Способ фильтрации для импульсных ультразвуковых датчиков уровня

Иллюстрации

Показать все

Предложенная группа изобретений относится к способам для оценки уровней текучей среды для отработанных газов в бачке для хранения данной текучей среды посредством ультразвукового датчика уровня. Способ управления двигателем транспортного средства заключается в том, что: вырабатывают ультразвуковой сигнал в бачке для текучей среды для отработавших газов транспортного средства; в ответ на интенсивность принятой отраженной волны ультразвукового сигнала, которая больше, чем пороговое значение, фильтруют упомянутую отраженную волну на основании дисперсии принятой отраженной волны и указывают уровень текучей среды на основании фильтрованной отраженной волны; в остальных случаях не фильтруют упомянутую отраженную волну и сохраняют указание предыдущего самого последнего уровня текучей среды; и ограничивают выходную мощность двигателя транспортного средства на основании указания уровня, при этом уровень текучей среды дополнительно основан на сдвиге по времени отраженного ультразвукового сигнала, и при этом упомянутая дисперсия является дисперсией мгновенных измерений уровня на последних N отсчетах, где N является количеством отсчетов, причем упомянутая дисперсия является мерой отклонения принятой отраженной волны от предопределенного количества отраженных волн, принятых до упомянутой принятой отраженной волны, причем упомянутую дисперсию определяют на основании функции плотности распределения вероятности при условии случайного распределения принятых отраженных волн. Также реализовано еще два варианта данного способа. Предложенные изобретения позволяют своевременно сделать вывод о качестве используемой текучей среды. 3 н. и 14 з.п. ф-лы, 7 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящая заявка относится к способам для оценки уровней текучей среды для отработавших газов в бачке для хранения текучей среды для отработавших газов посредством использования ультразвукового датчика уровня.

УРОВЕНЬ ТЕХНИКИ

Для того чтобы регулировать выбросы из системы выпуска транспортного средства, системы очистки отработавших газов применяются в выпускном канале двигателя. В некоторых примерах, система очистки отработавших газов может включать в себя систему избирательного каталитического восстановления (SCR) для снижения выбросов оксидов азота (NOx) из отработавших газов. Транспортные средства, оборудованные системой SCR, впрыскивают восстановитель, такой как водный раствор мочевины ((NH2)2CO), в выпускной канал выше по потоку от каталитического нейтрализатора SCR. Раствор мочевины при термическом разложении в выпускном канале формирует аммиак (NH3), который затем адсорбируется в поверхность каталитического нейтрализатора. Например, газы NOx в выпускном канале реагируют с адсорбированным аммиаком, чтобы формировать азот (N2) и воду (H2O).

Водный раствор мочевины может храниться в бачке для хранения текучей среды для отработавших газов на борту транспортного средства и контролироваться, так чтобы надлежащее действие по умолчанию могло предприниматься, если содержится недостаточное количество раствора, или если добавляются неуместные разбавители. Датчики уровня в бачке могут использоваться для выявления количества мочевины, оставшейся в бачке, для того чтобы содействовать контролю системы SCR. Когда уровень раствора мочевины низок, предупреждение может указываться водителю. Подобным образом, изменения уровня могут использоваться в комбинации с другими данными, чтобы выявлять количество раствора. Однако, во время некоторых условий эксплуатации двигателя, когда бачок для текучей среды для отработавших газов подвергается ускорению и/или наклону, датчик уровня может указывать неточные измерения уровня жидкости.

