Горячештампованная сталь
Иллюстрации
Показать всеГруппа изобретений относится к горячештампованной стали. Часть стали является отпущенной, или вся сталь является отпущенной и имеет твердость, соответствующую 85% или меньше от максимальной закалочной твердости, определяемой как твердость по Виккерсу в положении глубины, отстоящем от поверхностного слоя на 1/4 толщины листа, при выполнении закалки в воде после нагревания до температуры, равной или выше, чем температура точки Ac3, и выдержки в течение 30 мин. Сталь имеет слой цинкового покрытия на упомянутой отпущенной части основного металла. Слой цинкового покрытия включает ламельный слой или ламельный слой и слой твердого раствора. Обеспечивается повышение свойств стали, связанных с поглощением удара. Слой цинкового покрытия обладает превосходной способностью к фосфатированию. 2 н. и 4 з.п. ф-лы, 13 ил., 2 табл.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001]
Настоящее изобретение относится к горячештампованной стали.
Приоритет испрашивается по заявке на патент Японии № 2014-073811, поданной 31 марта 2014 г., содержание которой включено в настоящий документ посредством ссылки.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
[0002]
Для того чтобы реализовать высокую прочность в структурном компоненте, используемом в автомобилях, может использоваться структурный компонент, который производится посредством горячего штампования. Горячее штампование является способом, в котором стальной лист, нагретый до температуры точки AC3 фазового превращения или выше, быстро охлаждается путем использования штампа при одновременном прессовании стали с использованием этого штампа. Таким образом, при горячем штамповании одновременно выполняются прессование и закалка. Таким образом, горячим штампованием возможно произвести структурный компонент, имеющий высокую точность формы и высокую прочность. Сталь (горячештампованная сталь), которая производится с помощью способа производства, включающего в себя горячее штампование, раскрывается, например, в Патентном документе 1, Патентном документе 2 и Патентном документе 3. Горячештампованная сталь, которая раскрывается в этих Патентных документах, является сталью, которая производится путем выполнения горячего штампования стального листа, покрытого слоем цинка для того, чтобы увеличить коррозионную стойкость.
[0003]
Как описано выше, при горячем штамповании закалка выполняется одновременно с прессованием. В дополнение, горячее штампование является подходящим для того, чтобы произвести структурный компонент, имеющий высокую точность формы и высокую прочность. В соответствии с этим, как правило, прочность (прочность при растяжении) горячештампованной стали составляет приблизительно 1500 МПа или больше. Однако в последнее время требования к безопасности при столкновениях для автомобилей возросли, и, таким образом, от компонента для автомобилей может требоваться, чтобы он обладал скорее свойствами поглощения удара при столкновении, а не прочностью. Как правило, материал, имеющий низкую прочность, является предпочтительным для того, чтобы увеличить свойства поглощения удара. Известно, что в горячештампованной стали прочность может быть до известной степени изменена путем изменения количества элементов сплава в стальном листе или изменения условий горячего штампования. Однако в процессе горячего штампования не является предпочтительным изменять условия горячего штампования в соответствии с компонентом, поскольку это может вызвать увеличение прессовой нагрузки. В соответствии с этим имеется потребность в горячештампованной стали, которая имела бы тот же самый химический состав, что и горячештампованная сталь, в которой прочность, равная приблизительно 1500 МПа или больше, получается путем закалки при горячем штамповании, имела бы коррозионную стойкость, равную или выше, чем в предшествующем уровне техники, и имела бы прочность от приблизительно 600 МПа до 1450 МПа.
[0004]
Однако способ уменьшения прочности горячештампованной стали без уменьшения коррозионной стойкости в Патентных документах 1-3 не раскрывается.
[0005]
В дополнение к этому поверхность горячештампованной стали, которая используется для автомобильных компонентов, зачастую может подвергаться окрашиванию. Во время окрашивания поверхности с высокой способностью к химической конверсионной обработке имеют высокую способность к приклеиванию пленки. Соответственно, в горячештампованной стали предпочтительно, чтобы пленка фосфата, которая формируется путем фосфатирования, хорошо к ней прилипала прилипнет (то есть, чтобы способность к фосфатированию была высокой).
Известно, что в большинстве случаев способность к фосфатированию ухудшается, когда выполняется горячее штампование стали, имеющей оцинкованный слой (оцинкованной стали). О методике, которая могла бы увеличить способность к фосфатированию горячештампованной стали, имеющей слой цинкового покрытия, не сообщалось.
