Естественный спусковой механизм
Иллюстрации
Показать всеСпусковой механизм (10), содержащий упор (30) между резонатором (20) и двумя анкерными колесными узлами (40А; 40В), каждый из которых подвержен действию крутящего момента и содержит намагниченную или ферромагнитную дорожку (50) в течение периода (PD); при этом упор (30) содержит по меньшей мере один намагниченный или ферромагнитный полюсный башмак (3), перемещающийся в поперечном направлении относительно направления движения поверхности (4) дорожки (50); полюсный башмак (3) или дорожка (50) создает магнитное поле между полюсным башмаком (3) и поверхностью (4), и полюсный башмак (3) встречается с барьером (46) магнитного поля на дорожке (50) непосредственно перед каждым поперечным перемещением упора (30), инициируемым за счет периодического срабатывания резонатора (20); каждый из анкерных колесных узлов (40А; 40В) взаимодействует по очереди с упором (30); указанные анкерные колесные узлы (40А; 40В) соединены друг с другом посредством прямой кинематической связи. 3 н. и 21 з.п. ф-лы, 35 ил.
Реферат
Область техники, к которой относится изобретение
Объектом настоящего изобретения является спусковой (анкерный) механизм часов, содержащий упор между резонатором с одной стороны и двумя анкерными колесными узлами с другой стороны, на каждый из которых воздействует крутящий момент.
Объектом настоящего изобретения является также часовой механизм, содержащий по меньшей мере один такой спусковой механизм.
Объектом настоящего изобретения являются также часы, содержащие по меньшей мере один такой часовой механизм и/или по меньшей мере один такой спусковой механизм.
Настоящее изобретение относится к области часовых механизмов для передачи движения, в частности к области спусковых механизмов.
Уровень техники
Традиционный анкерный спуск швейцарских часов является очень широко распространенным устройством, представляющим собой часть регулирующего элемента механических часов. Данный механизм дает возможность одновременно поддерживать движение резонатора пружинного баланса и синхронизировать вращение механизма передачи с резонатором.
Для выполнения данных функций анкерное колесо взаимодействует с анкерной вилкой с помощью силы механического контакта, и в традиционном анкерном спуске швейцарских часов используется такой механический контакт между анкерным колесом и швейцарским рычагом для выполнения первой функции передачи энергии от анкерного колеса к пружинному балансу, с одной стороны, и выполнения, с другой стороны, второй функции, заключающейся в спуске и запирании анкерного колеса в рывках, таким образом, чтобы он перемещался на один шаг при каждой вибрации баланса.
Механический контакт, необходимый для выполнения указанных первой и второй функций, снижает эффективность, изохронность, запас хода и срок службы часов.
Различные проводившиеся исследования предлагали синхронизировать вращение колеса привода с помощью механического резонатора за счет использования силы бесконтактного взаимодействия, такого как в спусковом механизме системы "Клиффорд". Во всех этих системах используется сила взаимодействия магнитного происхождения, что позволяет передавать энергию от колеса привода к резонатору со скоростью, определяемой собственной частотой резонатора. Однако все они имеют тот же недостаток, заключающийся в невозможности выполнения второй функции, т.е. надежного спуска и запирания анкерного колеса рывками. В частности, вследствие ударного воздействия может произойти десинхронизация колеса и механического резонатора, в результате чего регулирующие функции более не будут обеспечиваться.
В документе US 3518464 (заявитель KAWAKAMI TSUNETA) раскрывается электромагнитный механизм привода колеса резонатором. В данном документе указывается, что использование магнитного приводного механизма и системы спуска оказывает неблагоприятное воздействие на частоту. Данный механизм содержит вибрационную полоску, но не содержит упора, и, разумеется, не имеет мультистабильного опорного элемента. При вращении колеса и в фиксированном положении резонатора сила взаимодействия колеса и резонатора постепенно изменяется от минимального (отрицательного) до максимального (положительного) значения в угловом периоде.