Один из примерных подходов для принятия мер в ответ на неточные измерения уровня датчиком уровня предусмотрен Минезавой и другими в US 2013/0055700. В нем, выходной сигнал датчика уровня мочевины пропускается через фильтр нижних частот, имеющий постоянную времени, основанную на числе оборотов двигателя. Однако, изобретатели в материалах настоящей заявки идентифицировали потенциальные проблемы у такого подхода. Например, подход Минезавы допускает искажения измерений датчика уровня, которые соотносятся с вибрациями, вызванными скоростью, и не учитывают потери сигнала, обусловленные наклоном бачка для хранения текучей среды для отработавших газов или мелким поверхностным рельефом, которые могут происходить, когда транспортное средство находится в движении, и когда транспортное средство находится в состоянии покоя. Например, некоторые условия эксплуатации транспортного средства, которые вызывают всплескивание или наклон бачка, могут увеличивать или уменьшать высоту жидкости над датчиком, даже если может не быть никаких изменений общего количества жидкости в бачке. Это всплескивание и/или колыхание не только вызывают ошибки измерений, но фактически могут служить причиной потери сигнала при использовании конфигурации с ультразвуковым датчиком. Потеря сигнала может сильно влиять на оценку, даже если фильтруется фильтром нижних частот. Кроме того, такие ситуации потери сигнала имеют от небольшой до никакой корреляции с числом оборотов двигателя.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящей заявке раскрыт способ, состоящий в том, что: вырабатывают ультразвуковой сигнал в бачке для текучей среды для отработавших газов транспортного средства; указывают уровень текучей среды на основании фильтрованной отраженной волны ультразвукового сигнала, причем отраженная волна фильтруется на основании интенсивности принятой отраженной волны.

В дополнительном аспекте уровень текучей среды основан на сдвиге по времени отраженного ультразвукового сигнала.

В другом дополнительном аспекте интенсивность основана на амплитуде напряжения отраженного ультразвукового сигнала в приемнике, при этом, отраженная волна фильтруется разностным фильтром, имеющим параметр, основанный на интенсивности.

В еще одном дополнительном аспекте разностный фильтр дополнительно основан на дисперсии отраженной волны.

В еще одном дополнительном аспекте текучая среда для отработавших газов включает в себя мочевину.

В еще одном дополнительном аспекте текучая среда для отработавших газов включает в себя аммиак.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что указывают ухудшение характеристик на основании указанного уровня.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что ограничивают выходную мощность двигателя на основании указанного уровня.

Также раскрыт способ, состоящий в том, что: формируют указание уровня текучей среды для отработавших газов в бачке для хранения текучей среды для отработавших газов с помощью разновременности акустического волнового сигнала, отраженного от поверхности текучей среды для отработавших газов; и используют указание уровня в качестве входного сигнала в фильтр нижних частот, только когда пиковая амплитуда напряжения отраженного акустического волнового сигнала является большей, чем пороговое значение, но продолжают формировать выходной сигнал фильтра на основании предыдущих указаний уровня.

В дополнительном аспекте постоянная времени фильтра нижних частоту для фильтра нижних частот основана на пиковой амплитуде напряжения отраженного акустического волнового сигнала и дисперсии указания уровня.

В другом дополнительном аспекте текучая среда для отработавших газов включает в себя мочевину.

В еще одном дополнительном аспекте текучая среда для отработавших газов включает в себя аммиак.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что указывают ухудшение характеристик на основании указанного уровня.

В еще одном дополнительном аспекте способ дополнительно состоит в том, что ограничивают выходную мощность двигателя на основании указанного уровня.

Кроме того раскрыт способ, состоящий в том, что: в контроллере, принимают первый сигнал с ультразвукового датчика текучей среды для отработавших газов, указывающий уровень текучей среды, принимают второй сигнал с упомянутого датчика, указывающий интенсивность отражения ультразвуковой волны, и формируют фильтрованный уровень посредством того, что фильтруют первый сигнал, только когда второй сигнал является большим, чем пороговое значение, а иначе, поддерживают предыдущий фильтрованный уровень, причем фильтрация включает в себя повышенную фильтрацию нижних частот для меньших изменений уровня, и пониженную фильтрацию нижних частот для больших изменений уровня.

В дополнительном аспекте повышенная или пониженная фильтрация нижних частот основана на втором сигнале и дисперсии уровней текучей среды, указанных упомянутым ультразвуковым датчиком.

В другом дополнительном аспекте контроллер расположен в транспортном средстве, и при этом, упомянутый датчик расположен в бачке, присоединенном к форсунке в выпуске двигателя выше по потоку от устройства снижения токсичности выбросов SCR.

В еще одном дополнительном аспекте интенсивность основана на пиковой амплитуде второго сигнала, причем второй сигнал отличен от первого сигнала, и принимаемого параллельно в контроллере со вторым сигналом.

