Транспортное средство и способ управления транспортным средством

Иллюстрации

Показать все

Изобретение относится к транспортному средству, способному к движению с использованием выходной энергии устройства накопления энергии. Транспортное средство имеет решетку радиатора, двигатель, устройство накопления энергии, температурный датчик, заслонку, нагреватель и контроллер. Устройство накопления энергии выполнено с возможностью заряжаться электрической энергией из внешнего источника энергии, который предусматривается за пределами транспортного средства. Температурный датчик определяет температуру охлаждающей жидкости двигателя. Заслонка располагается в тракте переноса воздуха, вовлекаемого в отсек для двигателя через решетку радиатора, и переключается между закрытым состоянием и открытым состоянием. Нагреватель имеет возможность вырабатывать тепло при приеме электрической энергии из внешнего источника энергии, с тем чтобы повышать температуру охлаждающей жидкости. Контроллер запускает двигатель, когда температура охлаждающей жидкости ниже порогового значения запуска, приводит в действие нагреватель, когда температура охлаждающей жидкости ниже первого порогового значения, которое равно или выше порогового значения запуска до тех пор, пока температура охлаждающей жидкости не станет равной или превышающей первое пороговое значение, и приводит в действие заслонку, с тем чтобы переводить заслонку в закрытое состояние в то время, когда нагреватель приводится в действие. Техническим результатом является упрощение нагрева охлаждающей жидкости двигателя. 2 н. и 2 з.п. ф-лы, 7 ил.

Реферат

Уровень техники

1. Область техники, к которой относится изобретение

[0001] Изобретение относится к транспортному средству, способному к движению с использованием выходной энергии устройства накопления энергии, и к способу управления транспортным средством.

2. Описание предшествующего уровня техники

[0002] Транспортное средство (так называемое гибридное транспортное средство), на котором предусматриваются двигатель и аккумуляторный узел, имеет возможность двигаться с использованием выходной энергии аккумуляторного узла без запуска двигателя. В гибридном транспортном средстве, когда температура охлаждающей жидкости двигателя ниже порогового значения запуска, двигатель запускается.

[0003] Согласно технологии, как описано в публикации заявки на патент Японии номер 2008-126970 (JP 2008-126970 А), когда аккумуляторный узел (аккумулятор), предусмотренный на транспортном средстве, заряжается электрической энергией, подаваемой из бытового источника энергии, электрическая энергия подается из бытового источника энергии в нагреватель блока цилиндров. Затем нагреватель блока цилиндров вырабатывает тепло, с тем чтобы нагревать охлаждающую жидкость двигателя.

Сущность изобретения

[0004] Когда транспортное средство начинает движение после того, как аккумуляторный узел заряжается электрической энергией из бытового источника энергии, как указано в системе JP 2008-126970 А, двигатель запускается, если температура охлаждающей жидкости двигателя ниже порогового значения запуска. Если двигатель запускается, как описано выше, даже если транспортное средство имеет возможность продолжать двигаться с использованием выходной энергии аккумуляторного узла, после заряда аккумуляторного узла, водитель или пассажир может испытывать некомфортное или странное ощущение.

[0005] Если охлаждающая жидкость нагревается, температура охлаждающей жидкости может подниматься таким образом, что она равна или выше порогового значения запуска, и транспортное средство может начинать движение без запуска двигателя. Хотя нагреватель блока цилиндров используется для нагрева охлаждающей жидкости двигателя в системе JP 2008-126970 А, цель нагрева охлаждающей жидкости состоит в том, чтобы уменьшать время прогрева двигателя, а не заставлять транспортное средство начинать движение без запуска двигателя.

[0006] Между тем, маловероятно, что температура охлаждающей жидкости поднимается только посредством нагрева охлаждающей жидкости с использованием нагревателя. Более конкретно, когда охлаждающая жидкость нагревается, вероятно, что тепло охлаждающей жидкости выпускается за пределы транспортного средства, проходя через решетку радиатора, предусмотренную перед отсеком для двигателя. Следовательно, маловероятно, что температура охлаждающей жидкости поднимается, даже если охлаждающая жидкость нагревается, и вероятно, что электрическая энергия, подаваемая в нагреватель, увеличивается, с тем чтобы задавать температуру охлаждающей жидкости равной или превышающей пороговое значение запуска.

[0007] Изобретение разработано с учетом вышеизложенной проблемы и предусматривает транспортное средство и способ управления транспортным средством, которые упрощают нагрев охлаждающей жидкости двигателя и задают менее вероятным или маловероятным запуск двигателя в ходе движения транспортного средства после того, как заряд аккумуляторного узла завершается.

