Автостереоскопический к-ракурсный дисплей с полноэкранным разрешением в изображении каждого ракурса (варианты)

Иллюстрации

Показать все

Изобретение относится к стереоскопической видеотехнике и может быть использовано для создания многоракурсных (K-ракурсных) автостереоскопических телевизоров и мониторов с реализацией полноэкранного пространственного разрешения в каждом ракурсе стереоизображения. Технический результат - расширение области наблюдения стереоизображения за счет увеличения числа воспроизводимых ракурсов 3D сцены. Технический результат достигается за счет одновременного воспроизведения двух элементов изображения в каждом пикселе формирователя амплитудно-поляризационного изображения на основе поляризационного кодирования с последующим декодированием с помощью статического фазо-поляризационного параллаксного барьера и с селекцией изображений ракурсов в K/2 тактах работы устройства при увеличении кадровой частоты в К/2 раз по сравнению с минимальной (стандартной) кадровой частотой 60 Гц. 2 н. и 4 з.п. ф-лы, 32 ил.

Реферат

Изобретение относится к технике наблюдения объемных изображений, точнее, к стереоскопической видеотехнике, и может быть использовано для создания многоракурсных (К-ракурсных, где K>2) стереоскопических дисплеев (телевизоров, компьютерных мониторов) с безочковым наблюдением стереоизображения трехмерной (3D) сцены при полноэкранном разрешении в изображении каждого ракурса 3D сцены, формируемого в соответствующей зоне наблюдения.

Известен автостереоскопический многоракурсный дисплей с полноэкранным разрешением в изображении каждого ракурса [1], содержащий источник стереовидеосигнала и расположенные на оптической оси источник света, матрично-адресуемый формирователь амплитудных изображений и адресуемый по столбцам K-тактный динамический амплитудный параллаксный барьер (ДАПБ), вход синхронизации которого подключен к выходу динамической синхронизации источника стереовидеосигнала, при этом центр каждого столбца динамического амплитудного параллаксного барьера находится на пересечении K оптических путей, идущих в K зон наблюдения.

Известный дисплей обеспечивает формирование в K-й зоне наблюдения изображения K-го ракурса 3D сцены с полноэкранным разрешением, соответствующим полному числу MN дисплейных пикселей формирователя амплитудных изображений. В первый такт работы известного дисплея первый набор из К столбцов ДАПБ открыт на пропускание света, идущего в К зон наблюдения от первого набора K столбцов формирователя амплитудного изображения, несущих изображение первых столбцов изображений К ракурсов отображаемой 3D сцены. В последний (К-й) такт работы К-й набор столбцов ДАПБ открыт на пропускание света, идущего в К зон наблюдения от К-го набора формирователя амплитудного изображения, несущих изображение К-х столбцов изображений К ракурсов. В итоге за К тактов работы известного дисплея в формируется К-ракурсное стереоизображение с полноэкранным разрешением (с числом MN элементов) в изображении каждого ракурса.

Недостатком известного дисплея [1] является необходимость его работы с К-кратным увеличением кадровой частоты F по сравнении с стандартной кадровой частотой Fst=60 Гц. Например, при формировании двухракурсного (К=2) стереоизображения общая рабочая кадровая частота составляет 120 Гц, а при формировании 4-ракурсного стереоизображения - 240 Гц. Только в этом случае при работе данного дисплея будут отсутствовать мерцания стереоизображения, заметные для зрительной системы (глаз) человека, поскольку в силу последовательной во времени селекции столбцов изображений с помощью ДМАПБ в каждой зоне наблюдения частота смены кадров равна общей рабочей кадровой частоте, деленной на К, т.е. равна Fmin=60 Гц.