В еще одном дополнительном аспекте ультразвуковая волна вырабатывается на выбранной частоте.

В еще одном дополнительном аспекте первый сигнал основан на разновременности между тем, когда упомянутый датчик вырабатывает ультразвуковую волну, и тем, когда упомянутый датчик принимает отражение ультразвуковой волны.

В одном из примеров, вышеприведенные проблемы могут быть по меньшей мере частично препоручены способу, такому как способ для системы избирательного каталитического восстановления отработавших газов. Способ может содержать выработку ультразвукового сигнала в бачке для текучей среды для отработавших газов транспортного средства и указание уровня текучей среды на основании фильтрованной отраженной волны ультразвукового сигнала, отраженная волна фильтруется на основании интенсивности или качества принятой отраженной волны. Например, интенсивность отраженного сигнала может быть ниже порогового значения вследствие наклона поверхности мочевины. Следовательно, отраженный сигнал может иметь более низкое качество, которое может быть основано на различии между большими изменениями выходного сигнала датчика, которые вызваны неправильными отражениями, в сравнении с большими изменениями выходного сигнала датчика, вызванными большими изменениями самого уровня текучей среды. Таким образом, посредством фильтрации измерения уровня с датчика на основании качества отраженного сигнала, а также на основании самих измерений уровня, могут получаться более точные измерения уровня.

Должно быть понятно, что сущность изобретения, приведенная выше, предоставлена для знакомства с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Она не предполагается для идентификации ключевых или существенных признаков заявленного объекта патентования, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный объект патентования не ограничен реализациями, которые кладут конец каким-нибудь недостаткам, отмеченным выше или в любой части этого раскрытия.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Предмет настоящего раскрытия будет лучше понятен по прочтению последующего подробного описания неограничивающих вариантов осуществления со ссылкой на прилагаемые чертежи.

Фиг. 1 показывает принципиальную схему системы транспортного средства, включающую в себя систему очистки отработавших газов с одним бачком для хранения текучей среды для отработавших газов.

Фиг. 2A-2E показывают блок-схемы последовательности операций способа, иллюстрирующие процедуры для уведомления водителя транспортного средства о рабочих параметрах транспортного средства на основании уровня текучей среды в бачке для хранения текучей среды для отработавших газов.

Фиг. 3 показывает блок-схему последовательности операций способа, иллюстрирующую процедуру для инициализации фильтра нижних частот перед оценкой уровня текучей среды в бачке для хранения текучей среды для отработавших газов.

Фиг. 4A и 4B показывают блок-схемы последовательности операций способа, иллюстрирующие процедуры для оценки уровня текучей среды в бачке для хранения текучей среды для отработавших газов. Как пояснено, фиг. 2-4A могут использоваться совместно в варианте осуществления, таком как у системы, которая описана на фиг. 1. Подобным образом, фиг. 2, 3 и 4B могут использоваться совместно в варианте осуществления, таком как у системы, которая описана на фиг. 1.

Фиг. 5 показывает примерное измерение уровня текучей среды, в том числе, первый сигнал мгновенного измерения уровня текучей среды и второй сигнал качества наряду с фильтрованными выходными сигналами.

Фиг. 6 показывает примерное измерение уровня текучей среды, в том числе, первый сигнал мгновенного измерения уровня текучей среды, второй сигнал качества и дисперсию мгновенных измерений наряду с фильтрованными выходными сигналами.

Фиг. 7 показывает примерные сигналы датчика уровня, такие как первый сигнал (Δt) и второй сигнал (p).

ПОДРОБНОЕ ОПИСАНИЕ

Предусмотрены способы и системы для оценки уровня текучей среды для отработавших газов в бачке для хранения текучей среды для отработавших газов, присоединенном к выпускному каналу в системе очистки отработавших газов, включенной в систему транспортного средства (такую как система транспортного средства по фиг. 1). Контроллер может выполнять процедуру, такую как процедура на фиг. 3, для инициализации фильтра для измерения уровня текучей среды для отработавших газов. Контролер затем может выполнять процедуру, такую как процедура на фиг. 4, для оценки уровня текучей среды для отработавших газов в бачке для текучей среды для отработавших газов. В материалах настоящей заявки, уровень текучей среды для отработавших газов может измеряться на основании качества отраженного сигнала, принятого ультразвуковым датчиком, расположенным внутри бачка для текучей среды для отработавших газов. Измерение уровня текучей среды, полученное таким образом, может использоваться для определения рабочих параметров транспортного средства, как проиллюстрировано на фиг. 2A-2E. Пример измерения уровня текучей среды для отработавших газов показан на фиг. 5.