В патенте Германии на полезную модель №1935486U (заявитель JUNGHANS) описывается приводной механизм с электромагнитными фиксаторами. Этот механизм также содержит вибрационную полоску, но не содержит упора, и, разумеется, не содержит мультистабильного опорного элемента. Данный механизм содержит рампы и барьеры, использующие комбинированные и одновременные перемещения колеса и резонатора.
В документе US 3183426А (заявитель HAYDON ARTHUR) описывается полностью магнитный спусковой механизм, содержащий магнитное анкерное колесо, в котором энергия непрерывно и постепенно изменяется от минимума до максимума при поворачивании колеса на ½ периода, а затем снова возвращается к минимальному значению при вращении колеса в последующей ½ периода. Иными словами, действующая на колесо магнитная сила изменяется постепенно от минимального (отрицательного) до максимального (положительного) значения в угловом периоде.
Раскрытие изобретения
Настоящее изобретение предлагает заменить силу механического контакта между палетами и анкерным колесом силой бесконтактного взаимодействия магнитного или электромагнитного характера, с устройством, обеспечивающим надежное и безопасное осуществление второй функции спуска и запирания анкерного колеса рывками.
С этой целью, настоящим изобретением предлагается спусковой механизм для часов, содержащий упор между резонатором с одной стороны и с другой стороны первым анкерным колесным узлом и вторым анкерным колесным узлом, на каждый из которых действует крутящий момент, отличающийся тем, что каждый указанный анкерный колесный узел содержит по меньшей мере одну намагниченную или ферромагнитную или, соответственно, электрически заряжаемую или электростатически проводящую дорожку с периодом прохождения, в течение которого его магнитные или, соответственно, электростатические характеристики повторяются, причем указанный упор содержит по меньшей мере один намагниченный или ферромагнитный, или, соответственно, электрически заряжаемый или электростатически проводящий полюсный башмак, причем указанный полюсный башмак может перемещаться в поперечном направлении относительно направления перемещения по меньшей мере одного элемента поверхности указанной дорожки, и по меньшей мере указанный полюсный башмак или указанная дорожка создают магнитное или электростатическое поле в воздушном зазоре между указанным по меньшей мере одним полюсным башмаком и указанной по меньшей мере одной поверхностью, а также тем, что указанный полюсный башмак встречается с барьером магнитного или электростатического поля на указанной дорожке непосредственно перед каждым поперечным перемещением указанного упора, инициируемым за счет периодического срабатывания указанного резонатора, причем указанный первый анкерный колесный узел, на который действует первый крутящий момент, и указанный второй анкерный колесный узел, на который действует второй крутящий момент, могут поочередно взаимодействовать с указанным упором, а указанный первый анкерный колесный узел и указанный второй анкерный колесный узел вращаются относительно отдельных осей и соединены друг с другом посредством прямой кинематической связи.
Объектом настоящего изобретения является также часовой механизм, содержащий по меньшей мере один такой спусковой механизм.
Объектом настоящего изобретения являются также часы, содержащие по меньшей мере один такой часовой механизм и/или по меньшей мере один такой спусковой механизм.
Краткое описание чертежей
Другие отличительные признаки и преимущества данного изобретения станут более ясными после ознакомления с приведенным ниже его подробным описанием со ссылками на приложенные чертежи.
На фиг. 1 показано схематичное изображение первого варианта реализации спускового механизма согласно настоящему изобретению, содержащего упор в виде анкерной вилки магнитного полюсного башмака на палетном рычаге, взаимодействующего с анкерным колесом, намагничиваемым несколькими дополнительными концентрическими дорожками, каждая из которых содержит несколько намагниченных областей различной интенсивности, которые создают различные отталкивающие силы, действующие на полюсный башмак анкерной вилки, когда последняя находится в непосредственной близости от указанных намагниченных областей, находящихся непосредственно рядом с двумя соседними концентрическими дорожками, также имеющими различные уровни намагниченности. На фиг. 1 показан упрощенный вариант исполнения с двумя дорожками (внутренней и внешней).