[0006]
Соответственно, сталь для горячего штампования, которая имела бы слой цинкового покрытия и тот же самый химический состав, что и в предшествующем уровне техники, и при этом имела бы превосходную способность к фосфатированию, не предлагалась.
ДОКУМЕНТЫ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
ПАТЕНТНЫЕ ДОКУМЕНТЫ
[0007]
[Патентный документ 1] Японская нерассмотренная патентная заявка, Первая публикация № 2003-73774
[Патентный документ 2] Японская нерассмотренная патентная заявка, Первая публикация № 2003-129209
[Патентный документ 3] Японская нерассмотренная патентная заявка, Первая публикация № 2003-126921
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
ПРОБЛЕМЫ, РЕШАЕМЫЕ ИЗОБРЕТЕНИЕМ
[0008]
Настоящее изобретение было создано с учетом вышеописанной проблемы. Задачей настоящего изобретения является предложить горячештампованную сталь, которая имела бы более высокие свойства поглощения удара, чем у горячештампованной стали предшествующего уровня техники, имеющей тот же самый химический состав, и включала бы в себя слой цинкового покрытия, обладающий превосходной способностью к обработке фосфатированием.
СРЕДСТВА ДЛЯ РЕШЕНИЯ ПРОБЛЕМЫ
[0009]
Суть настоящего изобретения заключается в следующем.
(1) В соответствии с одним аспектом настоящего изобретения горячештампованная сталь включает в себя: основной металл, который является сталью, включающей в себя отпущенную часть, имеющую твердость, соответствующую 85% или меньше от максимальной закалочной твердости, которая определяется как твердость по Виккерсу в положении глубины, отстоящем от поверхностного слоя на 1/4 толщины листа в случае выполнения закалки в воде после нагревания до температуры, равной или выше, чем температура точки Ac3 фазового преобразования, и выдержки в течение 30 мин; и слой цинкового покрытия, который формируется на отпущенной части основного металла, причем слой цинкового покрытия включает в себя слой твердого раствора, включающий в себя фазу твердого раствора, которая содержит Fe и твердорастворенный в нем Zn, а также ламельный слой, который включает в себя фазу твердого раствора и Г-фазу, и причем в слое цинкового покрытия доля площади ламельного слоя составляет от 30 до 100%, а доля площади слоя твердого раствора составляет от 0 до 70%.
(2) В горячештампованной стали в соответствии с пунктом (1) доля площади ламельного слоя в слое цинкового покрытия может составлять 80% или больше.
(3) В горячештампованной стали в соответствии с пунктом (1) или (2) твердость по Виккерсу отпущенной части может составлять от 180 HV до 450 HV.
(4) В горячештампованной стали в соответствии с любым из пунктов (1)-(3) твердость отпущенной части может составлять 65% или меньше от максимальной закалочной твердости.
(5) В горячештампованной стали в соответствии с любым из пунктов (1)-(4) горячештампованная сталь может быть произведена путем нагревания до температуры точки Ac3 фазового перехода или выше, одновременной обработки и закалки посредством прессования с использованием штампа, а затем отпуска при температуре 500°C и более и меньше чем 700°C.
(6) В горячештампованной стали в соответствии с любым из пунктов (1)-(5) часть основного металла может быть отпущенной частью.
ЭФФЕКТЫ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
[0010]
В соответствии с аспектом настоящего изобретения возможно обеспечить горячештампованную сталь, имеющую прочность ниже, чем у горячештампованной стали в предшествующем уровне техники, имеющей тот же самый химический состав, и включающую в себя слой цинкового покрытия, обладающий превосходной способностью к фосфатированию.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0011]
Фиг. 1 представляет собой изображение поперечного сечения слоя цинкового покрытия и его периферии, полученное с помощью сканирующего электронного микроскопа, в том случае, когда горячештампованная сталь, имеющая слой гальванического покрытия, отпускается при температуре 400°C.
Фиг. 2 представляет собой изображение поперечного сечения слоя цинкового покрытия и его периферии, полученное с помощью сканирующего электронного микроскопа, в том случае, когда горячештампованная сталь, имеющая слой гальванического покрытия, отпускается при температуре 500°C.
Фиг. 3 представляет собой изображение поперечного сечения слоя цинкового покрытия и его периферии, полученное с помощью сканирующего электронного микроскопа, в том случае, когда горячештампованная сталь, имеющая слой гальванического покрытия, отпускается при температуре 700°C.