[0008] Транспортное средство согласно одному аспекту изобретения включает в себя решетку радиатора, двигатель, отсек для двигателя, устройство накопления энергии, температурный датчик, заслонку, нагреватель и контроллер. Двигатель представляет собой источник энергии для движения транспортного средства. Устройство накопления энергии представляет собой источники энергии для мотора, который обеспечивает движение транспортного средства. Двигатель размещен в моторном отсеке. Устройство накопления энергии выполнено с возможностью заряжаться электрической энергией из внешнего источника энергии. Внешний источник энергии предусматривается за пределами транспортного средства. Температурный датчик выполнен с возможностью определять температуру охлаждающей жидкости двигателя. Заслонка располагается в тракте переноса воздуха, вовлекаемого в отсек для двигателя через решетку радиатора. Заслонка выполнена с возможностью переключаться между закрытым состоянием и открытым состоянием. Закрытое состояние представляет собой состояние, в котором тракт переноса является закрытым, а открытое состояние представляет собой состояние, в котором тракт переноса является открытым. Нагреватель выполнен с возможностью вырабатывать тепло посредством приема электрической энергии из внешнего источника энергии, с тем чтобы повышать температуру охлаждающей жидкости.

[0009] Контроллер выполнен с возможностью приводить в действие нагреватель до тех пор, пока температура охлаждающей жидкости не станет равной или превышающей первое пороговое значение, когда температура охлаждающей жидкости ниже первого порогового значения. Первое пороговое значение равно или выше порогового значения запуска. Пороговое значение запуска является температурой охлаждающей жидкости, при которой двигатель запускается. Затем контроллер выполнен с возможностью приводить в действие заслонку, с тем чтобы переводить заслонку в закрытое состояние в то время, когда нагреватель приводится в действие.

[0010] Контроллер приводит в действие заслонку, чтобы переводить ее в закрытое состояние в то время, когда нагреватель приводится в действие, а именно, в течение периода от начала приведения в действие нагревателя до окончания приведения в действие нагревателя. Следовательно, заслонка может приводиться в действие с переводом в закрытое состояние, когда начинается приведение в действие нагревателя. Кроме того, заслонка может приводиться в действие с переводом в закрытое состояние после того, как начинается приведение в действие нагревателя.

[0011] При таком приведении в действие заслонки с переводом в закрытое состояние в то время, когда нагреватель приводится в действие, менее вероятно или маловероятно, что тепло охлаждающей жидкости, нагретой посредством нагревателя, выпускается за пределы транспортного средства, проходя через тракт переноса воздуха, как описано выше. Это упрощает повышение температуры охлаждающей жидкости посредством приведения в действие нагревателя. Если температура охлаждающей жидкости может легко подниматься, чрезмерно большая электрическая энергия не должна подаваться в нагреватель. А именно, может уменьшаться потребление энергии посредством нагревателя.

[0012] После того, как устройство накопления энергии заряжается электрической энергией из внешнего источника энергии, транспортное средство имеет возможность двигаться с использованием выходной энергии устройства накопления энергии. Посредством приведения в действие нагревателя и задания температуры охлаждающей жидкости равной или превышающей первое пороговое значение, можно предотвращать запуск двигателя вследствие уменьшения температуры охлаждающей жидкости, когда транспортное средство начинает движение. А именно, транспортное средство может начинать движение без запуска двигателя.

[0013] Транспортное средство этого изобретения имеет возможность двигаться в первом режиме и втором режиме. В первом режиме (который представляет собой CD-режим или EV-режим, как описано ниже), транспортное средство движется с использованием устройства накопления энергии, когда SOC (State Of Charge – степень заряда) устройства накопления энергии выше опорного значения. Во втором режиме (который представляет собой CS-режим или HV-режим, как описано ниже), транспортное средство движется с использованием двигателя и устройства накопления энергии, так что SOC варьируется в предварительно определенном диапазоне, который равен или меньше опорного значения.

[0014] В транспортном средстве согласно вышеуказанному аспекту изобретения, контроллер может быть выполнен с возможностью поддерживать заслонку в закрытом состоянии до тех пор, пока температура охлаждающей жидкости не станет равной или превышающей второе пороговое значение, когда заслонка приведена в действие таким образом, что она переводится в закрытое состояние. Второе пороговое значение может быть выше первого порогового значения. Хотя приведение в действие нагревателя заканчивается, когда температура охлаждающей жидкости становится равной или превышающей первое пороговое значение, заслонка поддерживается в закрытом состоянии даже после того, как приведение в действие нагревателя заканчивается, поскольку второе пороговое значение выше первого порогового значения. После того, как приведение в действие нагревателя заканчивается, транспортное средство может начинать движение с использованием выходной энергии устройства накопления энергии, как описано выше, тем не менее, заслонка может поддерживаться в закрытом состоянии даже после того, как транспортное средство начинает движение.