На фиг. 2 представлена схема (вид сверху) распределения потенциальной энергии магнитного взаимодействия полюсного башмака анкерной вилки, изображенной на фиг. 1, в зависимости от его положения относительно анкерного колеса, а ступенчатая линия демонстрирует траекторию полюсного башмака анкерной вилки при работе, последовательно проходящего над внутренней и внешней дорожками, показанными на фиг. 1.
На фиг. 3 приведен график для первого варианта реализации, показанного на фиг. 1 и 2, иллюстрирующий изменение потенциальной энергии (по оси ординат) в направлении вдоль намагниченных дорожек в зависимости от центрального угла (по оси абсцисс), для каждой из двух дорожек, показанных на фиг. 1; зависимость для внутренней дорожки показана сплошной линией, для внешней дорожки - пунктирной линией. Этот график демонстрирует накопление потенциальной энергии, полученной от анкерного колеса на участках Р1-Р2 и Р3-Р4, каждый из которых соответствует половине периода, и возврат указанной энергии анкерной вилкой и передачу данной энергии балансу, когда полюсный башмак Р2-Р3 и Р4-Р5 переходит на другую дорожку.
На фиг. 4 представлено схематичное перспективное изображение второго варианта реализации спускового механизма согласно настоящему изобретению, содержащего анкерную вилку с несколькими магнитными башмаками, в данном случае, в виде двух вилочных элементов, каждый из которых имеет два полюсных башмака на каждой стороне плоскости анкерного колеса, причем два вилочных элемента расположены с каждой стороны точки поворота анкерной вилки, аналогично расположению палетных камней обычного швейцарского рычага. На анкерном колесе выполнен ряд рамп, каждая из которых представляет собой последовательность магнитов изменяющейся и увеличивающейся интенсивности; каждая рампа ограничена барьером магнитов, причем данные различные магниты последовательно взаимодействуют с двумя вилочными элементами анкерной вилки.
На фиг. 5 приведено поперечное сечение вилочного элемента анкерной вилки, изображенной на фиг. 4, и показано направление полей различных намагниченных участков анкерной вилки и анкерного колеса.
На фиг. 6 показано поперечное сечение в поперечной плоскости, в которой происходит взаимодействие анкерного колесного узла и упора согласно настоящему изобретению, для различных вариантов расположения магнитов, взаимодействующих с целью концентрации магнитного поля в зоне воздушного зазора.
На фиг. 7-10 показано поперечное сечение по плоскости, проходящей через ось анкерного колесного узла противоположного полюсного башмака упора в положении взаимодействия их соответствующих структур в различных вариантах реализации.
На фиг. 7 изображена расположенная на анкерном колесе намагниченная структура изменяемой толщины или интенсивности, взаимодействующая с магнитным полем, создаваемым магнитным контуром, выполненным заодно с анкерной вилкой; при вышеупомянутом взаимодействии происходит либо отталкивание, либо притяжение.
На фиг. 8 изображена расположенная на дорожке анкерного колеса ферромагнитная структура изменяемой толщины, создающая изменяемый воздушный зазор, взаимодействующий с магнитным полем, создаваемым магнитным контуром, выполненным заодно с анкерной вилкой.
На фиг. 9 изображено анкерное колесо с двумя дисками, выполненными из намагниченной структуры изменяемой толщины или интенсивности, расположенной на двух поверхностях анкерного колеса, взаимодействующих с магнитным полем, создаваемым магнитом, выполненным заодно с анкерной вилкой, окруженной двумя поверхностями; при взаимодействии может происходить отталкивание или притяжение.
На фиг. 10 показана структура, механически аналогичная показанной на фиг. 9, в которой на двух противоположных поверхностях анкерного колеса размещена ферромагнитная структура изменяемой толщины, создающая изменяемый воздушный зазор при взаимодействии с магнитным полем, создаваемым магнитом, выполненным заодно с анкерной вилкой.