С повышением рабочей кадровой частоты соответственно возрастают требования к частоте переключения дисплейных пикселей формирователя амплитудных изображений и к частоте переключения столбцов ДМАПБ. В настоящее время на мировом рынке наиболее распространены матрично-адресуемые амплитудные формирователи изображений на нематических жидких кристаллах (НЖК), обеспечивающие полную смену кадров изображений ракурсов по всей площади экрана (что необходимо для корректной работы известного автостереоскопического дисплея с ДМАПБ) с максимальной кадровой частотой не более 120 Гц. Это позволяет с использованием существующих НЖК формирователя амплитудных изображений, работающего на кадровой частоте 120 Гц, сформировать в известном дисплее с ДМАПБ только двухракурсное стереоизображение, ведущее к узкой области наблюдения стереоизображения. Область наблюдения стереоизображения, состоящая всего из двух зон (левой WL и правой WR), вызывает у зрителя дискомфорт из-за необходимости постоянно поддерживать расположение его левого и правого глаз близко к центрам соответственно левой WL и правой WR зон наблюдения. При допущении смещения зрительной системы (глаз) наблюдателя в горизонтальном направлении (в направлении строчной развертки изображений на экране дисплея) на расстояние, равном расстоянию B между глазами (где B≈64 мм), восприятие стереоизображения полностью нарушится, поскольку каждый из глаз наблюдателя в таком случае попадает в несоответствующую зону наблюдения (левый глаз EL в правую WR, а правый глаз ER - в левую WL зону наблюдения).

Наиболее близким по технической сущности (прототипом) к заявляемому устройству в его первом варианте является двухракурсный (К=2 при Fst=60 Гц) автостереоскопический дисплей [2] с полноэкранным разрешением в изображении каждого ракурса, содержащий источник стереовидеосигнала, функциональный блок и расположенные на одной оптической оси источник света, матрично-адресуемый по М строкам и N столбцам формирователь амплитудно-поляризационных изображений (ФАПИ), адресуемый по столбцам статический фазо-поляризационный параллаксный барьер (ФППБ), при этом ФАПИ содержит амплитудный сумматор изображений (АСИ) и поляризационный делитель изображений (ПДИ), электронные входы которых подключены к соответствующим выходам функционального блока, вход которого подключен к информационному выходу источника стереовидеосигнала, а апертура mn-го элемента АСИ последовательно оптически связана с апертурой mn-го элемента ПДИ, где m=1, 2, …, M; n=1, 2, …, N, причем центр каждого столбца ФППБ находится на пересечении пары оптических путей, идущих из центров соответствующей пары смежных столбцов ПДИ в центры двух (левой L и правой R) зон наблюдения.

Наиболее близким по технической сущности (прототипом) к заявляемому устройству в его втором варианте является двухракурсный (К=2 при Fmin=60 Гц) автостереоскопический дисплей [2] с полноэкранным разрешением в изображении каждого ракурса, содержащий источник стереовидеосигнала, функциональный блок и расположенные на одной оптической оси источник света, адресуемый по столбцам статический ФППБ, матрично-адресуемый по M строкам и N столбцам ФАПИ, при этом ФАПИ содержит ПДИ и АСИ, электронные входы которых подключены к соответствующим выходам функционального блока, вход которого подключены к информационному выходу источника стереовидеосигнала, апертура mn-го элемента ПДИ оптически связана с апертурой mn-го элемента АСИ, где m=1, 2, …, M; n=1, 2, …, N, центр каждого столбца ФППБ находится на пересечении пары оптических путей, идущих от источника света в центры соответствующей пары смежных столбцов ПДИ, а центр каждого столбца АСИ находится на пересечении двух оптических путей, идущих в две (левую L и правую R) зоны наблюдения.

Известный автостереоскопический дисплей в его обоих вариантах обеспечивает формирование двухракурсного стереоскопического изображения с полноэкранным разрешением в каждом из двух ракурсов при рабочей кадровой частоте Fmin=60 Гц без мерцаний стереоизображения. Изображения обоих ракурсов формируются одновременно за счет одновременного воспроизведения двух элементов изображений в каждом дисплейном пикселе ФАПИ на основе поляризационного кодирования светового потока с его последующим декодированием с помощью статического ФППБ. Поэтому изображение каждого ракурса воспроизводится в каждой из двух зон наблюдения с кадровой частотой Fmin=60 Гц.

Недостатком известного автостереоскопического дисплея [2] является узкая область наблюдения стереоизображений, состоящая всего из двух зон наблюдения.

Целью изобретения является расширение области наблюдения стереоизображения при минимальном кратном увеличении рабочей кадровой частоты по сравнению с стандартной Fmin.