Фиг. 1 показывает принципиальную схему системы 100 транспортного средства. Система 100 транспортного средства включает в себя двигатель 102, который может быть включен в силовую установку транспортного средства. Двигатель 102 может управляться, по меньшей мере частично, системой управления, включающей в себя контроллер 106 и входными сигналами от водителя транспортного средства через устройство ввода (не показано). Всасываемый воздух вводится в двигатель 102 через впускной канал 108, отработавшие газы, являющиеся результатом сгорания в двигателе 102, выпускаются через выпускной канал 110, ведущий в выхлопную трубу (не показана), которая в итоге направляет отработавшие газы в атмосферу.

Как показано, система 101 очистки отработавших газов, включающая в себя устройство 112 очистки отработавших газов, показана скомпонованной вдоль выпускного канала 110. В примерном варианте осуществления по фиг. 1, система 101 очистки отработавших газов является системой избирательного каталитического восстановления, а устройство 112 очистки отработавших газов является каталитическим нейтрализатором с избирательным каталитическим восстановлением (SCR). Система каталитического нейтрализатора SCR может включать в себя по меньшей мере каталитический нейтрализатор SCR, канал 136 текучей среды для отработавших газов и форсунку 138 текучей среды для отработавших газов. В других примерах, система очистки отработавших газов дополнительно или в качестве альтернативы может включать в себя трехкомпонентный каталитический нейтрализатор (TWC), уловитель NOx, различные другие устройства снижения токсичности отработавших газов или их комбинацию. Кроме того, как изображено, форсунка 138 текучей среды для отработавших газов расположена выше по потоку от устройства 112 очистки отработавших газов. Форсунка 138 текучей среды для отработавших газов впрыскивает текучую среду для отработавших газов в поток отработавших газов для реакции с NOx в устройстве 112 очистки отработавших газов в ответ на сигналы, принятые из контроллера 106. Текучая среда для отработавших газов, например, может быть восстановителем, таким как мочевина или аммиак.

Форсунка 138 текучей среды для отработавших газов питается текучей средой 118 для отработавших газов из бачка 116 для хранения текучей среды для отработавших газов через канал 136 текучей среды для отработавших газов. Бачок 116 для хранения текучей среды для отработавших газов может быть резервуаром, например, пригодным для хранения текучей среды для отработавших газов во всем диапазоне температур. Как изображено на фиг. 1, бачок 116 для хранения текучей среды для отработавших газов включает в себя датчик 104 уровня текучей среды для отработавших газов. Датчик 104 уровня текучей среды для отработавших газов, например, может давать дискретные показания уровня текучей среды для отработавших газов в контроллер 106. Однако, датчик 104 уровня текучей среды для отработавших газов может, в сущности, может быть непрерывным датчиком уровня, выдавая относительно большое количество дискретных показаний в диапазоне от почти пустого уровня текучей среды для отработавших газов до почти полного уровня текучей среды для отработавших газов. Таким образом, датчик 104 уровня текучей среды для отработавших газов может выдавать указание мгновенного уровня текучей среды для отработавших газов в контроллер 106, когда уровень текучей среды для отработавших газов находится в пределах диапазона от почти пустого до почти полного по датчику уровня текучей среды для отработавших газов.