На фиг. 11-14 представлено схематичное изображение распределения магнитного поля в поперечной плоскости, проходящей через ось вращения анкерного колеса механизма, изображенного на фиг. 1, на двух дополнительных дорожках (внутренней и внешней), для положений, соответствующих положениям, показанным на фиг. 2 и 3, фиг. 11 (точка Р1 и эквивалентный точке Р5 сдвиг на целый период), фиг. 12 (точка Р2), фиг. 13 (точка Р3), фиг. 14 (точка Р4).
На фиг. 15 представлена блок-схема часов, содержащих часовой механизм, включающий в себя спусковой механизм согласно настоящему изобретению.
На фиг. 16 показан вариант реализации, в котором анкерный колесный узел представляет собой цилиндр, а упор содержит подвижный полюсный башмак, расположенный вблизи образующей цилиндра.
На фиг. 17 изображен еще один вариант реализации изобретения, в котором анкерный колесный узел представляет собой непрерывную дорожку.
На фиг. 18 показано перемещение полюсного башмака, располагающегося рядом с поверхностью дорожки левого анкерного колесного узла.
На фиг. 19 продемонстрирована периодичность перемещения полюсного башмака вдоль дорожки, содержащей две параллельные дополнительные дорожки.
На фиг. 20-25 показаны профили рампы или барьера, и энергия, передаваемая для каждого из этих профилей.
На фиг. 26 частично показан вариант реализации изобретения, аналогичный варианту, представленному на фиг. 4, но содержащий два концентрических ряда магнитов увеличивающейся интенсивности намагничивания, на внутренней дорожке, поляризованной вверх, и на внешней дорожке поляризованной вниз.
На фиг. 27 схематично изображена ориентация силовых линий магнитного поля в поперечном сечении, соответствующем варианту реализации, показанному на фиг. 26.
На фиг. 28 показано распределение потенциала для того же самого примера, с центром дорожки, показанной пунктиром, и отходом, показанным сплошной линией.
На фиг. 28А показано изменение по периоду прохождения уровня энергии (верхний график) и тормозного момента (нижний график); верхний и нижний графики выровнены друг с другом по оси абсцисс.
На фиг. 29-34 показана конструкция спускового механизма согласно настоящему изобретению.
На фиг. 29, 30 представлены схематичные перспективные изображения данного спускового механизма, содержащего резонатор, образованный узлом обычного пружинного баланса, который взаимодействует с радиальным упором, взаимодействующим попеременно с первым или вторым из двух анкерных колесных узлов, соединенных зубчатой передачей, и включающим в себя множество магнитных путей, образующих рампы и барьеры для взаимодействия с полюсным башмаком упора; на фиг. 30 устройство изображено без зубчатых колес, соединяющих данные анкерные колесные узлы.
На фиг. 31-34 показана кинематическая схема (вид в плане), иллюстрирующая переменное взаимодействие упора с обоими указанными анкерными колесами.
Осуществление изобретения
Настоящее изобретение предлагает заменить обычную силу механического контакта упора с анкерным колесом бесконтактной силой магнитного или электростатического взаимодействия.
Объектом изобретения является спусковой механизм 10 часов, содержащий упор 30 между резонатором 20 и анкерным колесным узлом 40.
Согласно настоящему изобретению, этот анкерный колесный узел 40 содержит по меньшей мере одну намагниченную или ферромагнитную или, соответственно, электрически заряженную или электростатическую электропроводную дорожку 50, с периодом прохождения PD, в течение которого магнитные или, соответственно, электростатические характеристики повторяются.
Данное изобретение иллюстрируется на примере предпочтительного варианта реализации с поворачиванием на величину углового перемещения и периодом углового перемещения PD.
Геометрические и физические характеристики дорожки 50 в течение периода прохождения PD, в частности, ее состав (материалы), профиль, возможное покрытие, а также возможное намагничивание или электрическая зарядка, остаются неизменными.
Данный упор 30 содержит по меньшей мере один намагниченный или ферромагнитный, или, соответственно, электрически заряжаемый или электростатически проводящий полюсный башмак 3.
