Раствор для металлизации резьбового соединения трубопроводов или труб и способ производства резьбового соединения для трубопроводов или труб

Изобретение относится к области гальванотехники и может быть использовано для металлизации резьбовых соединений труб или колонн. Раствор, не содержащий цианида, содержит растворимые в воде соли меди, олова, висмута, свободную кислоту, а также соединение на основе тиомочевины в количестве 10 г/л или меньше (исключая 0) формулы (1): X1X2N-C(=S)-NX3X4 (1), где каждая из групп X1, X2, X3 и X4 представляет собой любое из водорода, алкильной группы, аллильной группы, толильной группы или группы, представленной химической формулой (2), исключая случай, когда все группы X1, X2, X3 и X4 одновременно представляют собой водород: -CH2-CH2-S-CH2-CH2-X5 (2), где X5 представляет собой OH или NH2. Способ включает стадию подготовки раствора для металлизации, приведенного выше, и стадию нанесения электролитического покрытия на охватываемый элемент или охватывающий элемент резьбового соединения с использованием раствора для металлизации с тем, чтобы сформировать пленку металлизации из сплава Cu-Sn-Bi. Технический результат: резьбовое соединение с покрытием обладает превосходной стойкостью к фрикционному износу, к щелевой коррозии и к коррозии от внешнего воздействия. 2 н.п. ф-лы, 1 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001]

Настоящее изобретение относится к раствору для металлизации, в частности к раствору для металлизации резьбового соединения труб или колонн, а также к способу производства резьбового соединения труб или колонн с использованием этого раствора для металлизации.

УРОВЕНЬ ТЕХНИКИ

[0002]

Трубы (так называемые нефтегазопромысловые трубы (OCTG)), используемые для месторождений нефти или природного газа, имеют длину десять или более метров. Трубы соединяются друг с другом с помощью резьбовых соединений, и соединенные трубы (соединенные нефтегазопромысловые трубы) имеют суммарную длину труб , равную несколько тысяч метров.

[0003]

Резьбовые соединения для труб или колонн классифицируются на резьбовые соединения типа T&C (резьбовые и соединенные) и резьбовые соединения интегрального типа.

[0004]

Резьбовое соединение типа T&C включает в себя два охватываемых элемента ка, сформированных на каждом конце двух труб или колонн, и два охватывающих элемента, сформированных на обоих концах соединения, которое представляет собой короткую трубу и имеет наружный диаметр больше, чем у указанных выше труб или колонн. Каждый охватываемый элемент имеет наружную поверхность с наружной резьбой на ней. Каждый охватывающий элемент имеет внутреннюю поверхность с внутренней резьбой на ней. Каждый охватываемый элемент ввинчивается в каждый охватывающий элемент, соединяемый с ним. Таким образом, в резьбовом соединении типа T&C трубы соединяются друг с другом посредством соединения (муфты).

[0005]

В то же время резьбовое соединение интегрального типа включает в себя охватывающий элемент, сформированный на конце первой трубы, и охватываемый элемент, сформированный на конце второй трубы. Охватываемый элемент второй трубы ввинчивается в охватывающий элемент первой трубы, соединяя тем самым первую и вторую трубы друг с другом. Это означает, что в резьбовом соединении интегрального типа первая и вторая трубы связываются непосредственно друг с другом. При использовании резьбового соединения интегрального типа муфта оказывается ненужной. Следовательно, нет никакого внешнего выступа, создаваемого толщиной муфты, и таким образом не создается никаких повреждений внутренней поверхности трубы, расположенной снаружи. Соответственно, резьбовые соединения интегрального типа используются в специальных случаях, например при горизонтальном бурении.

[0006]

В большинстве случаев, резьбовые соединения обязаны иметь стойкость к растяжению в осевом направлении из-за собственного веса соединенных труб, а также стойкость к давлению внешних и внутренних жидкостей.