В одном из примеров, датчик уровня текучей среды для отработавших газов может быть ультразвуковым измерительным преобразователем. Ультразвуковой измерительный преобразователь вырабатывает акустические волны 114, которые могут отражаться от поверхности жидкости. По существу, отраженные волны 120 могут приниматься излучающим измерительным преобразователем. Мгновенный уровень жидкости может определяться на основании времени между излученным импульсом и отраженным импульсом, и скорости звука, например, посредством использования скоростей распространения ультразвуковой волны. Ультразвуковой измерительный преобразователь может активироваться периодически для выдачи измерений уровня через равные промежутки времени. Кроме того, пиковая амплитуда напряжения, выдаваемая из ультразвукового датчика, может использоваться для определения качества отраженного сигнала. Должно быть отмечено, что пиковая амплитуда напряжения принятого сигнала является отдельной и отличной от измерения разновременности или сдвига частоты, или другого измерения/указания уровня (например, положения), на котором волна отражается обратно в приемник из передатчика волны (оба из которых размещены в датчике 104). На основании мгновенного измерения уровня с датчика уровня текучей среды для отработавших газов и качества отраженного сигнала, может определяться уровень текучей среды для отработавших газов в бачке для хранения текучей среды для отработавших газов. На основании измерений уровня текучей среды для отработавших газов, могут определяться различные параметры, такие как рабочий запас хода транспортного средства и количество текучей среды для отработавших газов, которое должно быть добавлено в бачок для хранения текучей среды для отработавших газов, как будет подробнее описано ниже со ссылкой на фиг. 2A-2E.

Система очистки отработавших газов дополнительно включает в себя датчик 140 отработавших газов, расположенный ниже по потоку от устройства 112 очистки отработавших газов. В изображенном варианте осуществления, датчик отработавших газов может быть датчиком NOx для измерения количества NOx после SCR. В некоторых примерах, эффективность системы SCR может определяться на основании датчика 140 отработавших газов, а кроме того, на основании датчика 126 отработавших газов, расположенного выше по потоку от системы SCR. В некоторых других примерах, датчик NOx может использоваться для оценки качества текучей среды для отработавших газов, дозаправленной в бачке для хранения текучей среды для отработавших газов.

Контроллер 106 может быть микрокомпьютером, включающем в себя следующее, хотя и не показано на фиг. 1: микропроцессорный блок, порты ввода/вывода, электронный запоминающий носитель для хранения выполняемых программ и калибровочных значений (например, микросхему постоянного запоминающего устройства), оперативное запоминающее устройство, дежурную память, электрически стираемое программируемое постоянное запоминающее устройство (ЭСППЗУ, EEPROM) и шину данных. Постоянное запоминающее устройство запоминающего носителя может быть запрограммировано машинно-читаемыми данными, представляющими команды, исполняемые микропроцессором для выполнения способов, описанных ниже, а также других вариантов, которые предвосхищены, но конкретно не перечислены. Например, контроллер может принимать передаваемую информацию (например, входные данные) с различных датчиков, обрабатывать входные данные и приводить в действие исполнительные механизмы в ответ на обработанные входные данные, на основании команды или управляющей программы, запрограммированных в нем, соответствующих одной или более процедур. Примерные процедуры описаны в материалах настоящей заявки со ссылкой на фиг. 2-4. В одном из примеров, контроллер может принимать входные данные из датчика 104 уровня. Входные данные могут включать в себя мгновенное измерение 132 уровня, и указание качества отраженного сигнала 134, принятого датчиком 104. На основании качества отраженного сигнала, контроллер может оценивать уровень жидкости в бачке для текучей среды для отработавших газов.

Контроллер 106 отправляет сигналы в систему 122 связи, такую как сеть беспроводной связи или локальная сеть контроллеров (CAN). Например, после обработки данных с датчика 104 уровня текучей среды для отработавших газов и оценки параметра, такого как рабочий запас хода транспортного средства, контроллер 106 отправляет сообщение в систему 122 связи, указывающее параметр. Система 122 связи затем может уведомлять водителя транспортного средства через устройство отображения. В одном из примеров, параметр может отображаться на устройстве 124 отображения транспортного средства, таком как приборная панель или другое устройство отображения транспортного средства. В еще одном примере, система 122 связи может отправлять сообщение касательно параметра на мобильное устройство 126 водителя, например, в виде текстового сообщения, или на персональный компьютер 128 в виде письма электронной почты. В качестве еще одного другого примера, система 122 связи дополнительно или в качестве альтернативы может отправлять сообщение третьей стороне 130, такой как торговое представительство по продажам транспортного средства или другой центр обслуживания.