Поставленная цель в устройстве (его первом варианте) достигается тем, что в устройство дополнительно введен адресуемый по столбцам динамический амплитудный параллаксный барьер, центр каждого столбца которого расположен на пересечении K оптических путей, связывающих центры К зон наблюдения с центрами K столбцов поляризационного делителя изображений либо расположен на пересечении К оптических путей, связывающих К столбцов амплитудного сумматора изображений с пространственным источником света, а источник стереовидеосигнала выполнен с выходом динамической синхронизации, подключенным к входу синхронизации динамического амплитудного параллаксного барьера.

Поставленная цель в устройстве (его втором варианте) в устройство дополнительно введен адресуемый по столбцам динамический амплитудный параллаксный барьер, центр каждого столбца которого расположен на пересечении K оптических путей, связывающих пространственный источник света с центрами К столбцов фазо-поляризационного параллаксного барьера, либо расположен на пересечении К оптических путей, связывающих центры К зон наблюдения с центрами К соответствующих столбцов амплитудного сумматора изображений, а источник стереовидеосигнала выполнен с выходом динамической синхронизации, подключенным к входу синхронизации динамического амплитудного параллаксного барьера.

В устройстве (в обоих его вариантах) расширение области наблюдения стереоизображения достигается за счет увеличения числа зон наблюдения в К раз при увеличении кадровой частоты всего в К/2 раз, что позволяет, например, использовать имеющиеся 120 Гц жидкокристаллические матрицы для формирования 4-ракурсного стереоизображения (вместо 2-ракурсного в прототипе).

Сущность изобретения поясняется с помощью чертежа, на фигурах которого представлены.

Фиг. 1 - схема многоракурсного дисплея (вариант 1) в первом частном варианте выполнения (в аксонометрии xyz).

Фиг. 2 - сечение в плоскости xz схемы многоракурсного дисплея (вариант 1) в первом частном варианте выполнения.

Фиг. 3 - сечение в плоскости xz схемы многоракурсного дисплея (вариант 1) во втором частном варианте выполнения.

Фиг. 4 - схема многоракурсного дисплея (вариант 2) в первом частном варианте выполнения (в аксонометрии xyz).

Фиг. 5 - сечение в плоскости xz схемы многоракурсного дисплея (вариант 2) в первом частном варианте выполнения.

Фиг. 6 - сечение в плоскости xz схемы многоракурсного дисплея (вариант 2) в втором частном варианте выполнения.

Фиг. 7 - геометрия оптических путей в плоскости xz схемы 4-ракурсного дисплея (вариант 1) в первом частном варианте выполнения.

Фиг. 8 - геометрия оптических путей в плоскости xz схемы 8-ракурсного дисплея (вариант 1) в первом частном варианте выполнения.

Фиг. 9 - геометрия оптических путей в плоскости xz схемы 4-ракурсного дисплея (вариант 1) во втором частном варианте выполнения.

Фиг. 10 - геометрия оптических путей в плоскости xz схемы 4-ракурсного дисплея (вариант 2) в первом частном варианте выполнения.

Фиг. 11 - геометрия оптических путей в плоскости xz схемы 4-ракурсного дисплея (вариант 2) во втором частном варианте выполнения.

Фиг. 12-18 - конкретные примеры выполнения оптических компонентов в различных вариантах устройства.

Фиг. 19-21 - иллюстрация работы (в двух тактах) структурной схемы 4-ракурсного дисплея (вариант 1) в первом частном варианте выполнения.

Фиг. 22-26 - иллюстрация работы (в 4-х тактах) структурной схемы 8-ракурсного дисплея (вариант 1) во втором частном варианте выполнения.

Фиг. 27, 28 - иллюстрация работы (в двух тактах) структурной схемы 4-ракурсного дисплея (вариант 2) в первом частном варианте выполнения.

Фиг. 29, 30 - иллюстрация работы (в двух тактах) структурной схемы 4-ракурсного дисплея (вариант 2) во втором частном варианте выполнения.

Фиг. 31, 32 - иллюстрация работы (в двух тактах) структурной схемы 4-ракурсного дисплея (вариант 2) во втором частном варианте выполнения.