[0007]

Кроме того, резьбовые соединения обязаны иметь стойкость к фрикционному износу. В частности, предпочтительная стойкость к фрикционному износу требуется даже после повторного использования четыре или более раз обсадной трубы (с большим диаметром), и десять или более раз насосно-компрессорной трубы (с малым диаметром). Традиционно для того, чтобы улучшить стойкость к фрикционному износу, на контактные поверхности охватываемых элементов или охватывающих элементов резьбовых соединений формируются медные пленки покрытия или выполняется поверхностная обработка, такая как фосфатирование. Контактная поверхность обозначает поверхностную часть, где охватываемый элемент и охватывающий элемент входят в контакт друг с другом, и такая контактная поверхность включает в себя резьбовую часть, которая имеет резьбу, и нерезьбовую металлическую контактную часть, которая не имеет резьбы. Часть уплотнения эквивалентна нерезьбовой металлической контактной части.

[0008]

С целью улучшения стойкости к фрикционного износа, перед соединением труб, на контактную поверхность охватываемого элемента или охватывающего элемента наносится присадка. Эта присадка представляет собой компаундную смазку, содержащую тяжелые металлы, такие как Pb.

[0009]

Однако тяжелые металлы могут воздействовать на окружающую среду, и использование присадки, содержащей тяжелые металлы, все больше и больше ограничивается. По этой причине в последнее время была разработана присадка (называемая «зеленой присадкой»), не содержащая тяжелых металлов, таких как Pb, Zn и Cu. Однако зеленая присадка имеет более низкую стойкость к фрикционному износу, чем обычная присадка.

[0010]

В качестве методик для улучшения стойкости к фрикционному износу без использования присадки были предложены 1) способ дисперсионного примешивания фторкаучуковых частиц в пленку покрытия, 2) способ формирования смазочной защитной пленки посредством разбрызгивания, и 3) способ использования твердой смазочной пленки вместо использования компаундной смазки, а также другие способы. Однако каждая из этих методик обеспечивает худшую стойкость к фрикционному износу по сравнению с обычной присадкой.

[0011]

Японская патентная заявка № 2003-74763 (Патентный документ 1) и японская патентная заявка № 2008-215473 (Патентный документ 2) предлагают резьбовые соединения, обладающие превосходной стойкостью к фрикционному износу. В Патентном документе 1 слой сплава Cu-Sn формируется на резьбовой части и нерезьбовой части металлического контакта резьбового соединения. В дополнение к этому, в Патентном документе 2 слой сплава Cu-Zn-M1 (где M1 представляет собой один или более типов элементов, выбираемых из Sn, Bi и В) формируется на резьбовой части и нерезьбовой части металлического контакта.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

ПАТЕНТНАЯ ЛИТЕРАТУРА

[0012]

Патентный документ 1: Японская опубликованная патентная заявка № 2003-74763

Патентный документ 2: Японская опубликованная патентная заявка № 2008-215473

[0013]

Однако в Патентном документе 1 вероятно появление коррозии (щелевой коррозии) на границе (на контакте между той поверхностью, на которой сформирована пленка металлизации, и той поверхностью, на которой никакой пленки металлизации нет) между охватываемым элементом и охватывающим элементом. В частности, в случае использования зеленой присадки или твердого смазочного материала щелевая коррозия возникает с большей вероятностью. В Патентном документе 2 щелевая коррозия подавляется. Однако в случае хранения труб в несоединенном состоянии в течение длительного времени, пятна ржавчины могут образовываться вследствие дефектов (пористости) пленки покрытия в зависимости от окружающей среды. Это означает, что в некоторых случаях может быть вызвана коррозия от внешнего воздействия.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0014]

Задачей настоящего изобретения является предложить раствор для металлизации резьбового соединения для того, чтобы сформировать пленку металлизации, обладающую превосходной стойкостью к фрикционному износу, стойкостью к щелевой коррозии и стойкостью к коррозии от внешнего воздействия, а также предложить способ производства резьбового соединения с использованием этого раствора для металлизации.