Таким образом, система транспортного средства включает в себя систему очистки отработавших газов, которая включает в себя бачок для хранения текучей среды для отработавших газов с датчиком текучей среды для отработавших газов. Посредством определения уровня текучей среды для отработавших газов на основании мгновенного измерения уровня с датчика уровня текучей среды для отработавших газов и качества отраженного сигнала, могут быть получены более точные измерения уровня текучей среды для отработавших газов. Кроме того, как будет описано ниже, контроллер может оценивать параметр на основании показаний датчика уровня текучей среды для отработавших газов и уведомлять водителя транспортного средства о параметре.

Фиг. 2A-2E показывают блок-схемы последовательности операций способа, иллюстрирующие процедуры для определения различных рабочих параметров транспортного средства и для уведомления водителя транспортного средства различной информацией касательно текучей среды для отработавших газов в бачке 116 для хранения текучей среды для отработавших газов на основании датчика уровня, такого как датчик 104 уровня текучей среды для отработавших газов, расположенный в бачке 116 для хранения текучей среды для отработавших газов, описанного выше со ссылкой на фиг. 1. Например, водитель может уведомляться о рабочем запасе хода транспортного средства, качестве дозаправленной текучей среды для отработавших газов, количестве текучей среды для отработавших газов, которое должно быть добавлено в бачок для хранения текучей среды для отработавших газов, чтобы наполнить бачок, скорости использования текучей среды для отработавших газов и оцененном времени до опустошения бачка для хранения текучей среды для отработавших газов. В примерных процедурах, описанных ниже со ссылкой на фиг. 2A-2E, мочевина используется в качестве примерной текучей среды для отработавших газов. Должно быть отмечено, однако, что процедуры могут быть применены к любой другой пригодной текучей среде для отработавших газов.

Далее, с обращением к фиг. 2A, показана примерная процедура 200a для отображения рабочего запаса хода транспортного средства водителю транспортного средства.

На 204 процедуры 200a, может определяться уровень мочевины в бачке для хранения текучей среды для отработавших газов. Уровень мочевины может определяться на основании измерения уровня датчиком уровня текучей среды для отработавших газов, таким как ультразвуковой датчик уровня, как описано со ссылкой на фиг. 1. Уровень мочевины дополнительно может быть основан на качестве отраженного сигнала, принятого ультразвуковым датчиком. Подробности об определении уровня мочевины в бачке будут дополнительно конкретизированы на фиг. 4.

Затем, на 206, по измерению уровня мочевины в бачке для хранения текучей среды для отработавших газов, может определяться, является ли уровень мочевины большим чем или равным пороговому уровню. Например, пороговый уровень может быть минимальным уровнем мочевины, который должен присутствовать в бачке для хранения текучей среды для отработавших газов, чтобы гарантировать, что транспортное средство является работающим в пределах приемлемых уровней выбросов. На 206, по подтверждению, что уровень мочевины в бачке для хранения является большим чем или равным пороговому значению, контроллер затем может оценивать рабочий запас хода транспортного средства на 208. Например, рабочий запас хода транспортного средства может указывать расстояние, которое транспортное средство может проехать без исчерпания уровня мочевины в бачке ниже порогового уровня. Рабочий запас хода транспортного средства может быть основан на уровне мочевины в бачке для хранения текучей среды для отработавших газов и средней экономии топлива транспортным средством в эксплуатации. Затем, на 210, контроллер может уведомлять водителя о рабочем запасе хода транспортного средства.

Возвращаясь на 206, если измеренный уровень мочевины находится ниже порогового уровня, контроллер может устанавливать рабочий запас хода транспортного средства в 0 миль, указывая, что транспортное средство не может ехать без пополнения мочевины в бачке для хранения. Впоследствии, на 214, водитель транспортного средства может уведомляться о рабочем запасе хода транспортного средства, и может отображаться предупреждение, указывающее низкий уровень мочевины в бачке.

Например, рабочий запас хода транспортного средства и/или предупреждение о низком уровне мочевины могут отображаться на приборной панели транспортного средства. В некоторых примерах, водитель может уведомляться с помощью системы связи, такой как WIFI, Bluetooth, SYNC, или тому подобное. Например, контроллер может отправлять сообщение водителю с помощью системы связи. Сообщение может отображаться на устройстве отображения транспортного средства на приборной панели или в другом месте транспортного средства, отправляться на мобильное устройство водителя (например, посредством текстового сообщения), отправляться по электронной почте водителю, и т.д.