Полюсный башмак 3 может перемещаться в поперечном направлении DT относительно направления перемещения DD по меньшей мере одного компонента поверхности 4 дорожки 50. При таком перемещении в поперечном направлении полюсный башмак не покидает полностью пределы соответствующей дорожки; разумеется, конструкция зависит от варианта реализации, и в некоторых из них полюсный башмак покидает дорожку во время части своего перемещения.
По меньшей мере полюсный башмак 3 или дорожка 50 создают магнитное или электростатическое поле в воздушном зазоре 5 между указанным по меньшей мере одним полюсным башмаком 3 и указанной по меньшей мере одной поверхностью 4.
Полюсный башмак 3 встречается с барьером 46 магнитного или электростатического поля на дорожке 50 непосредственно перед каждым поперечным перемещением упора 30; данное поперечное перемещение обеспечивается периодическим срабатыванием резонатора 20.
Упор 30 является мультистабильным, т.е. может находиться по меньшей мере в двух устойчивых положениях.
Предпочтительно магнитное или электростатическое поле, создаваемое этим по меньшей мере одним полюсным башмаком 3 или дорожкой 50 в воздушном зазоре 5 между по меньшей мере одним полюсным башмаком 3 и данной по меньшей мере одной поверхностью 4, создает крутящий момент или силу, воздействующую по меньшей мере на один полюсный башмак 3 и по меньшей мере на одну поверхность 4. Данный крутящий момент или сила представляют собой периодические тормозной момент или силу, соответствующую периоду углового перемещения PD, которые начинаются с нулевого значения крутящего момента или силы; первый полупериорд содержит потенциальную рампу, где крутящий момент или сила являются практически постоянными и приблизительно равны первому значению V1; вторая половина периода содержит потенциальный барьер, в котором указанный тормозной момент или пара сил возрастают и достигают максимального второго значения V2, которое по меньшей мере в три раза больше первого значения V1 и одного знака с первым значением V1, как показано на фиг. 28А.
В частности, на каждой дорожке 50 перед каждым барьером 46 установлена рампа 45, взаимодействующая по нарастающей с полюсным башмаком 3 с помощью магнитного или, соответственно, электростатического поля, интенсивность которого изменяется таким образом, чтобы создать увеличивающуюся потенциальную энергию; эта рампа 45 берет энергию от анкерного колесного узла 40, и каждый потенциальный барьер является более крутым, чем каждая потенциальная рампа.
Более конкретно, в анкерном колесном узле 40 между двумя соседними рампами 45 одной и той же дорожки 50 или между двумя соседними дорожками 50 в направлении перемещения DD имеется потенциальный барьер магнитного или, соответственно, электростатического поля, служащий для инициирования паузы в работе анкерного колесного узла 40 перед отклонением упора 30 в результате периодического воздействия осциллятора 2.
В частности, как показано на фиг. 28А, крутящий момент или сила являются периодически действующими крутящим моментом или силой, изменяющимися в зависимости от периода углового перемещения PD. Далее, начиная с нулевого крутящего момента или силы в начале периода PD, интенсивность крутящего момента или силы является положительной, и их величина возрастает на протяжении первого угла Т1 до тех пор, пока не достигнет горизонтального участка с практически постоянным значением V1 при втором угле Т2; сочетание первого угла Т1 и второго угла Т2 образует потенциальную рампу, до тех пор, пока не будет достигнуто пороговое значение S, после чего интенсивность возрастает до второго максимального значения V2, более высокого, чем первое значение V1, на протяжении третьего угла Т3. В момент окончания третьего угла Т3 имеет место пик МС (максимальный уровень крутящего момента или силы) со вторым значением V2, после чего интенсивность крутящего момента или силы падает на протяжении четвертого угла Т4, достигая нулевого значения, которое соответствует максимальному уровню энергии ME. Сочетание третьего угла Т3 и четвертого угла Т4 образует потенциальный барьер, при котором крутящий момент или сила являются положительными. За этой точкой на протяжении пятого угла Т5 крутящий момент или сила продолжают уменьшаться до минимальной отрицательной интенсивности в нижней точке mc, а затем на протяжении шестого угла Т6 снова возрастают до положительной величины и начала следующего периода, где TD=T1+T2+T3+T4+T5+T6, причем Т1+Т2≥TD/2.