Фиг. 4 представляет собой вид, показывающий результаты дифракционного рентгеновского измерения (XRD) слоя цинкового покрытия, показанного на Фиг. 1.
Фиг. 5 представляет собой вид, показывающий результаты дифракционного рентгеновского измерения (XRD) слоя цинкового покрытия, показанного на Фиг. 2.
Фиг. 6 представляет собой вид, показывающий результаты дифракционного рентгеновского измерения (XRD) слоя цинкового покрытия, показанного на Фиг. 3.
Фиг. 7 представляет собой фазовую диаграмму двухкомпонентной системы Fe-Zn.
Фиг. 8 представляет собой полученное с помощью сканирующего электронного микроскопа изображение поверхности стали Примеров в том случае, когда горячештампованная сталь, отпущенная при температуре 500°C, подвергается фосфатированию.
Фиг. 9 представляет собой подвергнутое бинаризации изображение со сканирующего электронного микроскопа, показанное на Фиг. 8.
Фиг. 10 представляет собой полученное с помощью сканирующего электронного микроскопа изображение поверхности стали Примеров в том случае, когда горячештампованная сталь, отпущенная при температуре 400°C, подвергается фосфатированию.
Фиг. 11 представляет собой подвергнутое бинаризации изображение со сканирующего электронного микроскопа, показанное на Фиг. 10.
Фиг. 12 представляет собой полученное с помощью сканирующего электронного микроскопа изображение поверхности стали Примеров в том случае, когда горячештампованная сталь, отпущенная при температуре 700°C, подвергается фосфатированию.
Фиг. 13 представляет собой подвергнутое бинаризации изображение со сканирующего электронного микроскопа, показанное на Фиг. 12.
ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
[0012]
Автор настоящего изобретения провел исследования, относящиеся к способу для увеличения свойств поглощения удара и способности к фосфатированию горячештампованной стали, включающей в себя слой цинкового покрытия. В итоге автор настоящего изобретения получил следующие результаты.
[0013]
Как было описано выше, обычно по мере того, как прочность (прочность при растяжении) горячештампованной стали становится более низкой, свойства поглощения удара становятся более высокими. Когда выполняется отпуск горячештампованной стали, возможно дополнительно понизить прочность при растяжении по сравнению с горячештампованной сталью предшествующего уровня техники, имеющей тот же самый химический состав. Таким образом, возможно улучшить свойства поглощения удара горячештампованной стали.
[0014]
Однако когда выполняется отпуск горячештампованной стали, включающей в себя слой цинкового покрытия, структура слоя цинкового покрытия изменяется. Это изменение структуры слоя цинкового покрытия оказывает влияние на способность к обработке фосфатированием.
[0015]
Авторы настоящего изобретения провели исследование влияния условий отпуска на слой цинкового покрытия и на способность к фосфатированию слоя цинкового покрытия следующим образом.
[0016]
Сначала было подготовлено множество стальных листов, которые удовлетворяли предпочтительному химическому составу, который будет описан позже, и имели толщину листа 1,6 мм. Затем оцинкованный слой с плотностью покрытия 60 г/м2 был сформирован на каждом из стальных листов с использованием способа цинкования погружением. Затем было выполнено горячее штампование стального листа, на котором был сформирован оцинкованный слой. В частности, стальной лист был помещен в нагревательную печь, в которой температура была установлена равной 900°C, что является температурой, равной или выше, чем температура точки Ac3 фазового превращения стального листа, и нагревался в течение 4 мин. При этом температура стального листа достигала 900°C приблизительно через две минуты после его помещения в печь. После нагревания стальной лист был помещен под плоский штамп, оборудованный рубашкой водяного охлаждения, и горячее штампование (обработка и закалка) было выполнено для того, чтобы произвести горячештампованную сталь (стальной лист). Скорость охлаждения во время горячего штампования составляла 50°C/с или быстрее вплоть до точки начала мартенситного превращения даже в той части, в которой скорость охлаждения была медленной.
Точка начала мартенситного превращения (Ms) может быть определена путем измерения теплового расширения при быстром охлаждении стали, которая нагрета до температуры аустенизации, и измерения объемного расширения от аустенита к мартенситу.
[0017]
Выполнялся отпуск соответствующей горячештампованной стали, которая была произведена. Температура отпуска устанавливалась так, чтобы она отличалась между соответствующей горячештампованной сталью в диапазоне от 150°C до температуры точки Ac1 основного металла. Время нагрева соответствующей горячештампованной стали во время отпуска было установлено равным 5 мин.