В других примерах, контроллер дополнительно или в качестве альтернативы может отправлять сообщение через систему связи, уведомляющее третью сторону о рабочем запасе хода транспортного средства, и/или предупреждение о низком уровне мочевины. Например, третья сторона может быть местным представительством по транспортным средствам, в котором водитель покупал транспортное средство, и/или которое водитель привлекает для технического обслуживания транспортного средства, или третья сторона может быть другим центром обслуживания транспортных средств.

Таким образом, рабочий запас хода транспортного средства может определяться на основании уровня мочевины в бачке для хранения текучей среды для отработавших газов. По определению рабочего запаса хода транспортного средства, водитель транспортного средства может уведомляться о рабочем запасе хода транспортного средства непосредственно контроллером через устройство отображения в транспортном средстве или сообщение, отправленное на пригодное вычислительное устройство, такое как мобильное устройство или персональный компьютер. Пользователь также может уведомляться о рабочем запасе хода транспортного средства через третью сторону, такую как местное представительство по транспортным средствам.

С обращением к фиг. 2B, она показывает блок-схему последовательности операций способа, иллюстрирующую примерную процедуру 200b для выполнения проверки качества мочевины после события дозаправки мочевиной и уведомления водителя транспортного средства о качестве мочевины. Например, на основании проверки качества мочевины, водитель транспортного средства может уведомляться об ухудшении качества мочевины или приемлемом качестве мочевины.

На 222 может определяться уровень мочевины в бачке для хранения текучей среды для отработавших газов. Уровень мочевины может определяться на основании измерения уровня датчиком уровня текучей среды для отработавших газов, таким как ультразвуковой датчик уровня, как описано со ссылкой на фиг. 1. Уровень мочевины дополнительно может быть основан на качестве отраженного сигнала, принятого ультразвуковым датчиком. Подробности об определении уровня мочевины в бачке будут дополнительно конкретизированы на фиг. 4.

Затем, на 224, может определяться, выявлена ли дозаправка раствора мочевины. Если да, процедура может переходить на 226, на котором проверка качества мочевины может выполняться для определения качества мочевины в дозаправленном бачке для хранения текучей среды для отработавших газов. Например, некоторые водители транспортных средств могут наполнять бачок для хранения текучей среды для отработавших газов водой вместо мочевины. Во время таких условий, достаточного количества мочевины может не быть в распоряжении для термического разложения на аммиак вследствие разбавления раствора мочевины водой. Как результат, каталитический нейтрализатор отработавших газов может быть истощен по восстановителю, и токсичные газы NOx в отработавших газах могут не восстанавливаться в достаточной мере. Следовательно, уровни выбросов NOx могут превышать предел, установленный нормами выбросов. Для того чтобы предотвращать чрезмерные выбросы NOx, проверка качества мочевины может выполняться после того, как было выявлено события дозаправки бачка для отработавших газов. Выполнение проверки качества мочевины может включать в себя определение уровней выбросов NOx. Уровни выбросов NOx могут определяться на основании датчиков NOx (описанных со ссылкой на фиг. 1), расположенных выше по потоку и ниже по потоку от каталитического нейтрализатора отработавших газов.

По определению уровней выбросов NOx, на 228, процедура может проверять, превысили ли уровни выбросов NOx пороговый предел. Если да, то, на 230, водитель может уведомляться о плохом качестве мочевины с принуждением водителя транспортного средства предпринимать подходящее действие для предотвращения чрезмерных выбросов NOx из транспортного средства. Если, на 230, уровни выбросов NOx не являются большими, чем пороговое значение, может определяться, что мочевина приемлемого качества присутствует в бачке для хранения текучей среды для отработавших газов и, на 232, водитель может уведомляться о приемлемом качестве мочевины. Например, уведомление касательно качества мочевины может отображаться на приборной панели транспортного средства. В некоторых примерах, водитель может уведомляться о качестве мочевины в бачке с помощью системы связи, такой как WIFI, Bluetooth, SYNC, или тому подобное. Например, контроллер может отправлять сообщение водителю с помощью системы связи. Сообщение может отображаться на устройстве отображения транспортного средства на приборной панели или в другом месте транспортного средства, отправляться на мобильное устройство водителя (например, посредством текстового сообщения), отправляться по электронной почте водителю, и т. д.