[0015] После того, как транспортное средство начинает движение, образуется ветер, вызываемый за счет движения. При поддержании заслонки в закрытом состоянии, менее вероятно или маловероятно, что ветер, вызываемый за счет движения, проходит через решетку радиатора и протекает в отсек для двигателя, и менее вероятно или маловероятно, что температура охлаждающей жидкости уменьшается. Соответственно, в ходе движения транспортного средства, менее вероятно или маловероятно, что температура охлаждающей жидкости ниже порогового значения запуска, и менее вероятно или маловероятно, что запускается двигатель. А именно, можно продолжать движение транспортного средства с использованием выходной энергии устройства накопления энергии, без запуска двигателя.

[0016] Поскольку источник энергии нагревателя представляет собой внешний источник энергии, нагреватель не может вырабатывать тепло, в ходе движения транспортного средства. Таким образом, предпочтительно поддерживать заслонку в закрытом состоянии даже после того, как транспортное средство начинает движение, как описано выше, с тем чтобы ограничивать уменьшение температуры охлаждающей жидкости.

[0017] В транспортном средстве согласно вышеуказанному аспекту изобретения, контроллер может быть выполнен с возможностью поддерживать заслонку в закрытом состоянии до тех пор, пока температура охлаждающей жидкости не станет равной или превышающей первое пороговое значение, когда заслонка приведена в действие таким образом, что она переводится в закрытое состояние. Здесь, нагреватель приводится в действие до тех пор, пока температура охлаждающей жидкости не станет равной или превышающей первое пороговое значение. Соответственно, заслонка может поддерживаться в закрытом состоянии до тех пор, пока приведение в действие нагревателя не будет закончено. В этой компоновке, менее вероятно или маловероятно, что тепло охлаждающей жидкости выпускается за пределы транспортного средства до тех пор, пока приведение в действие нагревателя не будет закончено, и температура охлаждающей жидкости может легко подниматься посредством приведения в действие нагревателя.

[0018] Согласно другому аспекту изобретения, предусмотрен способ управления транспортным средством. Транспортное средство включает в себя решетку радиатора, двигатель, отсек для двигателя, устройство накопления энергии, температурный датчик, заслонку, нагреватель и контроллер. Двигатель представляет собой источник энергии для движения транспортного средства. Устройство накопления энергии представляет собой источник энергии для мотора, который обеспечивает движение транспортного средства. Двигатель размещен в отсеке для двигателя. Устройство накопления энергии выполнено с возможностью заряжаться электрической энергией из внешнего источника энергии. Внешний источник энергии предусматривается за пределами транспортного средства. Температурный датчик выполнен с возможностью определять температуру охлаждающей жидкости двигателя. Заслонка располагается в тракте переноса воздуха, вовлекаемого в отсек для двигателя через решетку радиатора, и заслонка выполнена с возможностью переключаться между закрытым состоянием и открытым состоянием. Закрытое состояние представляет собой состояние, в котором тракт переноса является закрытым, а открытое состояние представляет собой состояние, в котором тракт переноса является открытым. Нагреватель выполнен с возможностью вырабатывать тепло посредством приема электрической энергии из внешнего источника энергии, с тем чтобы повышать температуру охлаждающей жидкости. Способ управления включает в себя запуск двигателя посредством контроллера, когда температура охлаждающей жидкости ниже порогового значения запуска. Способ также включает в себя приведение в действие нагревателя посредством контроллера до тех пор, пока температура охлаждающей жидкости не станет равной или превышающей первое пороговое значение, когда температура охлаждающей жидкости ниже первого порогового значения. Первое значение равно или выше порогового значения запуска. Пороговое значение запуска является температурой охлаждающей жидкости, при которой двигатель запускается. Способ дополнительно включает в себя приведение в действие заслонки посредством контроллера, с тем чтобы переводить заслонку в закрытое состояние в то время, когда нагреватель приводится в действие.