[0015]

Раствор для металлизации настоящего варианта осуществления представляет собой раствор для металлизации резьбового соединения. Раствор для металлизации не содержит цианида, но содержит: растворимую в воде соль меди; растворимую в воде соль олова; растворимую в воде соль висмута; свободную кислоту; а также соединение на основе тиомочевины в количестве 10 г/л или меньше (исключая 0), которое представлено Химической формулой (1):

X1X2N-C(=S)-NX3X4 (1),

где каждая из групп X1, X2, X3 и X4 представляет собой любое из водорода, алкильной группы, аллильной группы, толильной группы или группы, представленной Химической формулой (2), исключая тот случай, когда все группы X1, X2, X3 и X4 одновременно представляют собой водород:

-CH2-CH2-S-CH2-CH2-X5 (2),

где X5 представляет собой OH или NH2.

[0016]

Способ производства резьбового соединения в соответствии с настоящим вариантом осуществления включает в себя: стадию подготовки вышеописанного раствора для металлизации; а также стадию электролитического покрытия охватываемого элемента или охватывающего элемента резьбового соединения с использованием этого раствора для металлизации для того, чтобы сформировать пленку металлизации сплава Cu-Sn-Bi на охватывающем элементе или охватываемом элементе резьбового соединения.

[0017]

Резьбовое соединение, произведенное путем использования раствора для металлизации настоящего варианта осуществления, обладает превосходной стойкостью к фрикционному износу, стойкостью к щелевой коррозии, а также стойкостью к коррозии от внешнего воздействия.

ОПИСАНИЕ ВАРИАНТА ОСУЩЕСТВЛЕНИЯ

[0018]

Авторы настоящего изобретения исследовали механизмы образования коррозии и фрикционного износа в резьбовых соединениях, и изучили растворы для ее предотвращения. В итоге авторы настоящего изобретения получили следующие результаты.

[0019]

В случае периодически повторяющегося затягивания и ослабления резьбового соединения создается контактное скольжение между соприкасающимися поверхностями охватываемого элемента и охватывающего элемента резьбового соединения. В таком случае соприкасающиеся поверхности нагреваются благодаря сопротивлению деформации. В это время соприкасающиеся поверхности могут локально испытывать повышенную температуру, в некоторых случаях равную или больше, чем температура плавления. В поверхностных частях, имеющих температуру, равную или больше, чем температура плавления, металлы становятся расплавленными и схватываются друг с другом.

[0020]

В резьбовом соединении, если часть контактной поверхности имеет более высокую температуру плавления и более высокую твердость, ее стойкость к деформации становится меньше. В таком случае может быть достигнута превосходная стойкость к фрикционному износу. Если пленка металлизации, сформированная на контактной поверхности охватываемого элемента или охватывающего элемента резьбового соединения, является интерметаллическим соединением, твердость и температура плавления пленки металлизации становятся больше. Соответственно, в этом случае возможно достичь превосходной стойкости к фрикционному износу.

[0021]

В то же время в пленке металлизации из сплава Cu-Sn Патентного документа 1 щелевая коррозия, как полагают, вызывается следующими причинами. Fe является электрохимически менее благородным металлом, чем Cu. Если пленка металлизации из сплава Cu-Sn формируется на стальной поверхности резьбового соединения, гальванические микроячейки формируются между Cu в пленке металлизации и менее благородной сталью (Fe), находящейся в контакте с Cu. Следовательно, коррозия (щелевая коррозия) образуется в непокрытой части (Fe), находящейся в контакте с пленкой металлизации.

[0022]

Для того, чтобы подавить щелевую коррозию, менее благородный металл, чем сплав Cu-Sn, содержится в сплаве Cu-Sn. В частности, Bi содержится в сплаве Cu-Sn для того, чтобы сформировать пленку металлизации из сплава Cu-Sn-Bi. В этом случае образование щелевой коррозии подавляется.

[0023]

Патентный документ 2 также раскрывает пленку металлизации из сплава Cu-Zn-M1 (где M1 является одним или более из элементов, выбираемых из Sn, Bi и In). Однако в Патентном документе 2 при формировании пленки металлизации из сплава Cu-Zn-M1 используется раствор для металлизации в виде водного раствора, содержащего цианид (называемый в дальнейшем цианидным раствором для металлизации).