Устройство (вариант 1) в первом частном варианте выполнения (фиг. 1, 2) содержит источник 1 стереовидеосигнала, функциональный блок 2 и расположенные на одной оптической оси пространственный источник 3 света, матрично-адресуемый по M строкам и N столбцам формирователь 4 амплитудно-поляризационных изображений, структурированный по столбцам фазо-поляризационный параллаксный барьер 5 и адресуемый по столбцам динамический амплитудный параллаксный барьер 6. Формирователь 4 амплитудно-поляризационных изображений содержит последовательно оптически связанные амплитудный сумматор 41 изображений и поляризационный делитель 42 изображений, причем апертура mn-го элемента амплитудного сумматора 41 изображений оптически связана с апертурой mn-го элемента поляризационного делителя 42 изображений, образуя mn-й пиксель формирователя 4 амплитудно-поляризационных изображений, где m=1, 2, …, M; n=1, 2, …, N. Электронные входы амплитудного сумматора 41 изображений и поляризационного делителя 42 изображений подключены к выходам функционального блока 2, вход которого подключен к информационному выходу источника 1 стереовидеосигнала. Выход динамической синхронизации источника 1 стереовидеосигнала подключен к входу синхронизации динамического амплитудного параллаксного барьера 6. Центр (центральная линия симметрии) каждого столбца фазо-поляризационного параллаксного барьера 5 находится на пересечении пар оптических путей, идущих из центров пар смежных столбцов поляризационного делителя 42 изображений. Центр (центральная линия симметрии) каждого столбца динамического амплитудного параллаксного барьера 6 расположен на пересечении K оптических путей, связывающих центры К зон наблюдения Z1, …, ZK с центрами K столбцов поляризационного делителя 42 изображений.

Устройство (вариант 1) в втором частном варианте выполнения (фиг. 3) содержит источник 1 стереовидеосигнала, функциональный блок 2 и расположенные на одной оптической оси пространственный источник 3 света, адресуемый по столбцам динамический амплитудный параллаксный барьер 6, матрично-адресуемый по M строкам и N столбцам формирователь 4 амплитудно-поляризационных изображений и структурированный по столбцам статический фазо-поляризационный параллаксный барьер 5. Формирователь 4 амплитудно-поляризационных изображений содержит последовательно оптически связанные амплитудный сумматор 41 изображений и поляризационный делитель 42 изображений. Центр каждого столбца фазо-поляризационного параллаксного барьера 5 находится на пересечении K оптических путей, связывающих центры К зон наблюдения Z1, …, ZK с центрами K смежных столбцов поляризационного делителя 42 изображений. Центр каждого столбца динамического амплитудного параллаксного барьера 6 расположен на пересечении K оптических путей, связывающих центры К смежных столбцов амплитудного сумматора 41 изображений с простанственным источником 1 света.

Устройство (вариант 2) в первом частном варианте выполнения (фиг. 4, 5) содержит источник 1 стереовидеосигнала, функциональный блок 2 и расположенные на одной оптической оси пространственный источник 3 света, динамический амплитудный параллаксный барьер 6, структурированный по столбцам статический фазо-поляризационный параллаксный барьер 5 и матрично-адресуемый по M строкам и N столбцам формирователь 7 амплитудно-поляризационных изображений. Формирователь 7 амплитудно-поляризационных изображений содержит амплитудный сумматор 71 изображений и поляризационный делитель 72 изображений. Апертура mn-го элемента поляризационного делителя 72 изображений последовательно оптически связана с апертурой mn-го элемента амплитудного сумматора 71 изображений, образуя mn-й пиксель формирователя 7 амплитудно-поляризационных изображений. (Для варианта 2 устройства последовательность оптической связи для данных mn-х элементов формирователя 7 обратна аналогичной последовательности оптической связи для mn-го элементов формирователя 4 в варианте 1 устройства). Центр каждого столбца фазо-поляризационного параллаксного барьера 5 находится на пересечении пар оптических путей, идущих из центров пар смежных столбцов поляризационного делителя 71 изображений. Центр каждого столбца динамического амплитудного параллаксного барьера 6 расположен на пересечении K оптических путей, связывающих центры К смежных столбцов поляризационного делителя 71 изображений с пространственным источником 1 света.

