платину, палладий и/или родий, чтобы помогать окислению любых углеводородов и СО.

Согласно второму аспекту данное изобретение обеспечивает выхлопную систему для двигателя внутреннего сгорания, содержащую: (а) ловушку обедненного NOx; и (b) монолитную подложку с зонированным катализатором, в которой монолитная подложка с зонированным катализатором расположена ниже по ходу от ловушки обедненного NOx. Ловушка обедненного NOx (а) расположена на монолитной подложке, такой как прямоточная монолитная подложка или фильтрующая подложка, такая как стенно-проточная фильтрующая подложка.

Монолитная подложка с катализатором удаляет/регулирует Н2S, выделяемый при десульфатации ловушки NOx, путем образования сульфидных соединений в обогащенных газовых смесях и окисления сульфидов до SО2 или SО3 в обедненных газовых смесях. Когда присутствует, катализатор с нанесенным металлом платиновой группы окисляет углеводороды и моноксид углерода, которые не превращаются до контакта с подложкой с катализатором. Когда монолитная подложка с катализатором представляет собой фильтрующую подложку, она также удаляет сажу из выхлопного газа.

Подложка с зонированным катализатором расположена в выхлопной системе так, что она находится ниже по ходу от ловушки обедненного NOx, так что выхлопной газ контактирует с ловушкой обедненного NOx до контакта с подложкой с катализатором. Предпочтительно, подложка с двухзонным катализатором расположена в выхлопной системе так, что есть входная (верхняя по ходу) зона, которая контактирует с выхлопным газом после его выхода из ловушки обедненного NOx, и выходная (нижняя по ходу) зона, следующая за верхней по ходу зоной. Верхняя по ходу зона, которая контактирует с выхлопным газом из ловушки обедненного NOx, может быть первой зоной или второй зоной подложки с катализатором. Таким образом, первая зона может быть ориентирована так, чтобы принимать выхлопной газ из ловушки обедненного NOx до второй зоны; или вторая зона может быть ориентирована так, чтобы принимать выхлопной газ из ловушки обедненного NOx до первой зоны.

В одном варианте осуществления первая зона ориентирована к стороне выше по ходу.

Цеолитный катализатор второй зоны с нанесенной медью или железом активен в катализе восстановления оксидов азота азотистым восстановителем согласно следующим реакциям: 4NН3+4NО+О2→4N2+6Н2О (т.е. 1:1 NН3:NО); 4NН3+2NО+2NО2→4N2+6Н2О (т.е. 1:1 NН3:NОх); и 8NН3+6NО2→7N2+12Н2О (т.е. 4:3 NН3:NОх) предпочтительно перед нежелательными неселективными побочными реакциями, такими как 2NН3+2NО2→N2О+3Н2О+N2.

В вариантах осуществления второго аспекта согласно данному изобретению, в которых вторая зона ориентирована к стороне выше по ходу, выхлопная система предпочтительно содержит инжектор для впрыскивания азотистого восстановителя, такого как аммиак или предшественник аммиака, такой как мочевина или формиат аммония, предпочтительно мочевина, в выхлопной газ между ловушкой обедненного NOx и монолитной подложкой с зонированным катализатором согласно первому аспекту данного изобретения. Такой инжектор проточно присоединен к источнику такого предшественника азотистого восстановителя, например, баку с ним, и регулируемая клапаном дозировка предшественника в выхлопной поток регулируется с помощью подходящего программируемого средства управления двигателем и обратной связи с замкнутой петлей или открытой петлей, обеспеченной датчиками, контролирующими значимый состав выхлопного газа. Аммиак также может генерироваться нагревом карбамата аммония (твердое вещество), и генерированный аммиак может впрыскиваться в выхлопной газ.

Аммиак также может генерироваться in situ, например, во время обогащенной регенерации ловушки обедненного NOx производимым двигателем, обогащенным выхлопным газом, например, когда барий является адсорбентом NOx: Ва(NО3)2+8Н2→ВаО+2NН3+5Н2О. В этом случае in situ генерация NН3 может быть использована вместо отдельного инжектора для азотистого восстановителя или в добавление к нему. Будет ясно, что в варианте осуществления, в котором первая зона содержит ловушку обедненного NOx и ориентирована к стороне выше по ходу, ловушка обедненного NOx первой зоны также может способствовать in situ генерации аммиака выше по ходу от цеолитного катализатора второй зоны с нанесенной медью или железом.

Ловушка обедненного NOx обычно включает в себя адсорбент NOx для сохранения/захвата NOx и катализатор окисления/восстановления. Катализатор окисления/восстановления обычно содержит один или несколько благородных металлов, предпочтительно платину, палладий и/или родий. Обычно платину включают для выполнения функции окисления, а родий включают для выполнения функции восстановления. Родиевый катализатор может располагаться ниже по ходу от LNТ.

Адсорбент NOx предпочтительно содержит, по меньшей мере, один щелочноземельный металл (такой как барий, кальций, стронций и магний), по меньшей мере, один щелочной металл (такой как калий, натрий, литий и цезий) или, по меньшей мере, один редкоземельный металл (такой как лантан, иттрий, празеодим и неодим) или их комбинации. Эти металлы обычно находятся в форме оксидов. Наиболее предпочтительно адсорбент NOx содержит щелочноземельные металлы в форме оксидов. Следует заметить, что, хотя соединение щелочноземельного металла описывается как оксид, понятно, что в присутствии воздуха или обедненного выхлопного газа двигателя большинство соединений щелочноземельных металлов, например, бария, находится в форме карбоната или, возможно, гидроксида.

Катализатор окисления/восстановления и адсорбент NOx предпочтительно наносят на носитель, такой как неорганический оксид, для использования в выхлопной системе. Такие неорганические окси