[0024]

В цианидном растворе для металлизации Cu образует комплексное соединение металла с цианидом. За счет образования комплексного соединения металла возможно сдвинуть потенциал осаждения Cu в сторону менее благородного потенциала. Следовательно, во время выполнения электролитического покрытия предотвращается чрезмерное электроосаждение одной меди, и соответствующее количество Cu электроосаждается (cоосаждается) вместе с Zn или М1, потенциал осаждения которого является менее благородным. Следовательно, формируется пленка металлизации из сплава Cu-Zn-М1.

[0025]

Однако в случае формирования пленки металлизации из сплава Cu-Zn-М1 с использованием раствора для металлизации, включающего в себя цианид, пятна ржавчины могут образовываться на пленке металлизации из сплава Cu-Zn-М1 в зависимости от окружающей среды при хранении, продолжительности хранения и т.п. В частности, такая пленка металлизации из сплава Cu-Zn-М1 не обладает высокой стойкостью к коррозии при внешнем воздействии. Механизмы образования пятен ржавчины могут быть следующими. В случае использования цианида эффективность тока во время электролитического покрытия ухудшается. В процессе электролитического покрытия при реакции осаждения металлов образуется водород. Во время электролитической металлизации с использованием цианида большое количество электричества используется для образования водорода. Следовательно, дефекты в виде мелких пустот (пористость) формируются в пленке металлизации благодаря образованию водорода. Если эти мелкие поры объединяются, кислород проникает в пленку металлизации с ее наружной поверхности через эти поры и достигает стального материала (Fe) под пленкой металлизации. В таком случае образуются пятна ржавчины.

[0026]

Раствор для металлизации, включающий в себя цианид, при смешивании с раствором кислоты образует токсичную газообразную цианистоводородную кислоту. Как правило, при электролитическом покрытии, перед формированием пленки металлизации, формируется чрезвычайно тонкая пленка (такая как пленка металлизации из Ni). Эту обработку называют ударной металлизацией. Формирование тонкой пленки металлизации посредством ударной металлизации улучшает адгезию к стальному материалу пленки металлизации, формируемой посредством последующего электролитического покрытия. Раствор для металлизации является раствором кислоты.

[0027]

В случае резьбового соединения типа T&C соответственно предусматриваются ударный резервуар, в котором хранится раствор для ударной металлизации, резервуар для водной очистки и резервуар металлизации, в котором хранится раствор для металлизации. Соединение с охватывающим элементом погружается в ударный резервуар для того, чтобы оно подверглось ударной металлизации. После этого охватывающий элемент, подвергнутый ударной металлизации, погружается в резервуар с водой для промывки. Кислый ударный раствор почти полностью удаляется из соединения посредством этой водной очистки. Следовательно, никакой газообразной цианистоводородной кислоты не образуется, даже если цианид содержится в резервуаре металлизации, используемом в последующем процессе электролитического покрытия.

[0028]

Поскольку резьбовое соединение типа T&C представляет собой короткую трубу, это соединение может быть погружено в каждый резервуар. В противоположность этому, в случае резьбового соединения интегрального типа трудно погрузить его охватываемый элемент или охватывающий элемент в каждый резервуар. Причина этого заключается в том, что общая длина резьбового соединения интегрального типа обычно составляет десятки метров. Следовательно, в случае формирования пленки металлизации на охватывающем элементе или охватываемом элементе резьбового соединения интегрального типа, электролитическое покрытие выполняется другим образом.

[0029]

Например, электролитическое покрытие для резьбового соединения интегрального типа выполняется следующим образом. Герметизируемая капсула крепится к охватываемому или охватывающему элементам резьбового соединения интегрального типа. Ударный раствор подается в капсулу, и выполняется ударная металлизация. После этого ударный раствор удаляется из капсулы. После удаления ударного раствора раствор для металлизации подается в капсулу, и выполняется электролитическое покрытие.

[0030]

В случае выполнения электролитического покрытия в вышеупомянутой процедуре остающийся ударный раствор и раствор для металлизации в некоторых случаях могут быть смешаны в капсуле. В таком случае вероятно образование газообразной цианистоводородной кислоты. Соответственно, использование такого раствора для металлизации, который содержит цианид, не является предпочтительным.