Устройство (вариант 2) в втором частном варианте выполнения (фиг. 6) содержит источник 1 стереовидеосигнала, функциональный блок 2 и расположенные на одной оптической оси пространственный источник 3 света, структурированный по столбцам фазо-поляризационный параллаксный барьер 5, матрично-адресуемый по M строкам и N столбцам формирователь 7 амплитудно-поляризационных изображений и динамический амплитудный параллаксный барьер 6. Центр каждого столбца фазо-поляризационного параллаксного барьера 5 находится на пересечении пар оптических путей, идущих из центров пар смежных столбцов поляризационного делителя 71 изображений. Центр каждого столбца динамического амплитудного параллаксного барьера 6 расположен на пересечении K оптических путей, связывающих центры К смежных столбцов амплитудного сумматора 72 изображений с центрами К зон наблюдения Z1, …, ZK.

Двумерной структурной схеме в плоскости xz (фиг. 2) дисплея (вариант 1) в первом частном варианте выполнения с 4-мя ракурсами (фиг. 1) соответствует геометрия оптических путей, представленная на упрощенной схеме дисплея (фиг. 7) в плоскости xz, проходящей через m-ю строку формирователя 4 амплитудно-поляризационного изображения. На данной схеме не показан пространственный источник 3 света. Внутри прямоугольника, соответствующего источнику 1 стереовидеосигнала, показаны значения сигналов, подаваемые на каждый из N элементов (m1, m2, …, mn, … N) формирователя 4 амплитудно-поляризационного изображения, соответствующих его m-й строке. К информационному выходу источника 1 стереовидеосигнала подключен вход функционального блока 2, первый и второй выходы 21 и 22 которого подключены к электронным входам амплитудного сумматора 41 изображений и поляризационного делителя 42 изображений (которые для упрощения схемы не показаны). Фазо-поляризационный параллаксный барьер 4 и динамический амплитудный параллаксный барьер 6 расположены фронтально относительно формирователя 4 амплитудно-поляризационного изображения. Сплошные линии оптических путей проходят через центры открытых столбцов (обозначенных светлыми кружками) динамического амплитудного параллаксного барьера 6, которые соответствуют максимальному оптическому пропусканию его рабочего слоя (в состоянии I схемы, соответствующего циклу I) в области расположения открытых столбцов. Пунктирными линиями показаны оптические пути, проходящие через центры закрытых столбцов (обозначенных черными кружками), соответствующие минимальному (нулевому) оптическому пропусканию рабочего слоя динамического амплитудного параллаксного барьера 6 (в состоянии I) в области расположения закрытых столбцов. Оптическое состояние столбцов (открытое или закрытое) оптической части динамического амплитудного параллаксного барьера 6 определяется величиной управляющего напряжения на выходе электронной части амплитудного параллаксного барьера 6. Фазо-поляризационный параллаксный барьер является статическим (его оптическое состояние не меняется).

Состоянию (циклу) II схемы соответствует комплементарное состояние динамического амплитудного параллаксного барьера 6 (все светлые кружки заменены на черные и наоборот) с соответствующей комплементарной геометрией оптических путей (все сплошные линии оптических путей заменены на пунктирные и наоборот).

Упрощенная схема дисплея (вариант 1) в первом частном варианте выполнения с 4-мя ракурсами рассчитывается из соотношений, определенных подобием треугольников, отмеченных штриховкой на фиг. 7

где a - период расположения столбцов формирователя 4 амплитудно-поляризационных изображений,

- период чередования столбцов и позиция фазо-поляризационного параллаксного барьера 5, характеризующегося фронтальным (front) расположением относительно формирователя 4 амплитудно-поляризационных изображений, расположение которого соответствует начальной позиции (относительно которой определяются позиции всех остальных компонентов устройства),

- период расположения столбцов и позиция динамического амплитудного параллаксного барьера 6, характеризующегося фронтальным расположением относительно формирователя 4 амплитудно-поляризационных изображений,

D - расстояние от формирователя 4 амплитудно-поляризационных изображений до центров зон наблюдения Z1-ZK,

b - расстояние между центрами глаз наблюдателя (глазная база, в среднем b=65 мм).