Более конкретно, барьер 46 образует разрывный порог за счет резкого увеличения или снижения крутящего момента или силы в момент перемещения, соответствующий третьему углу Т3, причем данный третий угол Т3 меньше 1/3 второго угла Т2.
В частности, второе максимальное значение V2 более чем в шесть раз больше первого значения V1.
Предпочтительно механизм 10 содержит также механическое останавливающее средство, служащее для предотвращения перехода упора 30 на отрицательный крутящий момент на протяжении пятого угла Т5 или шестого угла Т6 во втором полупериоде.
В конкретном варианте реализации изобретения данный спусковой механизм 10 аккумулирует энергию, получаемую от анкерного колесного узла 40 на протяжении каждой половины периода PD, сохраняет часть ее в виде потенциальной энергии и периодически возвращает на резонатор 20. В качестве аналогии, такое аккумулирование энергии эквивалентно постепенному подзаводу пружины механизма. Данное возвращение энергии имеет место между этими полупериодами, во время поперечного перемещения упора 30 за счет периодического срабатывания резонатора 20. Затем полюсный башмак 3 переходит от первой половины поперечного перемещения PDC относительно анкерного колесного узла 40 ко второй половине поперечного перемещения DDC относительно анкерного колесного узла 40, или наоборот. Полюсный башмак 3 встречается с барьером 46 магнитного или электростатического поля на дорожке 50 непосредственно перед каждым поперечным перемещением упора 30, обеспечиваемым периодическим срабатыванием резонатора 20 посредством качания и перехода от одной половины поперечного перемещения к другой.
В конкретном варианте реализации магнитное или электростатическое поле, создаваемое полюсным башмаком 3 и/или дорожкой 50, имеет более высокую интенсивность на первой половине перемещения PDC, чем на второй половине перемещения DDC, на первой половине указанного периода прохождения PD, и более высокую интенсивность на второй половине перемещения DDC, чем на первой половине перемещения PDC, на второй половине периода прохождения PD.
Более конкретно, резонатор 20 содержит по меньшей мере один периодически перемещающийся осциллятор 2. Анкерный колесный узел 40 приводится в действие за счет источника энергии типа пружинного барабана или аналогичного элемента. Упор 30 обеспечивает, во-первых, выполнение первой функции, заключающейся в передаче энергии от анкерного колесного узла 40 на резонатор 20, и, во-вторых, выполнение второй функции, заключающейся в освобождении и запирании рывками анкерного колеса 40 для смещения его на один шаг при перемещении упора 30 за счет срабатывания резонатора 20 при каждом колебании осциллятора 2. Эта по меньшей мере одна дорожка 50 перемещается по траектории движения TD.
Предпочтительно каждый полюсный башмак 3 перемещается в поперечном направлении DT относительно дорожки 50 на первой половине перемещения PDD и на второй половине перемещения DDC с обеих сторон от фиксированного среднего положения РМ, по поперечной траектории ТТ, предпочтительно, практически перпендикулярной траектории движения TD дорожки 50.
Между полюсным башмаком 3 и поверхностью 4 дорожки имеется воздушный зазор 5, который дорожка 50 и/или полюсный башмак 3 создают с помощью магнитного или электростатического поля и который позволяет создавать систему магнитных или электростатических сил, воздействующих на упор 30 и анкерный колесный узел 40, вместо сил механического контакта, используемых в известном уровне техники.