Краткое описание чертежей

[0019] Ниже описываются признаки, преимущества и техническая и промышленная значимость примерных вариантов осуществления изобретения со ссылкой на прилагаемые чертежи, на которых аналогичные номера обозначают аналогичные элементы, и на которых:

Фиг. 1 является видом, показывающим конфигурацию аккумуляторной системы;

фиг. 2 является видом, иллюстрирующим местоположение, в котором располагается заслонка;

фиг. 3 является схематичным видом, показывающим конструкцию заслонки;

фиг. 4 является видом, применимым для пояснения CD-режима и CS-режима;

фиг. 5 является блок-схемой последовательности операций способа, иллюстрирующей управление приведением в действие нагревателя двигателя;

фиг. 6 является блок-схемой последовательности операций способа, иллюстрирующей управление приведением в действие заслонки; и

фиг. 7 является видом, показывающим изменения температуры охлаждающей жидкости в ходе движения, когда заслонка находится в закрытом состоянии и открытом состоянии.

Подробное описание вариантов осуществления

[0020] Далее поясняется один вариант осуществления изобретения.

[0021] Фиг. 1 показывает конфигурацию аккумуляторной системы этого варианта осуществления. Аккумуляторная система, показанная на фиг. 1, предусматривается на транспортном средстве (так называемом гибридном транспортном средстве). Транспортное средство включает в себя аккумуляторный узел (соответствующий устройству накопления энергии изобретения) и двигатель, в качестве источников энергии для движения транспортного средства, как описано ниже.

[0022] Аккумуляторный узел 10 имеет множество единичных гальванических элементов 11, соединенных последовательно. В качестве каждого из единичных гальванических элементов 11, может использоваться вторичный элемент, к примеру, никель-металлогидридный элемент или литий-ионный элемент. Кроме того, электрический двухслойный конденсатор может использоваться вместо вторичного элемента. Хотя все единичные гальванические элементы 11 соединяются последовательно в аккумуляторном узле 10 этого варианта осуществления, аккумуляторный узел 10 может включать в себя два или более единичных гальванических элемента 11, соединенные параллельно.

[0023] Блок 20 контроля определяет значение Vb напряжения аккумуляторного узла 10 и выводит результат определения в контроллер 40. Блок 20 контроля может определять значение напряжения каждого из единичных гальванических элементов 11. Датчик 21 температуры аккумулятора определяет температуру Tb (температуру аккумулятора) аккумуляторного узла 10 и выводит результат определения в контроллер 40. Датчик 22 тока определяет значение Ib тока аккумуляторного узла 10 и выводит результат определения в контроллер 40. В этом варианте осуществления, положительное значение используется в качестве значения Ib тока, когда аккумуляторный узел 10 разряжен, и отрицательное значение используется в качестве значения Ib тока, когда аккумуляторный узел 10 заряжен.

[0024] Положительная линия PL соединяется с положительным контактным выводом аккумуляторного узла 10, и отрицательная линия NL соединяется с отрицательным контактным выводом аккумуляторного узла 10. Аккумуляторный узел 10 соединяется с инвертором 23 через положительную линию PL и отрицательную линию NL. Главное системное реле SMR-B предусматривается в положительной линии PL, и главное системное реле SMR-G предусматривается в отрицательной линии NL.

[0025] Главные системные реле SMR-B, SMR-G переключаются между включением и выключением, в ответ на сигнал приведения в действие из контроллера 40. Контроллер 40 принимает команду, указывающую включение переключателя зажигания, и переключает главные системные реле SMR-B, SMR-G из выключенного состояния во включенное, в ответ на команду. Таким образом, аккумуляторный узел 10 и инвертор 23 могут соединяться друг с другом, и аккумуляторная система, показанная на фиг. 1, переведена в состояние запуска (немедленной готовности). Когда аккумуляторная система находится в состоянии запуска, можно обеспечивать движение транспортного средства, как пояснено ниже.

[0026] Инвертор 23 преобразует энергию постоянного тока, вырабатываемую из аккумуляторного узла 10, в энергию переменного тока и доставляет энергию переменного тока в мотор-генератор MG2. Мотор-генератор MG2 принимает энергию переменного тока из инвертора 23 и вырабатывает энергию (кинетическую энергию) с использованием энергии переменного тока. Энергия, вырабатываемая посредством мотора-генератора MG2, передается на ведущие колеса 24, с тем чтобы обеспечивать движение транспортного средства.