[0018]
Точка Ac1 и точка Ac3 соответственно представляют собой температуру начала аустенитного превращения и температуру завершения аустенитного превращения во время нагревания стального листа. Точка Ac1 и точка Ac3 могут быть определены путем измерения теплового расширения во время нагревания стали в тесте Формастера и т.п. В частности, точка Ac1 и точка Ac3 могут быть определены путем наблюдения сжатия объема во время превращения из феррита в аустенит. В дополнение к этому точка начала мартенситного превращения может быть определена путем измерения теплового расширения при быстром охлаждении стали, которая была нагрета до температуры аустенитизации. В частности, точка начала мартенситного превращения может быть определена путем измерения объемного расширения из аустенита в мартенсит.
[0019]
Наблюдение микроструктуры и измерение рентгеновской дифракции выполнялись для соответствующей горячештампованной стали, которая была подвергнута отпуску при соответствующих температурах отпуска. В дополнение к этому структура слоя цинкового покрытия определялась на основе результатов наблюдения микроструктуры и измерения рентгеновской дифракции.
Фиг. 1 представляет собой изображение поперечного сечения слоя цинкового покрытия и его периферии, полученное с помощью сканирующего электронного микроскопа, в том случае, когда температура отпуска составляла 400°C. Фиг. 4 представляет собой результаты измерения рентгеновской дифракции на поверхности.
Фиг. 2 представляет собой изображение поперечного сечения слоя цинкового покрытия и его периферии, полученное с помощью сканирующего электронного микроскопа, в том случае, когда температура отпуска составляла 500°C. Фиг. 5 представляет собой результаты измерения рентгеновской дифракции на поверхности.
Фиг. 3 представляет собой изображение поперечного сечения слоя цинкового покрытия и его периферии, полученное с помощью сканирующего электронного микроскопа, в том случае, когда температура отпуска составляла 700°C. Фиг. 6 представляет собой результаты измерения рентгеновской дифракции на поверхности.
[0020]
Наблюдение микроструктуры поперечного сечения выполнялось следующим образом. В частности, поперечное сечение травилось 5%-ным ниталем в течение от 20 с до 40 с, и после травления микроструктура наблюдалась с помощью сканирующего электронного микроскопа при увеличении х2000.
Измерение рентгеновской дифракции выполнялось путем использования трубчатой колбы из кобальта. В рентгеновской дифракции пик интенсивности α-Fe показан при значении угла дифракции 2θ=99,7°, и по мере того, как количество твердого раствора Zn увеличивается, этот пик интенсивности сдвигается в сторону меньших углов. Пик интенсивности Γ- фазы, которая представляет собой интерметаллическое соединение Fe3Zn10, показан при значении угла дифракции 2θ=94,0°. Пунктирная линия L4 на Фиг. 4 - Фиг. 6 обозначает положение пика интенсивности фазы α-Fe. Пунктирная линия L3 обозначает положение пика интенсивности фазы твердого раствора, в которой количество твердорастворенного Zn является малым (содержание Zn составляет от 5 мас.% до 25 мас.%, и в дальнейшем также может упоминаться как «фаза твердого раствора с низким содержанием Zn»). Пунктирная линия L2 обозначает положение пика интенсивности фазы твердого раствора, в которой количество твердорастворенного Zn является большим (содержание Zn составляет от 25 мас.% до 40 мас.%, и в дальнейшем также может упоминаться как «фаза твердого раствора с высоким содержанием Zn»). Пунктирная линия L1 обозначает положение пика интенсивности Г-фазы. По мере того, как положение пика интенсивности сдвигается от пунктирной линии L4 к пунктирной линии L2, количество твердорастворенного Zn в фазе твердого раствора увеличивается.
[0021]
В том случае, когда температура отпуска составляет от 150°C до менее чем 500°C, как показано на Фиг. 1 и Фиг. 4, слой цинкового покрытия формирует слой 10 твердого раствора. Слой 10 твердого раствора представляет собой фазу твердого раствора с высоким содержанием Zn, в которой положением пика интенсивности является L2. Ссылочная цифра 20 на Фиг. 1 обозначает отпущенную часть в основном металле, а ссылочная цифра 30 обозначает слой оксида цинка, сформированный на слое цинкового покрытия. Слой оксида цинка не находится в металлическом состоянии, и таким образом не является частью слоя покрытия.