[0031]

Авторы настоящего изобретения изучили раствор для металлизации, не содержащий цианида, с помощью которого может быть сформирована пленка металлизации из сплава, обладающая превосходной стойкостью к коррозии от внешнего воздействия. В итоге авторы настоящего изобретения получили следующие результаты.

[0032]

Возможно сформировать пленку металлизации из сплава Cu-Sn-Bi, не содержащую цианида, если использовать раствор для металлизации, содержащий растворимую в воде соль, такую как сульфат и сульфонат, в качестве главного компонента, а также содержащий соединение на основе тиомочевины.

[0033]

В случае выполнения электролитического покрытия с вышеупомянутым раствором для металлизации возможно подавить образование водорода. В частности, в случае выполнения электролитического покрытия с раствором для металлизации, содержащим цианид, эффективность использования тока составляет приблизительно 30%. В этом случае приблизительно 70% тока металлизации используется для образования водорода. В то же время в случае выполнения электролитического покрытия с вышеупомянутым раствором для металлизации, содержащим растворимую в воде соль и соединение на основе тиомочевины, эффективность использования тока составляет приблизительно от 80% до 100%. Соответственно, при использовании этого раствора для металлизации образуется меньшая пористость в пленке металлизации из сплава Cu-Sn-Bi. В результате возможно достичь превосходной стойкости к коррозии от внешнего воздействия и подавления образования пятен ржавчины. В дополнение к этому, благодаря меньшей пористости в пленке металлизации из сплава Cu-Sn-Bi возможно достичь высокой твердости. Следовательно, стойкость к фрикционному износу улучшается.

[0034]

Раствор для металлизации резьбового соединения, полученный на основе вышеупомянутых находок, не содержит цианида, но содержит: растворимую в воде соль меди; растворимую в воде соль олова; растворимую в воде соль висмута; свободную кислоту; а также соединение на основе тиомочевины в количестве 10 г/л или меньше (исключая 0), которое представлено Химической формулой (1):

X1X2N-C(=S)-NX3X4 (1),

где каждая из групп X1, X2, X3 и X4 представляет собой любое из водорода, алкильной группы, аллильной группы, толильной группы или группы, представленной Химической формулой (2), исключая тот случай, когда все группы X1, X2, X3 и X4 одновременно представляют собой водород:

-CH2-CH2-S-CH2-CH2-X5 (2),

где X5 представляет собой OH или NH2.

[0035]

В случае выполнения электролитического покрытия с использованием раствора для металлизации настоящего варианта осуществления образование водорода подавляется. Следовательно, возможно уменьшить пористость пленки металлизации из сплава Cu-Sn-Bi, сформированной посредством электролитического покрытия. Соответственно, образование пятен ржавчины подавляется, что приводит к превосходной стойкости к коррозии от внешнего воздействия. Пленка металлизации из сплава Cu-Sn-Bi также обладает превосходной стойкостью к щелевой коррозии. Из-за меньшей пористости пленки металлизации из сплава Cu-Sn-Bi пленка металлизации из сплава Cu-Sn-Bi имеет более высокую твердость и обладает превосходной стойкостью к фрикционному износу. В дополнение к этому, хотя раствор для металлизации настоящего варианта осуществления не содержит цианида, при его использовании возможно сформировать пленку металлизации из сплава Cu-Sn-Bi. Соответственно, при выполнении процесса металлизации нет никакой возможности образования газообразной цианистоводородной кислоты.

[0036]

Способ производства резьбового соединения в соответствии с настоящим вариантом осуществления включает в себя стадию подготовки вышеупомянутого раствора для металлизации, а также стадию подвергания охватываемого элемента или охватывающего элемента резьбового соединения электрическому покрытию с использованием этого раствора для металлизации, формируя тем самым пленку металлизации из сплава Cu-Sn-Bi на охватываемом или охватывающем элементах резьбового соединения.

[0037]

Далее будут более подробно описаны раствор для металлизации резьбового соединения и способ производства резьбового соединения с использованием этого раствора для металлизации в соответствии с настоящим вариантом осуществления.