[0027] Кроме того, мотор-генератор MG2 преобразует кинетическую энергию, вырабатываемую в ходе торможения транспортного средства, в энергию переменного тока и доставляет энергию переменного тока в инвертор 23. Инвертор 23 преобразует энергию переменного тока из мотора-генератора MG2 в энергию постоянного тока и доставляет энергию постоянного тока в аккумуляторный узел 10. Таким образом, аккумуляторный узел 10 имеет возможность накапливать рекуперативную энергию.

[0028] Механизм 25 деления энергии передает энергию двигателя 26 на ведущие колеса 24 или передает ее в мотор-генератор MG1. мотор-генератор MG1 принимает энергию двигателя 26 и вырабатывает электрическую энергию (энергию переменного тока). Энергия переменного тока, вырабатываемая посредством мотора-генератора MG1, подается в мотор-генератор MG2 или подается в аккумуляторный узел 10 через инвертор 23. Если электрическая энергия, вырабатываемая посредством мотора-генератора MG1, подается в мотор-генератор MG2, мотор-генератор MG2 вырабатывает энергию, которая может использоваться для приведения в действие ведущих колес 24. Если электрическая энергия, вырабатываемая посредством мотора-генератора MG1, подается в аккумуляторный узел 10, аккумуляторный узел 10 может заряжаться электрической энергией.

[0029] Повышающая схема (не показана) может предусматриваться в токовом канале между аккумуляторным узлом 10 и инвертором 23. Повышающая схема повышает или поднимает выходное напряжение аккумуляторного узла 10 и доставляет электрическую энергию, имеющую повышенное напряжение, в инвертор 23. Кроме того, повышающая схема может понижать выходное напряжение инвертора 23 и доставлять электрическую энергию, имеющую пониженное напряжение, в аккумуляторный узел 10.

[0030] Линия CHL1 заряда соединяется с положительной линией PL между положительным контактным выводом аккумуляторного узла 10 и главным системным реле SMR-B. Линия CHL2 заряда соединяется с отрицательной линией NL между отрицательным контактным выводом аккумуляторного узла 10 и главным системным реле SMR-G. Линии CHL1, CHL2 заряда соединяются с зарядным устройством 31.

[0031] Зарядное реле CHR-B предусматривается в линии CHL1 заряда, которая соединяет зарядное устройство 31 и положительную линию PL. Зарядное реле CHR-G предусматривается в линии CHL2 заряда, которая соединяет зарядное устройство 31 и отрицательную линию NL. Зарядные реле CHR-B, CHR-G переключаются между включением и выключением, в ответ на сигнал приведения в действие из контроллера 40.

[0032] Вход 32 (т.е. разъем) соединяется с зарядным устройством 31 через линии CHL1, CHL2 заряда. Штепсельное соединение 33 для заряда (т.е. разъем) соединяется с входом 32. А именно, штепсельное соединение 33 для заряда может соединяться с входом 32 или отсоединяться от входа 32. Штепсельное соединение 33 для заряда соединяется с источником 34 энергии переменного тока через кабель. Штепсельное соединение 33 для заряда и источник 34 энергии переменного тока предусматриваются за пределами транспортного средства, отдельно от транспортного средства. Например, сеть общего пользования используется в качестве источника 34 энергии переменного тока.

[0033] Когда штепсельное соединение 33 для заряда соединяется с входом 32, и зарядные реле CHR-B, CHR-G включаются, электрическая энергия может подаваться из источника 34 энергии переменного тока в аккумуляторный узел 10, с тем чтобы заряжать аккумуляторный узел 10. Этот тип заряда называется "внешним зарядом". Зарядное устройство 31 преобразует энергию переменного тока, подаваемую из источника 34 энергии переменного тока, в энергию постоянного тока и доставляет энергию постоянного тока в аккумуляторный узел 10. Кроме того, зарядное устройство 31 может повышать выходное напряжение источника 34 энергии переменного тока и доставлять энергию, имеющую повышенное напряжение, в аккумуляторный узел 10. Работа зарядного устройства 31 управляется посредством контроллера 40. Когда внешний заряд должен быть закончен, контроллер 40 переключает зарядные реле CHR-B, CHR-G из включенного состояния в выключенное.

[0034] Через внешний заряд, может увеличиваться SOC (состояние заряда) аккумуляторного узла 10. SOC является отношением текущей зарядной емкости к полной зарядной емкости. Поскольку процесс внешнего заряда является общеизвестным, этот процесс не описывается подробно. Далее кратко описывается процесс внешнего заряда.