[0022]
С другой стороны, в том случае, когда температура отпуска равна или выше чем 500°C и ниже чем 700°C, как показано на Фиг. 2, слой 10 твердого раствора и слой 40 ламельной структуры, включающий в себя множество фаз, наблюдаются в слое цинкового покрытия. По результатам измерений рентгеновской дифракции на Фиг. 5 показаны пик интенсивности (положение пунктирной линии L3) фазы твердого раствора с низким содержанием Zn и пик интенсивности (положение пунктирной линии L1) Γ-фазы. Таким образом, слой ламельной структуры является слоем ламельной структуры (в дальнейшем называемым ламельным слоем), включающим в себя главным образом Γ-фазу и фазу твердого раствора с низким содержанием Zn.
В том случае, когда температура отпуска равна или выше чем 500°C и ниже чем 700°C, слой цинкового покрытия включает в себя ламельный слой 40 с долей площади 30% или больше и слой 10 твердого раствора (включающий в себя фазу твердого раствора с высоким содержанием Zn) с долей площади от 0% до 70%. В дополнение к этому ламельный слой 40 был сформирован на слое 10 твердого раствора. Таким образом, ламельный слой 40 был сформирован на поверхности слоя цинкового покрытия по сравнению со слоем твердого раствора. В дополнение к этому в том случае, когда температура отпуска составляет 600°C, по существу весь слой цинкового покрытия состоит из ламельного слоя.
[0023]
В дополнение к этому в том случае, когда температура отпуска составляет 700°C, как показано на Фиг. 3, слой цинкового покрытия включает в себя небольшое количество ламельного слоя 40 в поверхностном слое, а также слой 10 твердого раствора на нижней стороне (со стороны стали) ламельного слоя 40. Доля площади, занимаемая ламельным слоем 40 в слое цинкового покрытия, составляла 20% или меньше. В дополнение к этому по результатам измерения рентгеновской дифракции на Фиг. 6 показан пик интенсивности фазы твердого раствора (в положении пунктирной линии L2), который не был обнаружен в том случае, когда температура отпуска составляла от 500°C до менее чем 700°C. С другой стороны, пик интенсивности Г-фазы (положение пунктирной линии L1) был ниже по сравнению со случаем, в котором температура отпуска составляла от 500°C до менее чем 700°C.
[0024]
Как было описано выше, структура слоя цинкового покрытия изменяется в зависимости от условий отпуска. Соответственно, была исследована способность к фосфатированию горячештампованной стали, которая подвергалась отпуску при различных температурах отпуска. В результате автор настоящего изобретения обнаружил, что когда слой цинкового покрытия включает в себя ламельный слой 40 с долей площади 30% или больше, обеспечивается превосходная способность к фосфатированию.
[0025]
Горячештампованная сталь в соответствии с одним вариантом осуществления настоящего изобретения (может также упоминаться как «горячештампованная сталь в соответствии с настоящим вариантом осуществления»), в том случае, когда максимальная твердость закалки определяется как твердость по Виккерсу в положении глубины, отстоящем от поверхности на 1/4 толщины листа в случае выполнения закалки в воде после нагревания до температуры, равной или выше чем температура точки Ac3 фазового преобразования и выдержки в течение 30 мин, включает в себя основной металл, который является сталью, включающей в себя отпущенную часть, имеющую твердость, соответствующую 85% или меньше от максимальной закалочной твердости, и слой цинкового покрытия, который формируется на отпущенной части основного металла. Слой цинкового покрытия включает в себя слой твердого раствора, включающий фазу твердого раствора, которая содержит Fe и твердорастворенный в нем Zn, а также ламельный слой, который включает в себя фазу твердого раствора и Г-фазу. В дополнение к этому в слое цинкового покрытия доля площади ламельного слоя составляет от 30 до 100%, а доля площади слоя твердого раствора составляет от 0 до 70%.
Далее будет дано описание горячештампованной стали в соответствии с этим вариантом осуществления.
[0026]
[Основной металл]
Основной металл представляет собой сталь и формируется, например, путем горячего штампования стального листа. В дополнение к этому основной металл включает в себя отпущенную часть. Отпущенная часть представляет собой часть, имеющую твердость (твердость по Виккерсу), соответствующую 85% или меньше от максимальной закалочной твердости стали. Максимальная твердость закалки представляет собой твердость по Виккерсу в положении глубины, отстоящем от поверхностного слоя стали на 1/4 толщины листа в случае выполнения закалки в воде после нагревания стали до температуры, равной или выше чем температура точки Ac3 фазового преобразования и выдержки в течение 30 мин. Максимальная твердость закалки может быть измерена путем использования другой стали (стали, отличающейся от горячештампованной стали, имеющей отпущенную часть), имеющей те же самые химические компоненты.