[0038]

[Раствор для металлизации]

Раствор для металлизации настоящего варианта осуществления используется для создания гальванического покрытия на охватываемом или охватывающем элементах резьбового соединения. Раствор для металлизации содержит растворимую в воде соль меди, растворимую в воде соль олова, растворимую в воде соль висмута, свободную кислоту в качестве фонового электролита, буферную добавку и растворитель. В настоящем варианте осуществления растворителем в растворе для металлизации является вода.

[0039]

[Растворимая в воде соль меди, растворимая в воде соль олова и растворимая в воде соль висмута]

Растворимая в воде соль меди, растворимая в воде соль олова и растворимая в воде соль висмута являются существенными соединениями для формирования пленки металлизации из сплава Cu-Sn-Bi. Растворимая в воде соль меди может быть, например, сульфатом меди или органическим сульфонатом меди. Растворимая в воде соль олова может быть, например, сульфатом олова (2) или органическим сульфонатом олова. Растворимая в воде соль висмута может быть, например, сульфатом висмута или органическим сульфонатом висмута.

[0040]

Предпочтительный нижний предел содержания растворимой в воде соли меди в растворе для металлизации составляет 1 г/л в пересчете на медь, и более предпочтительно 5 г/л. Предпочтительный верхний предел содержания растворимой в воде соли меди в растворе для металлизации составляет 50 г/л в пересчете на медь, и более предпочтительно 20 г/л.

[0041]

Предпочтительный нижний предел содержания растворимой в воде соли олова в растворе для металлизации составляет 1 г/л в пересчете на олово, и более предпочтительно 3 г/л. Предпочтительный верхний предел содержания растворимой в воде соли олова в растворе для металлизации составляет 40 г/л в пересчете на олово, и более предпочтительно 18 г/л.

[0042]

Предпочтительный нижний предел содержания растворимой в воде соли висмута в растворе для металлизации составляет 0,1 г/л в пересчете на висмут, и более предпочтительно 0,5 г/л. Предпочтительный верхний предел содержания растворимой в воде соли висмута в растворе для металлизации составляет 30 г/л в пересчете на висмут, и более предпочтительно 10 г/л.

[0043]

[Фоновый электролит]

Для того, чтобы улучшить удельную электропроводность раствора для металлизации, раствор для металлизации дополнительно содержит свободную кислоту в качестве фонового электролита. Эта свободная кислота может быть серной кислотой, органической сульфокислотой, ионом сульфата или ионом органического сульфоната. Предпочтительный нижний предел концентрации свободной кислоты в растворе для металлизации составляет 0,5 г/л, и более предпочтительно 1 г/л. Предпочтительный верхний предел концентрации свободной кислоты в растворе для металлизации составляет 400 г/л, и более предпочтительно 200 г/л.

[0044]

[Соединение на основе тиомочевины]

Раствор для металлизации дополнительно содержит соединение на основе тиомочевины в качестве буферной добавки. Соединение на основе тиомочевины представлено Химической формулой (1):

X1X2N-C(=S)-NX3X4 (1),

где каждая из групп X1, X2, X3 и X4 представляет собой любое из водорода, алкильной группы, аллильной группы, толильной группы или группы, представленной Химической формулой (2), исключая тот случай, когда все группы X1, X2, X3 и X4 одновременно представляют собой водород:

-CH2-CH2-S-CH2-CH2-X5 (2),

где X5 представляет собой OH или NH2.

[0045]

Соединение на основе тиомочевины может представлять собой 1-аллил-2-тиомочевину; 1,1,3,3-тетраметил-2-тиомочевину; 1,3-диэтилтиомочевину; 1,3-диметилтиомочевину; 1-метилтиомочевину; 1-(3-толил)тиомочевину; 1,1,3-триметилтиомочевину; 1-(2-толил)тиомочевину; 1,3-ди(2толил)тиомочевину и т.п. Соединение на основе тиомочевины может быть комбинацией этих соединений.