В других примерах, контроллер дополнительно или в качестве альтернативы может отправлять сообщение через систему связи, уведомляющее третью сторону о качестве мочевины, дозаправленной в бачке для хранения текучей среды для отработавших газов. Например, третья сторона может быть местным представительством по транспортным средствам, в котором водитель покупал транспортное средство, и/или которое водитель привлекает для технического обслуживания транспортного средства, или третья сторона может быть другим центром обслуживания транспортных средств.

Возвращаясь на 224, если дозаправка раствора мочевины не выявлена, то, на 234, контроллер может отменять запуск проверки качества мочевины.

Таким образом, дозаправка раствора мочевины может выявляться на основании уровня мочевины в бачке для хранения текучей среды для отработавших газов. По выявлению дозаправки, может выполняться проверка качества мочевины, и водитель транспортного средства может уведомляться о качестве мочевины в бачке после события дозаправки. Посредством выполнения проверки качества мочевины после каждого события дозаправки, могут контролироваться рабочие характеристики каталитического нейтрализатора, и могут регулироваться уровни выбросов NOx.

Фиг. 2C показывает блок-схему последовательности операций способа, иллюстрирующую процедуру 200c для отображения величины наполнения бачка для хранения мочевины водителю транспортного средства.

На 238 процедуры 200c измеряется уровень мочевины. Например, уровень мочевины может определяться на основании измерений уровня с датчика уровня мочевины, такого как ультразвуковой датчик уровня, описанный выше со ссылкой на фиг. 1. Уровень мочевины дополнительно может быть основан на качестве отраженного сигнала, принятого датчиком уровня. Подробности об измерении уровня мочевины будут конкретизированы на фиг. 4. В одном из примеров, контроллер может запрашивать указание уровня мочевины из датчика уровня мочевины. В еще одном примере, датчик уровня мочевины может отправлять сигнал, указывающий уровень мочевины, в контроллер с предопределенными интервалами, и контроллер может использовать уровень мочевины из последнего показания датчика уровня мочевины.

Как только уровень мочевины измерен, процедура 200 переходит на 240, где определяется количество мочевины, необходимое для наполнения бачка для хранения мочевины до максимального уровня. В качестве примера, контроллер может иметь хранимый уровень максимального наполнения бачка для хранения текучей среды для отработавших газов. На основании уровня мочевины, определенного на 238, контроллер может рассчитывать количество мочевины, которое должно быть добавлено в бачок для хранения мочевины, чтобы наполнить бачок для хранения мочевины до уровня максимального наполнения. Другими словами, контроллер может определять количество максимального наполнения мочевины.

На 242, водитель транспортного средства уведомляется о количестве мочевины, которое должно быть добавлено в бачок для хранения мочевины. Например, количество максимального наполнения мочевины может отображаться на приборной панели транспортного средства с помощью индикаторной лампы. В некоторых примерах, водитель может уведомляться о количестве максимального наполнения с помощью системы связи, такой как WIFI, Bluetooth, SYNC, или тому подобное. Например, контроллер может отправлять сообщение водителю с помощью системы связи. Сообщение может отображаться на устройстве отображения транспортного средства на приборной панели или в другом месте транспортного средства, отправляться на мобильное устройство водителя (например, посредством текстового сообщения), отправляться по электронной почте водителю, и т. д.

В других примерах, контроллер дополнительно или в качестве альтернативы может отправлять сообщение через систему связи, уведомляющее третью сторону о количестве мочевины, которое должно быть добавлено в бачок для хранения мочевины. Например, третья сторона может быть местным представительством по транспортным средствам, в котором водитель покупал транспортное средство, и/или которое водитель привлекает для технического обслуживания транспортного средства, или третья сторона может быть другим центром обслуживания транспортных средств. В таком примере, третья сторона может использовать количество максимального наполнения для добавления корректного количества мочевины в бачок для хранения мочевины без переполнения бачка для