В горячештампованной стали в соответствии с этим вариантом осуществления основной металл включает в себя отпущенную часть, имеющую твердость, соответствующую 85% или меньше от максимальной закалочной твердости, и таким образом прочность при растяжении является более низкой, и свойства поглощения удара являются лучшими по сравнению с горячештампованной сталью, которая имеет тот же самый химический состав и не подвергалась отпуску. Предпочтительно, чтобы твердость отпущенной части составляла 65% или меньше от максимальной закалочной твердости. В этом случае свойства поглощения удара являются еще более превосходными.
[0027]
Поскольку мартенсит является структурой, в которой твердость является высокой, и твердость которой понижается посредством отпуска, когда основной металл имеет химический состав, в котором мартенситное преобразование происходит при закалке в воде, основной металл легко может иметь отпущенную часть, имеющую твердость, соответствующую 85% или меньше от максимальной закалочной твердости. Соответственно, предпочтительно, чтобы основной металл имел химический состав, в котором мартенситное преобразование происходило в том случае, когда он подвергается закалке в воде от температуры, равной или выше, чем температура точки Ac3. В дополнение к этому предпочтительно, чтобы отпущенная часть включала в себя 95% или больше мартенсита отпуска и меньше чем 5% остаточного аустенита в объемных процентах.
[0028]
Ограничивать химический состав основного металла нет никакой необходимости. Однако предпочтительно, чтобы основной металл имел, например, следующий химический состав. В том случае, когда основной металл имеет следующий химический состав, можно выгодно получить механические свойства, которые являются подходящими для использования в компоненте для автомобилей. В дополнение к этому выгодно включать отпущенную часть, имеющую твердость, соответствующую 85% или меньше от максимальной закалочной твердости. В дальнейшем проценты, относящиеся к элементу, представляют собой массовые проценты.
[0029]
C: от 0,05 мас.% до 0,4 мас.%
Углерод (C) является элементом, который улучшает прочность стали (горячештампованной стали) после горячего штампования. Когда содержание C является слишком малым, трудно получить вышеописанный эффект. В соответствии с этим предпочтительно, чтобы нижний предел содержания C устанавливался равным 0,05 мас.% для того, чтобы получить этот эффект, и более предпочтительно - 0,10 мас.%. С другой стороны, когда содержание C является слишком большим, ударная вязкость стального листа уменьшается. Соответственно предпочтительно, чтобы верхний предел содержания C устанавливался равным 0,4 мас.%, и более предпочтительно 0,35 мас.%.
[0030]
Si: 0,5 мас.% или меньше
Кремний (Si) является элементом, который неизбежно содержится в стали. В дополнение к этому Si имеет эффект раскисления стали. В соответствии с этим содержание Si может быть установлено равным 0,05 мас.% или больше для раскисления. Однако когда содержание Si является большим, Si оказывает эффект повышения температуры точки Ac3 стального листа. Когда температура точки Ac3 стального листа повышается, возникает опасность того, что температура нагрева во время горячего штампования превысит температуру испарения цинкового покрытия. В дополнение к этому Si в стали диффундирует во время нагревания при горячем штамповании, и таким образом оксид формируется на поверхности стального листа. Этот оксид может ухудшать способность к фосфатированию. В том случае, когда содержание Si становится больше чем 0,5 мас.%, вышеописанная проблема становится значительной, и таким образом предпочтительно, чтобы верхний предел содержания Si устанавливался равным 0,5 мас.%, и более предпочтительно равным 0,3 мас.%.
[0031]
Mn: от 0,05 мас.% до 2,5 мас.%
Марганец (Mn) является элементом, который усиливает прокаливаемость и улучшает прочность горячештампованной стали. Для того чтобы получить этот эффект, предпочтительно, чтобы нижний предел содержания Mn устанавливался равным 0,5 мас.%, и более предпочтительно равным 0,6 мас.%. С другой стороны, когда содержание Mn составляет больше чем 2,5 мас.%, этот эффект насыщается. Соответственно предпочтительно, чтобы верхний предел содержания Mn устанавливался равным 2,5 мас.%, и более предпочтительно 2,4 мас.%.