[0046]

Если содержание соединения на основе тиомочевины в растворе для металлизации является чрезмерно высоким, образование пленки металлизации из сплава Cu-Sn-Bi становится затруднительным, что может вызвать отсутствие покрытия. Следовательно, предпочтительный верхний предел содержания вышеупомянутого соединения на основе тиомочевины в растворе для металлизации составляет 10 г/л, и более предпочтительно 1 г/л. Предпочтительный нижний предел содержания соединения на основе тиомочевины в ванне для нанесения электролитического покрытия составляет 0,001 г/л, и более предпочтительно 0,1 г/л.

[0047]

[Поверхностно-активное вещество]

Раствор для металлизации может дополнительно содержать поверхностно-активное вещество. Поверхностно-активное вещество помогает газообразному водороду, образующемуся во время электрического покрытия, выходить наружу из поверхности стального материала и пленки металлизации. Предпочтительное содержание поверхностно-активного вещества в гальванической ванне составляет от 0,1 г/л до 10 г/л.

[0048]

Раствор для металлизации настоящего варианта осуществления не содержит цианида. Хотя он и не содержит цианида, вышеупомянутый раствор для металлизации позволяет формировать пленку металлизации из сплава Cu-Sn-Bi посредством электролитического покрытия.

[0049]

[Способ производства резьбового соединения]

Способ производства резьбового соединения с использованием вышеупомянутого раствора для металлизации является следующим. Сначала готовится вышеописанный раствор для металлизации. После этого на контактной поверхности охватываемого элемента или охватывающего элемента резьбового соединения выполняется электролитическое покрытие с использованием вышеупомянутого раствора для металлизации. Способ электролитического покрытия не ограничивается одним конкретным способом. Если резьбовое соединение является резьбовым соединением типа T&C, электролитическое покрытие может быть выполнено с использованием вышеупомянутого резервуара для металлизации. Если резьбовое соединение является резьбовым соединением интегрального типа, электролитическое покрытие может быть выполнено с использованием вышеупомянутой капсулы, либо с использованием других способов. Перед электролитическим покрытием может быть выполнена ударная металлизация. Резьбовое соединение производится посредством вышеупомянутой процедуры производства. Условия электролитического покрытия (температура ванны, значение pH раствора для металлизации, плотность тока и т.д.) не ограничиваются какими-либо конкретными условиями, если эти условия подходящим образом определяются известным способом. Предварительная обработка, такая как обезжиривание и травление, может быть выполнена перед электролитической металлизацией.

[0050]

[Пленка металлизации, сформированная на резьбовом соединении]

Резьбовое соединение, произведенное вышеупомянутым способом, включает в себя пленку металлизации из сплава Cu-Sn-Bi, сформированную на охватываемом элементе или охватывающем элементе. Пленка металлизации из сплава Cu-Sn-Bi содержит Cu, Sn, и Bi, а также остаток, состоящий из примесей. Предпочтительное содержание Cu в пленке металлизации из сплава Cu-Sn-Bi составляет от 40 мас.% до 70 мас.%, предпочтительное содержание Sn составляет от 20 мас.% до 50 мас.%, и предпочтительное содержание Bi составляет от 0,5 мас.% до 5 мас.%.

[0051]

Предпочтительная толщина пленки металлизации из сплава Cu-Sn-Bi составляет от 3 до 40 мкм. Как было упомянуто выше, пленка никелевого покрытия может быть сформирована под пленкой металлизации из сплава Cu-Sn-Bi, или пленка медного покрытия может быть сформирована вместо пленки никелевого покрытия.

[0052]

По сравнению с пленкой металлизации из сплава Cu-Sn-Zn, произведенной с использованием обычного раствора для металлизации, содержащего цианид, пленка металлизации из сплава Cu-Sn-Bi, произведенная вышеописанным способом, имеет меньшую пористость. Следовательно, в резьбовом соединении, включающем в себя пленку металлизации из сплава Cu-Sn-Bi, произведенную с помощью вышеописанного способа производства, образование пятен ржавчины маловероятно, и может быть достигнута превосходная стойкость к коррозии от внешнего воздействия. Кроме того, вследствие меньшей пористости пленка металлизации из сплава Cu-Sn-Bi имеет более высокую твердость и обладает превосходной стойкостью к фрикционному износу. В дополнение к этому, пленка металлизации из сплава Cu-Sn-Bi обладает более превосходной стойкостью к щелевой коррозии по сравнению с пленкой металлизации из сплава Cu-Sn.