[0035] Когда SOC аккумуляторного узла 10 достигает целевого значения, внешний заряд может быть закончен. Более конкретно, контроллер 40 отслеживает SOC аккумуляторного узла 10 в то время, когда выполняется внешний заряд, и может заканчивать внешний заряд, когда SOC становится равным или превышающим целевое значение. Как известно в данной области техники, SOC аккумуляторного узла 10 может вычисляться на основе значения Vb напряжения или значения Ib тока.

[0036] Когда величина электрической энергии, подаваемой с момента, когда начинается внешний заряд, достигает целевой величины энергии, внешний заряд может быть закончен. Более конкретно, контроллер 40 продолжает вычисление величины электрической энергии в то время, когда выполняется внешний заряд, и может заканчивать внешний заряд, когда вычисленная величина энергии становится равной или превышающей целевую величину энергии. Величина электрической энергии может вычисляться на основе значения Vb напряжения или значения Ib тока.

[0037] Когда проводится внешний заряд, может задаваться время (время окончания заряда), в которое должен быть закончен внешний заряд, или время (время начала движения), в которое транспортное средство 100 начинает движение. Когда задается время окончания заряда или время начала движения, контроллер 40 начинает внешний заряд таким образом, что внешний заряд заканчивается в/до времени окончания заряда или времени начала движения. Если выясняется период времени, который требуется от начала внешнего заряда до его окончания, может указываться время, в которое должен начинаться внешний заряд.

[0038] Если текущее SOC в то время, когда начинается внешний заряд, вычисляется, когда внешний заряд выполняется, с тем чтобы задавать SOC аккумуляторного узла 10 равным целевому значению, может вычисляться разность между текущим SOC и целевым значением. На основе этой разности, может выясняться период времени, который требуется от начала внешнего заряда до его окончания, и может указываться время, в которое должен начинаться внешний заряд. С другой стороны, когда внешний заряд выполняется с тем, чтобы задавать величину электрической энергии равной целевой величине энергии, период времени, который требуется от начала внешнего заряда до его окончания, может выясняться на основе целевой величины электрической энергии. Затем может указываться время, в которое должен начинаться внешний заряд.

[0039] Система, которая выполняет внешний заряд, не ограничена системой, показанной на фиг. 1. А именно, может использоваться любая система, которая может заряжать аккумуляторный узел 10, с использованием источника энергии (внешнего источника энергии), предусмотренного за пределами транспортного средства. Например, источник энергии постоянного тока может использоваться в качестве внешнего источника энергии, в дополнение или вместо источника 34 энергии переменного тока. Кроме того, может использоваться система (так называемая бесконтактная зарядная система), которая подает электрическую энергию без использования кабеля. Бесконтактная зарядная система может использовать известную компоновку или конфигурацию надлежащим образом.

[0040] Между тем, линия CHL1 заряда может соединяться с положительной линией PL между главным системным реле SMR-B и инвертором 23. Кроме того, линия CHL2 заряда может соединяться с отрицательной линией NL между главным системным реле SMR-G и инвертором 23. В этом случае, когда проводится внешний заряд, зарядные реле CHR-B, CHR-G и главные системные реле SMR-B, SMR-G включаются.

[0041] Контроллер 40 имеет запоминающее устройство 41. Запоминающее устройство 41 сохраняет определенную информацию. Хотя запоминающее устройство 41 включено в контроллер 40, запоминающее устройство 41 может предусматриваться за пределами контроллера 40. Датчик 51 температуры охлаждающей жидкости (соответствующий температурному датчику изобретения) определяет температуру Tw охлаждающей жидкости двигателя 26 и выводит результат определения в контроллер 40. Охлаждающая жидкость двигателя 26 используется для охлаждения двигателя 26.

[0042] Нагреватель 52 двигателя используется для нагрева двигателя 26, и тепло, вырабатываемое из нагревателя 52 двигателя, переносится в двигатель 26. Двигатель 26 может нагреваться посредством нагрева охлаждающей жидкости двигателя 26 или нагрева машинного масла. За счет такого нагрева двигателя 26, поднимается температура Tw охлаждающей жидкости.

[0043] Нагреватель 52 двигателя требуется только для того, чтобы нагревать двигатель 26, и может использовать любую известную конструкцию или компоновку надлежащим образом. Например, устройство или элемент, который вырабатывает тепло при подаче электрической энергии, может использоваться в качестве нагревателя 52 двигателя. Внешний источник энергии (к примеру, источник 34 энергии переменного тока) используется в качестве источника энергии нагревателя 52 двигателя. А именно, когда проводится внешний заряд, электрическая энергия подается из внешнего источника энергии в нагреватель 52 двигателя, с тем чтобы приводить в действие нагреватель 52 двигателя. Поскольку источник энергии нагревателя 52 двигателя представляет собой внешний источник энергии, нагреватель 52 двигателя не может приводиться в действие в ходе движения транспортного средства.