[0032]
P: 0,03 мас.% или меньше
Фосфор (P) является примесью, которая содержится в стали. P сегрегируется на границе зерна и ухудшает ударную вязкость и устойчивость стали к замедленному разрушению. В соответствии с этим предпочтительно, чтобы содержание P было настолько низким, насколько это возможно. Однако в том случае, когда содержание P составляет больше чем 0,03 мас.%, эффект P становится значительным, и таким образом содержание P может быть установлено равным 0,03 мас.% или меньше.
[0033]
S: 0,010 мас.% или меньше
Сера (S) является примесью, которая содержится в стали. Сера формирует сульфид и ухудшает ударную вязкость и устойчивость стали к замедленному разрушению. В соответствии с этим предпочтительно, чтобы содержание серы было настолько низким, насколько это возможно. Однако в том случае, когда содержание серы составляет больше чем 0,010 мас.%, эффект серы становится значительным, и таким образом содержание серы может быть установлено равным 0,010 мас.% или меньше.
[0034]
Растворимый Al: 0,10 мас.% или меньше
Алюминий (Al) является элементом, который эффективен для раскисления стали. Для того чтобы получить этот эффект, нижний предел содержания Al может быть установлен в 0,01 мас.%. Однако когда содержание алюминия является слишком большим, температура точки Ac3 стального листа повышается, и температура нагрева, необходимая во время горячего штампования, может превысить температуру испарения цинкового покрытия. Соответственно предпочтительно, чтобы верхний предел содержания алюминия устанавливался равным 0,10 мас.%, и более предпочтительно 0,05 мас.%. Содержание алюминия в этом варианте осуществления представляет собой содержание растворимого алюминия (кислоторастворимого алюминия).
[0035]
N: 0,010 мас.% или меньше
Азот (N) является примесью, которая неизбежно содержится в стали. N является элементом, который формирует нитрид и ухудшает ударную вязкость стали. В дополнение к этому в том случае, когда содержится бор, N соединяется с бором и уменьшает количество твердорастворенного бора. Когда количество твердорастворенного B уменьшается, ухудшается прокаливаемость. По вышеописанной причине предпочтительно, чтобы содержание N было настолько низким, насколько это возможно. Однако когда содержание N становится больше чем 0,010 мас.%, эффект N становится значительным, и таким образом содержание N может быть установлено равным 0,010 мас.% или меньше.
[0036]
Например, часть основного металла горячештампованной стали в соответствии с настоящим вариантом осуществления может иметь химический состав, включающий вышеописанные элементы, а также Fe и примеси в качестве остатка. Однако часть основного металла горячештампованной стали в соответствии с настоящим вариантом осуществления может дополнительно содержать один или более элементов, выбираемых из B, Ti, Cr, Mo, Nb и Ni вместо части Fe в химическом составе в следующем диапазоне для того, чтобы улучшить прочность или ударную вязкость.
В этом варианте осуществления примесь представляет собой материал, который поступает из руды и отходов, используемых как сырье, во время промышленного производства стального материала, или благодаря условиям производства и т.п.
[0037]
B: от 0,0001 мас.% до 0,0050 мас.%
Бор (B) улучшает прокаливаемость стали, а также улучшает прочность горячештампованной стали. Для того чтобы получить этот эффект, предпочтительный нижний предел содержания B составляет 0,0001 мас.%. Однако когда содержание B является слишком большим, этот эффект насыщается. Соответственно, даже в том случае, когда B содержится, предпочтительно, чтобы верхний предел содержания B был установлен равным 0,0050 мас.%.
[0038]
Ti: от 0,01 мас.% до 0,10 мас.%
Титан (Ti) соединяется с азотом и формирует нитрид (TiN). В результате связывание B с N ограничивается, и таким образом возможно ограничить ухудшение прокаливаемости, которое вызывается формированием нитрида бора. В дополнение к этому Ti делает размер аустенитного зерна мелким во время нагревания при горячем штамповании благодаря эффекту скрепления, и улучшает ударную вязкость стали и т.п. Для того чтобы получить этот эффект, предпочтительный нижний предел содержания Ti составляет 0,01 мас.%. Однако когда содержание Ti является слишком большим, вышеописанный эффект насыщается, и нитрид титана осаждается чрезмерно, и таким образом ударная вязкость стали ухудшается. Соответственно, даже когда Ti содержится, предпочтительно, чтобы верхний предел содержания Ti был установлен равным 0,10 мас.%.