[0053]

В случае закрепления резьбовых соединений, каждый элемент которых имеет на себе пленку металлизации из сплава Cu-Sn-Bi, хорошо известная смазочная пленка формируется на контактной поверхности охватываемого элемента или охватывающего элемента резьбового соединения. Эта смазочная пленка может быть вязкой жидкостью или полутвердой смазочной пленкой, или может быть твердой смазочной пленкой. Эта смазочная пленка может быть смазочной пленкой, имеющей двухслойную структуру, включающую в себя твердую смазочную пленку нижнего слоя и вязкую жидкую или полутвердую смазочную пленку верхнего слоя, или может быть смазочной пленкой, содержащей твердый порошок. Твердый порошок не ограничивается конкретным порошком, если твердый порошок является известным веществом, проявляющим смазочный эффект. Твердый порошок может быть графитом, MoS2 (дисульфидом молибдена), WS2 (дисульфидом вольфрама), BN (нитридом бора), PTFE (политетрафторэтиленом), CF (фторуглеродом) или CaCO3 (карбонатом кальция) и т.д.

[0054]

Резьбовое соединение, произведенное с помощью способа производства по настоящему варианту осуществления, показывает превосходную стойкость к фрикционному износу даже в том случае, если использовать вышеупомянутую смазочную пленку вместо обычной присадки, содержащей тяжелые металлы.

ПРИМЕР

[0055]

Слои металлического покрытия были сформированы на резьбовых соединениях путем использования соответствующих растворов для металлизации Тестов №№ 1-9, как показано в Таблице 1. Проверка полученных слоев металлизации выполнялась на однородность, стойкость к фрикционному износу, щелевую коррозию, и коррозию от внешнего воздействия для каждого слоя металлизации.

[0056]

[Таблица 1]

Тест № Раствор для металлизации Время металлизации (мин) Слой металлизации Оценка отсутствия металлизации Оценка фрикционного износа (цикл M&B) Щелевая коррозия Коррозия от внешнего воздействия
Основной состав Буферная добавка Концентрация (г/л) Поверхностно-активное вещество Концентрация (г/л) ХимическийСостав Толщина (мкм)
1 Раствор сульфата (B-1) 1,3-бис(2-(2-гидроксиэтилтио)этил)-2-тиомочевина 0,5 Неионогенное поверхностно-активное вещество 3 5 Cu-Sn-Bi 4 E 10 E E
2 Раствор сульфата (B-1) 1,3-бис(2-(2-гидроксиэтилтио)этил)-2-тиомочевина 0,5 Неионогенное поверхностно-активное вещество 3 15 Cu-Sn-Bi 12 E 10 E E
3 Раствор сульфата (B-1) 1,3-бис(2-(2-аминоэтилтио)этил)-2-тиомочевина 0,3 Неионогенное поверхностно-активное вещество 5 5 Cu-Sn-Bi 4 E 10 E E
4 Раствор сульфата (B-1) нет - Неионогенное поверхностно-активное вещество 3 15 Cu-Sn-Bi 12 неприемлемо 3 A A
5 Раствор сульфата (B-1) 1,3-бис(2-(2-гидроксиэтилтио)этил)-2-тиомочевина 35 Неионогенное поверхностно-активное вещество 3 15 Cu-Sn-Bi 12 неприемлемо 3 A A
6 Раствор сульфата (C-1) Аллилтиомочевина 0,2 Неионогенное поверхностно-активное вещество 3 12 Cu-Sn 10 E 8 неприемлемо неприемлемо
7 Раствор метансульфоната (D-1) нет - Неионогенное поверхностно-активное вещество 3 15 Sn-Bi 20 E 3 G G
8 Раствор сульфата (E-1) нет - нет - 15 Cu 15 E 3 A A
9 Раствор цианата (F-1) нет -