[0044] Линии SL1, SL2 подачи электрической энергии, соответственно, соединяются с линиями CHL1, CHL2 заряда. Более конкретно, линия SL1 подачи электрической энергии соединяется с линией CHL1 заряда, которая соединяет зарядное реле CHR-B и положительную линию PL. Кроме того, линия SL2 подачи электрической энергии соединяется с линией CHL2 заряда, которая соединяет зарядное реле CHR-G и отрицательную линию NL.

[0045] Преобразователь 53 постоянного тока соединяется с линиями SL1, SL2 подачи электрической энергии. Когда зарядные реле CHR-B, CHR-G включены, электрическая энергия может подаваться из зарядного устройства 31 в преобразователь 53 постоянного тока. Нагреватель 52 двигателя соединяется с преобразователем 53 постоянного тока через линии SL1, SL2 подачи электрической энергии. Электрическая энергия, напряжение которой преобразовано посредством преобразователя 53 постоянного тока, подается в нагреватель 52 двигателя. Контроллер 40 управляет работой преобразователя 53 постоянного тока.

[0046] Заслонка 61 выполнена с возможностью переключаться между закрытым состоянием и открытым состоянием, в ответ на сигнал приведения в действие из контроллера 40. Как показано на фиг. 2, решетка 62 радиатора предусматривается в передней части транспортного средства 100. Решетка 62 радиатора используется для вовлечения воздуха из передней части транспортного средства 100 в отсек 110 для двигателя. Двигатель 26, радиатор 63 и заслонка 61 размещены в отсеке 110 для двигателя, и охлаждающая жидкость двигателя 26 протекает через радиатор 63. Заслонка 61 располагается между радиатором 63 и решеткой 62 радиатора и располагается в тракте переноса воздуха, вовлекаемого в отсек 110 для двигателя через решетку 62 радиатора.

[0047] Фиг. 3 является схематичным видом, показывающим конструкцию заслонки 61. Заслонка 61 имеет рамочный корпус 61a, закрываемую пластину 61b и вращательный вал 61c. Вращательный вал 61c соединяется с мотором и вращается при приеме энергии из мотора. мотор приводится в действие посредством контроллера 40. В качестве источника энергии мотора может использоваться вспомогательный аккумулятор, предусмотренный на транспортном средстве 100. Закрываемая пластина 61b прикрепляется к вращательному валу 61c, так что закрываемая пластина 61b вращается в соответствии с вращением вращательного вала 61c.

[0048] Как показано на фиг. 3, когда заслонка 61 переведена в закрытое состояние, закрываемая пластина 61b блокирует отверстие A, сформированное посредством рамочного корпуса 61a. А именно, тракт переноса воздуха, вовлекаемого в отсек 110 для двигателя через решетку 62 радиатора, закрыт посредством заслонки 61. При таком закрытии заслонки 61, менее вероятно или маловероятно, что воздух переносится между отсеком 110 для двигателя и окружающей средой транспортного средства 100 через решетку 62 радиатора.

[0049] С другой стороны, когда заслонка 61 переведена в открытое состояние, закрываемая пластина 61b не блокирует отверстие A. А именно, тракт переноса воздуха, вовлекаемого в отсек 110 для двигателя через решетку 62 радиатора, открыт посредством заслонки 61. При таком открытии заслонки 61, разрешается перенос воздуха между отсеком 110 для двигателя и окружающей средой транспортного средства 100 через решетку 62 радиатора.

[0050] В транспортном средстве 100 этого варианта осуществления, режим CD (истощения заряда) и режим CS (поддержания заряда) задаются в качестве режимов движения. В CD-режиме, транспортное средство 100 предпочтительно движется с использованием только выходной энергии аккумуляторного узла 10, другими словами, движется с использованием только энергии мотора-генератора MG2. Когда SOC аккумуляторного узла 10 выше опорного значения SOC_ref, транспортное средство 100 может двигаться в CD-режиме.

[0051] В CS-режиме, транспортное средство 100 предпочтительно движется с использованием как выходной энергии аккумуляторного узла 10, так и выходной энергии двигателя 26. Когда SOC аккумуляторного узла 10 равно или меньше опорного значения SOC_ref, транспортное средство 100 может двигаться в CS-режиме. Контроллер 40 задает CD-режим и CS-режим. Фиг. 4 показывает один пример характера изменения SOC аккумуляторного узла 10 в CD-режиме и CS-режиме. На фиг. 4, вертикальная ось указывает SOC аккумуляторного узла 10, а горизонтальная ось указывает время.