[0039]
Cr: от 0,1 мас.% до 0,5 мас.%
Хром (Cr) улучшает прокаливаемость стали. Для того чтобы получить этот эффект, предпочтительный нижний предел содержания Cr составляет 0,1 мас.%. Однако когда содержание Cr является слишком большим, образуется карбид хрома, и этот карбид плохо растворяется во время нагревания при горячем штамповании. В результате аустенитизация стали может стать недостаточной, и таким образом прокаливаемость ухудшается. Соответственно, даже в том случае, когда хром содержится, предпочтительно, чтобы верхний предел содержания хрома был установлен равным 0,5 мас.%.
[0040]
Mo: от 0,05 мас.% до 0,50 мас.%
Молибден (Mo) улучшает прокаливаемость стали. Для того чтобы получить этот эффект, предпочтительный нижний предел содержания молибдена составляет 0,05 мас.%. Однако когда содержание Mo является слишком большим, вышеописанный эффект насыщается. Соответственно, даже в том случае, когда молибден содержится, предпочтительно, чтобы верхний предел содержания молибдена был установлен равным 0,50 мас.%.
[0041]
Nb: от 0,02 мас.% до 0,10 мас.%
Ниобий (Nb) образует карбид и делает размер зерна во время горячего штампования мелким. Когда размер зерна становится мелким, ударная вязкость стали улучшается. Для того чтобы получить этот эффект, предпочтительный нижний предел содержания ниобия составляет 0,02 мас.%. Однако когда содержание Nb является слишком большим, вышеописанный эффект насыщается, и прокаливаемость ухудшается. Соответственно, даже в том случае, когда ниобий содержится, предпочтительно, чтобы верхний предел содержания ниобия был установлен равным 0,10 мас.%.
[0042]
Ni: от 0,1 мас.% до 1,0 мас.%
Никель (Ni) улучшает ударную вязкость стали. В дополнение к этому Ni ограничивает хрупкость, вызванную расплавленным Zn во время нагревания при горячем штамповании оцинкованной стали. Для того чтобы получить этот эффект, предпочтительный нижний предел содержания никеля составляет 0,1 мас.%. Однако когда содержание Ni является слишком большим, вышеописанный эффект насыщается, что вызывает увеличение затрат. Соответственно, даже в том случае, когда никель содержится, предпочтительно, чтобы верхний предел содержания никеля был установлен равным 1,0 мас.%.
[0043]
Часть основного металла может быть отпущенной частью, или весь основной металл может быть отпущенной частью.
В настоящее время существует потребность в компоненте, в котором такие характеристики, как прочность и пластичность, отличались бы в зависимости от положения. Такая характеристика называется специализированным свойством. Например, что касается автомобильного компонента, в компоненте каркаса, называемом стойка B (центральная стойка кузова), верхняя часть, которая составляет изнашивающуюся область, обязана иметь высокую прочность, а нижняя часть обязана иметь высокие свойства поглощения удара.
В том случае, когда только часть основного металла в горячештампованной стали, включающей слой цинкового покрытия, конфигурируется как отпущенная часть, возможно получить компонент, который включает в себя высокопрочную часть и имеет свойства поглощения удара. В дополнение к этому, поскольку горячештампованная сталь включает в себя слой цинкового покрытия, коррозионная стойкость также является превосходной.
[0044]
Прочность при растяжении отпущенной части основного металла составляет, например, от 600 МПа до 1450 МПа, а твердость по Виккерсу составляет от 180 HV до 450 HV. В этом случае прочность отпущенной части горячештампованной стали становится более низкой по сравнению с горячештампованной сталью в предшествующем уровне техники, которая не подвергается отпуску. В соответствии с этим свойства поглощения удара являются более превосходными по сравнению с горячештампованной сталью предшествующего уровня техники.
Твердость по Виккерсу мартенсита отпуска является более низкой, чем твердость по Виккерсу мартенсита. Соответственно возможно определить, является ли микроструктура отпущенной части мартенситом отпуска, в соответствии с ее твердостью по Виккерсу.
Твердость по Виккерсу может быть получена с помощью теста твердости по Виккерсу в соответствии с японским промышленным стандартом JIS Z2244 (2009). Тестовая сила в тесте твердости по Виккерсу устанавливается равной 10 кгс=98,07 Н.
[0045]
[Слой цинкового покрытия]
Горячештампованная сталь в соответствии с настоящим вариантом осуществления имеет слой цинкового покрытия по меньшей мере на отпущенной части основного металла. Слой цинкового покрытия включает в себя ламельный слой с долей площади 30% или больше и слой твердого раствора с долей площади от 0 до 70%.
[0046]
Слой твердого раст