Спусковой механизм 10 согласно настоящему изобретению аккумулирует потенциальную энергию, получаемую от источника энергии через анкерный колесный узел 40 на каждой первой или второй половине периода прохождения PD. Полюсный башмак 3 встречается с барьером 46 магнитного или электростатического поля на участке дорожки 50, в сторону которого он перемещается, непосредственно перед поперечным перемещением упора 30, обеспечиваемым периодическим срабатыванием резонатора 20. Именно в этот момент спусковой механизм 10 возвращает соответствующую энергию на осциллятор 2 при поперечном перемещении упора 30, периодически инициируемом резонатором 20 между первой и второй половинами периода прохождения PD. Во время этого поперечного перемещения полюсный башмак 3 переходит от первой половины перемещения PDC ко второй половине перемещения DDC, или наоборот.
Анкерный колесный узел 40 может быть выполнен по-разному: в стандартной форме, в виде анкерного колеса 400, как показано на фиг. 1, 4 и 29, в виде двойного колеса, как показано на фиг. 9 и 10, в виде цилиндра, как показано на фиг. 16, в виде непрерывной дорожки, как показано на фиг. 17, а также в какой-либо другой форме. В настоящем описании рассматривается общий случай колесного узла (не обязательно поворачивающегося) и производителю предоставляется самому решать, каким образом следует использовать его в конкретном варианте, в частности, в случае одинарного или составного колеса.
Предпочтительно характеристики магнитного или электростатического поля изменяются при переходе от первой половины перемещения PDC ко второй половине перемещения DDC, со сдвигом по фазе, равным полупериоду перемещения PD между дорожкой 50 и полюсным башмаком 3. Однако данное устройство также может работать с различными интенсивностями поля, учитывая в то же самое время различные скорости распределения поля между различными участками. Такой случай может иметь место, например, в варианте реализации, показанном на фиг. 1, при котором угловые участки, ограниченные различными радиусами, не обязательно будут иметь в точности одинаковые характеристики.
Здесь под поперечным направлением DT подразумевается направление, по существу параллельное поперечной траектории перемещения ТТ полюсного башмака 3, или направленное по касательной к данному направлению в среднем положении РМ, как показано на фиг. 18.
В данном случае осевым направлением DA считается направление, перпендикулярное как поперечному направлению DT, по существу параллельному поперечной траектории ТТ полюсного башмака, так и направлению перемещения DF дорожки 50, направленному по касательной к траектории движения TD в среднем положении РМ.
Под плоскостью РР дорожки понимается плоскость, образуемая средним положением РМ, поперечным направлением DT и направлением перемещения DF.
Предпочтительно, по меньшей мере один из двух противоположных компонентов (термин "противоположные" здесь означает, что данные два компонента расположены напротив друг друга, но отсутствуют какие-либо силы отталкивания, взаимное столкновение или какое-либо иное взаимодействие), сформированных полюсным башмаком 3 и дорожкой 50 с поверхностью 4, обращенной в сторону полюсного башмака, по меньшей мере в части своего относительного перемещения в воздушном зазоре 5, содержит активное магнитное или, соответственно, электростатическое средство, служащее для создания такого магнитного или, соответственно, электростатического поля.
Термин "активное" в настоящем описании означает, что данное средство создает поле, а термин "пассивное" означает, что средство подвергается воздействию данного поля. Термин "активное" не означает, что через данный компонент проходит электрический ток.
В конкретном варианте реализации составляющая данного поля в осевом направлении DA больше составляющей в плоскости РР дорожки, на их поверхности сопряжения в воздушном зазоре 5 между полюсным башмаком 3 и противоположной поверхностью 4.
В конкретном варианте реализации направление этого магнитного или электростатического поля по существу параллельно осевому направлению DA анкерного колесного узла 40. Выражение "по существу параллельно" относится к полю, составляющая которого в осевом направлении DA по меньшей мере в четыре раза больше составляющей в плоскости PP.
Таким образом, другой противоположный компонент в воздушном зазоре 5 содержит либо пассивное магнитное, либо, соответственно, электростатическое средство для взаимодействия с созданным полем, или также активное магнитное или, соответственно, электростатическое средство для создания магнитного или, соответственно, электростатического поля в воздушном зазоре 5, причем указанное поле может способствовать или противодействовать полю, создаваемому первым компонентом, таким образом, чтобы генерировать отталкивающее или, наоборот, притягивающее усилие в воздушном зазоре 5.