[0052] Когда SOC аккумуляторного узла 10 выше опорного значения SOCref, в ходе движения транспортного средства 100, контроллер 40 задает CD-режим. С другой стороны, когда SOC аккумуляторного узла 10 равно или меньше опорного значения SOC_ref, в ходе движения транспортного средства 100, контроллер 40 задает CS-режим. Соответственно, транспортное средство 100 продолжает движение в CD-режиме в то время, когда SOC аккумуляторного узла 10 выше опорного значения SOC_ref. В то время, когда транспортное средство 100 движется в CD-режиме, SOC аккумуляторного узла 10 уменьшается в соответствии с движением транспортного средства 100. Когда SOC аккумуляторного узла 10 достигает опорного значения SOCref, режим движения транспортного средства 100 переключается с CD-режима в CS-режим.

[0053] В CS-режиме, используются как аккумуляторный узел 10, так и двигатель 26, и следовательно, менее вероятно, что SOC аккумуляторного узла 10 уменьшается. Более конкретно, заряд и разряд аккумуляторного узла 10 управляются таким образом, что SOC аккумуляторного узла 10 варьируется в предварительно определенном диапазоне ΔSOC, который равен или меньше опорного значения SOC_ref. Предварительно определенный диапазон ΔSOC указывается или задается посредством верхнего предельного SOC и нижнего предельного SOC, и верхнее предельное SOC может быть равно опорному значению SOC_ref, как показано на фиг. 4.

[0054] Когда SOC аккумуляторного узла 10 достигает верхнего предельного SOC, аккумуляторный узел 10 положительно разряжен, так что SOC аккумуляторного узла 10 уменьшается. Когда SOC аккумуляторного узла 10 достигает нижнего предельного SOC, аккумуляторный узел 10 положительно заряжен, так что SOC аккумуляторного узла 10 увеличивается. Когда SOC аккумуляторного узла 10 увеличивается, используется рекуперативная энергия или электрическая энергия, вырабатываемая посредством мотора-генератора MG1 посредством использования энергии двигателя 26. Таким образом, SOC аккумуляторного узла 10 может варьироваться в предварительно определенном диапазоне ΔSOC.

[0055] В CD-режиме и CS-режиме, транспортное средство 100 может быть переведено в состояние, в котором оно движется с использованием только энергии мотора-генератора MG2 (выходной энергии аккумуляторного узла 10), и в состояние, в котором оно движется с использованием энергии двигателя 26 и энергии мотора-генератора MG2 (выходной энергии аккумуляторного узла 10). Здесь, требуемая выходная энергия для запуска двигателя 26 (которая называется "выходной энергией запуска двигателя") отличается между CD-режимом и CS-режимом. Более конкретно, выходная энергия запуска двигателя в CD-режиме выше выходной энергии запуска двигателя в CS-режиме. Выходные энергии запуска двигателя в CD-режиме и CS-режиме могут задаваться заранее. Выходная энергия запуска двигателя указывается посредством частоты вращения и крутящего момента двигателя 26.

[0056] Когда выходная энергия, которая должна вырабатываться посредством транспортного средства 100 через операцию нажатия педали акселератора, например, ниже выходной энергии запуска двигателя в CD-режиме, транспортное средство 100 движется (в CD-режиме) с использованием только энергии мотора-генератора MG2 в то время, когда двигатель 26 находится в остановленном состоянии. Когда выходная энергия, которая должна вырабатываться посредством транспортного средства 100, равна или выше выходной энергии запуска двигателя, с другой стороны, транспортное средство 100 движется (в CD-режиме) с использованием энергии двигателя 26 и мотора-генератора MG2.

[0057] Выходная энергия, требуемая для транспортного средства 100, равна или выше выходной энергии запуска двигателя в CD-режиме, в состоянии ограниченного движения, к примеру, WOT (большого открытия дросселя). Следовательно, в CD-режиме, транспортное средство 100 предпочтительно движется с использованием только энергии мотора-генератора MG2.

[0058] Когда выходная энергия, требуемая для транспортного средства 100, ниже выходной энергии запуска двигателя в CS-режиме, транспортное средство 100 движется (в CS-режиме) с использованием только энергии мотора-генератора MG2 в то время, когда двигатель 26 находится в остановленном состоянии. Когда выходная энерг