Краткие обозначения вида для стерео видеосигналов, находящихся в контуре области данной фигуры чертежа, соответствующем источнику 1 стереовидеосигнала (и на всех последующих фигурах с изображением контура источника 1 стереовидеосигнала), соответствуют полным обозначениям вида отношений яркостей mn-х элементов изображений ракурсов, при этом k и - текущие номера ракурсов, равные номерам зон наблюдения Zk и каждый из которых пробегает диапазон значений от 1 до К, где К - полное число ракурсов. Например, обозначение соответствует отношению яркостей

Двумерной структурной схеме в плоскости xz (фиг. 2) дисплея (вариант 1) в втором частном варианте выполнения с 8-мя ракурсами (фиг. 1) соответствует упрощенная оптическая схема, представленная на фиг. 8. Фазо-поляризационный параллаксный барьер 5 и динамический амплитудный параллаксный барьер 6 расположены фронтально относительно формирователя 4 амплитудно-поляризационного изображения. Схема характеризуется 4-мя (I-IV) оптическими состояниями в 4-х циклах. Светлыми и черными кружками обозначены 5 групп столбцов динамического амплитудного параллаксного барьера 6, где обозначения Ii-IVi (при i=1, 2, 3, 4, 5) для каждого значения i соответствует группе столбцов, из которых один открыт, а остальные три закрыты в каждом из 4-х оптических состояний схемы. Сплошными линиями показаны оптические пути, соответствующие открытым столбцам I1-I4 для оптического состояния I схемы. Сверху в четырех рядах показаны 4 набора входных делительных сигналов (соответствующих 4-м оптическим состояниям схемы) для поляризационного сумматора 41, входящего в состав формирователя 4 амплитудно-поляризационного изображения. Расчет схемы осуществляется в соответствии с уравнениями (1).

Двумерной структурной схеме в плоскости xz (фиг. 3) 4-ракурсного дисплея (вариант 1) в втором частном варианте выполнения соответствует геометрия оптических путей, представленная упрощенной схемой на фиг. 9. Фазо-поляризационный параллаксный барьер 4 характеризуется фронтальным, а динамический амплитудный параллаксный барьер 6 - тыловым расположением относительно формирователя 4 амплитудно-поляризационного изображения. Остальные обозначения в схеме на фиг. 9 соответствуют обозначениям в схеме на фиг. 7.

Геометрия схемы рассчитывается из соотношений, определенных подобием треугольников, отмеченных штриховкой на фиг. 9

; (2)

где - период расположения столбцов динамического амплитудного параллаксного барьера, - расстояние от динамического амплитудного параллаксного барьера до формирователя амплитудно-поляризационных изображений, - период расположения столбцов фазо-поляризационного параллаксного барьера, - расстояние от фазо-поляризационного параллаксного барьера до формирователя амплитудно-поляризационных изображений. Остальные обозначения в уравнениях (2) соответствуют обозначениям в уравнениях (1).

Двумерной структурной схеме в плоскости xz (фиг. 5) 4-ракурсного дисплея (вариант 2) в первом частном варианте выполнения (фиг. 4) соответствует геометрия оптических путей, представленная упрощенной схемой на фиг. 10. Фазо-поляризационный параллаксный барьер 4 и динамический амплитудный параллаксный барьер 6 характеризуются тыловым расположением относительно формирователя 4 амплитудно-поляризационного изображения.

Геометрия схемы рассчитывается из соотношений, определенных подобием треугольников, отмеченных штриховкой на фиг. 10

Все обозначения в уравнениях (1) аналогичны таковым в уравнениях (1) и (2).

Двумерной структурной схеме в плоскости xz (фиг. 6) схемы 4-ракурсного дисплея (вариант 2) в втором частном варианте выполнения соответствует геометрия оптических путей, представленная упрощенной схемой на фиг. 11. Фазо-поляризационный параллаксный барьер 4 характеризуется тыловым, а динамический амплитудный параллаксный барьер 6 - фронтальным расположением относительно формирователя 4 амплитудно-поляризационного изображения.

Геометрия схемы рассчитывается из соотношений, определенных подобием треугольников, отмеченных штриховкой на фиг. 11

Все обозначения в уравнениях (1) аналогичны таковым в уравнениях (1)-(3).

Условные обозначения элементов формирователя 4 амплитудно-поляризационного изображения, фазо-поляризационного параллаксного барьера 5 и динамического амплитудного параллаксного барьера 6 с различной последовательностью оптической связи компонентов для различных частных вариантов выполнения устройства представлены на фиг. 12-15. Последовательность оптически связанных компонентов иллюстрируется фиг. 12 для варианта 1 устройства (фиг. 1, 2) в его первом частном варианте с оптической схемой с 4-мя (фиг. 7) и 8-ю (фиг. 8) ракурсами, фиг. 13 для варианта 1 устройства в втором частном варианте с 4-ракурсной оптической схемой (фиг. 9), фиг. 14 и фиг. 15 для варианта 2 устройства в его первом и втором частных вариантах с 4-ракурсными оптическими схемами, представленными на фиг. 10 и фиг. 11 соответственно. Элементы амплитудного сумматора 41 изображений выполнены в виде электрически управляемых модуляторов интенсивности света. Элементы поляризационного делителя 42 изображений выполнены в виде электрически управляемых модуляторов фазы поляризованного света или в виде оптически активных модуляторов (ротаторов эллипсов поляризации света без изменения их формы) в аналоговом виде, т.е. с полутоновым управлением фазой или состоянием поляризации в соответствии с среднеквадратичной амплитудой стереовидеосигнала. Элементы фазо-поляризационного параллаксного барьера 5 выполнены в виде электрически управляемых фазы поляризованного света или в виде оптически активных модуляторов (ротаторов эллипсов поляризации света без изменения их формы) в бинарном виде, напрмер, с получением значений фазы 0 или π в проходящем свете для получениях двух взаимно ортогональных состояний поляризации в выходном свете с итоговой поляризационной фильтрацией, при которой в световом потоке на выходе одного элемента 51 фазо-поляризационного параллаксного барьера 5 выделена горизонтальная составляющая (в направлении оси x) в плоскости чертежа (элемент 51 обозначен заштрихованной горизонтальной стрелкой на фиг. 12 и на всех последующих фигурах чертежа с изображением фазо-поляризационного параллаксного барьера 5), а на выходе другого элемента 52 выделен световой поток с вертикальной (относительно плоскости чертежа) поляризационной составляющей (элемент 52 обозначен заштрихованным кружком на фиг. 12-15 и на всех последующих фигурах чертежа с изображением фазо-поляризационного параллаксного барьера 5).

Примеры конкретного выполнения элементов формирователя 4 амплитудно-поляризационного изображения, фазо-поляризационного параллаксного барьера 5 и динамического амплитудного параллаксного барьера 6 иллюстрируются фиг. 16-18. Фиг. 16 иллюстрирует пример конкретного выполнения столбцов амплитудного сумматора 41, 71 изображений, динамического амплитудного параллаксного барьера 6 на основе оптоэлектронной структуры 8, фиг. 17 - пример конкретного выполнения столбцов поляризационного делителя 42, 72 изображений в виде оптоэлектронной структуры 9, фиг. 18 - пример конкретного выполнения столбцов фазо-поляризационного параллаксного барьера 5 в виде оптоэлектронной структуры 10.

Оптоэлектронная структура 8 (фиг. 16) содержит две стеклянные подложки 111, 112, на внутренних сторонах которых (обращенных друг к другу) нанесены адресные прозрачные столбцовые электроды 12, из которых 121, 122 на одной стеклянной подложке и 123, 124 на другой, в зазоре между которыми находится рабочее электрооптическое вещество - анизотропный слой нематического жидкого кристалла (НЖК слой) 13, молекулы которого в исходном состоянии ориентированы в одном выбранном направлении, образуя единый НЖК кристалл с осью о-о для обыкновенного луча и с осью е-е для необыкновенного луча. Внешний линейный поляризатор 141 с направлением 151 линейной поляризации в плоскости чертежа (показанным стрелкой на фиг. 16) расположен на оптическом входе оптоэлектронной структуры 8, на оптическом выходе которой расположен поляризатор 142 с направлением 152 линейной поляризации ортогонально плоскости чертежа (обозначено крестом в кружке на фиг. 16), ортогональным направлению 152. Оптоэлектронная структура 9 (фиг. 17) содержат две стеклянные подложки 161, 162, на внутренних сторонах которых (обращенных друг к другу) нанесены адресные прозрачные столбцовые электроды 17, из которых 171, 172 на одной стеклянной подложке и 173, 174 на другой, в зазоре между которыми находится ориентированный НЖК слой 18. Оптоэлектронная структура 10 (фиг. 18) содержит две стеклянные подложки 191, 192, на внутренних сторонах которых (обращенных друг к другу) нанесены адресные прозрачные столбцовые электроды 20, из которых 201, 202 на одной стеклянной подложке и 203, 204 на другой, в зазоре между которыми находится ориентированный НЖК слой 21. На выходе расположен линейный поляризатор с направлением линейной поляризации, показанным стрелкой. Ориентированные НЖК слои 13, 18, 21 обеспечивают фазовую модуляцию света в пределах значений от 0 до π в зависимости от величины управляющего электрического напряжения, подаваемого на прозрачные электроды 12, 17, 20.

Устройство работает следующим образом. В К-ракурсном дисплее (вариант 1) в первом частном варианте выполнения (фиг. 1, 2) в такте I работы устройства электронный информационный сигнал от источника 1 стереовидеосигнала с информацией об изображениях k и ракурсов 3D сцены подается на функциональный блок 2, с выхода 21 которого сигнал с информацией о суммы яркостей изображений подается на электронный вход амплитудного сумматора 41 изображений, а сигнал с информацией об отношении яркостей изображений подается с выхода 22 на электронный вход поляризационного делителя 42 изображений, где и - яркости mn-ых элементов изображений, воспроизводимых в mn-м пикселе формирователя 4 амплитудно-поляризационных изображений, k и соответствуют k и ракурсам 3D сцены, воспроизводимым в Zk и Zk+1 зонах наблюдения соответственно (k=1, 2, …, K; ). При этом сигнал синхронизации с выхода динамической синхронизации источника 1 стереовидеосигнала подается на вход синхронизации динамического амплитудного параллаксного барьера 6. Световой поток от источника 3 света модулируется по интенсивности и по поляризации (состоянию поляризации) формирователем 4 амплитудно-поляризационных изображений и далее проходит через апертуру фазо-поляризационного параллаксного барьера 5 и апертуру динамического амплитудного параллаксного барьера 6, у которого в такте I работы открыты только те столбцы, которые пропускают свет только в Zk и Zk+1 зоны наблюдения. Величины интенсивности света, проходящего в Zk и Zk+1 зоны наблюдения, составляют и Передаточная характеристика для пары k и сквозных оптоэлектронных каналов устройства (от входа функционального блока 2 по среднеквадратичному значению амплитуды стереовидеосигнала до значений интенсивностей света в Zk и Zk+1 зонах наблюдения) настроена на линейную передачу суммы яркостей изображений в сумме величин интенсивности света и линейной передаче отношения яркостей изображений в отношении величин интенсивностей света

Из (5) вытекает соотношение

означающее, что величины и интенсивности света, реализованные в такте I работы в Zk и Zk+1 зонах наблюдения, линейно связаны с яркостями и соответствующих ракурсов 3D сцены. Поскольку в процессе аналогичной работы устройства в каждом последующем такте также одновременно воспроизводятся изображения пары ракурсов, то изображения всех К ракурсов будут воспроизведены за K/2 тактов работы устройства.

Линеаризация передаточных характеристик всех оптоэлектронных каналов осуществляется с использованием, например, калибровочного метода [2], в котором по результатам измерения исходных нелинейных передаточных характеристик (от электронного входа формирователя 4 амплитудно-поляризационных изображений до оптических выходов зон наблюдения) осуществляется линеаризация итоговых передаточных характеристик (от электронного входа функционального блока 2 до оптических выходов зон наблюдения) за счет осуществления функциональным блоком 2 функции, обратной (reciprocal) или инверсной (inverse) по отношению к исходным функциям нелинейности, полученным при калибровочных измерениях передаточных функций исходных оптоэлектронных каналов.

Аналогично работает в общем виде К-ракурсный дисплей во всех вариантах выполнения, представленных на фиг. 3-6.

Более подробно работа устройства рассматривается на примере вариантов его выполнения с формированием 4-х и 8-ми ракурсов отображаемой 3D сцены.

Работа устройства (вариант 1) в первом частном варианте с формированием 4-ракурсов отображаемой 3D сцены (фиг. 7) имеет два цикла (цикл I и цикл II).

В цикле I на mn-й элемент поляризационного делителя 41 изображений (находящегося в составе формирователя 4 амплитудно-поляризационных изображений и вход которого подключен к выходу 21 функционального блока) подается отношение яркостей (где k и пробегают значения от 1 до 4), которое п