В конкретном варианте реализации изобретения, показанном на фиг. 1, и во втором варианте реализации, представленном на фиг. 4, упор 30 установлен между резонатором 20, содержащим пружинный баланс 2 с осью А вращения, и по меньшей мере одним анкерным колесом 400, вращающимся относительно оси D вращения (которая совместно с осью А вращения пружинного баланса определяет начальное угловое направление DREF). Данный упор 30 обеспечивает осуществление второй функции, заключающейся в освобождении и запирании анкерного колесного узла 40 рывками для смещения его на один шаг при каждом колебании пружинного баланса 2.
Полюсный башмак 3 по меньшей мере в части своего движения в поперечном направлении перемещается по меньшей мере над одним элементом поверхности 4 анкерного колесного узла 40. В представленном на фиг. 1 первом варианте реализации полюсный башмак всегда находится над поверхностью 4, в то время как во втором варианте, показанном на фиг. 4, упор 30 содержит два полюсных башмака 3А, 3В, каждый из которых находится над поверхностью 4 в течение одного полупериода и удален от поверхности 4 в течение другого полупериода, находясь в положении, в котором какое бы то ни было магнитное или электростатическое взаимодействие между ними является пренебрежимо малым.
В одном из возможных вариантов реализации каждый из двух противоположных компонентов с обеих сторон воздушного зазора 5 между полюсным башмаком 3 и поверхностью 4 дорожки 50, обращенной в сторону полюсного башмака, по меньшей мере в части своего относительного перемещения содержит активное магнитное или, соответственно, электростатическое средство, служащее для создания магнитного или, соответственно, электростатического поля в направлении, по существу параллельном осевому направлению DA на поверхности сопряжения в воздушном зазоре 5.
В предпочтительном варианте исполнения полюсный башмак 3 и/или дорожка 50 с опорной поверхностью 4, обращенной в сторону полюсного башмака в воздушном зазоре 5, содержит магнитное или, соответственно, электростатическое средство, служащее для создания в воздушном зазоре 5 по меньшей мере в одной поперечной плоскости, определяемой средним положением РМ полюсного башмака 3, поперечным направлением DT и осевым направлением DA, и в поперечном диапазоне относительного перемещения, в указанном поперечном направлении полюсного башмака 3 и поверхности 4, магнитного или, соответственно, электростатического поля переменной и ненулевой интенсивности, интенсивность которого соответствует как поперечному положению полюсного башмака 3 в поперечном направлении DT, так и периодичности по времени.
В конкретном варианте реализации изобретения каждый такой полюсный башмак 3 и каждая такая дорожка 50 с поверхностью 4, обращенной к полюсному башмаку, содержит такое магнитное или, соответственно, электростатическое средство, которое способно создавать магнитное или, соответственно, электростатическое поле между по меньшей мере одним таким полюсным башмаком 3 и по меньшей мере одной поверхностью 4, по меньшей мере в указанной поперечной плоскости РТ. Данное магнитное или, соответственно, электростатическое поле, создаваемое этими противоположными компонентами, является полем изменяемой и ненулевой интенсивности, зависящей как от радиального положения полюсного башмака 3 в поперечном направлении DT, так и от периодичности по времени.
Разумеется, должны быть обеспечены условия для создания силы магнитного или электростатического происхождения между упором 30 и анкерным колесным узлом 40 для обеспечения привода или, наоборот, торможения между этими двумя компонентами без какого-либо механического контакта между ними.
Условия создания магнитного или электростатического поля одним из этих компонентов и принятия данного поля противоположным компонентом, который также способен создавать магнитное или электростатическое поле, дают возможность осуществления операций различных типов за счет взаимного притяжения или отталкивания данных противоположных компонентов. В частности, многоуровневые архитектуры позволяют уравновешивать крутящие моменты и силы в направлении качания анкерного колесного узла 40 (в частности, в направлении оси вращения, если узел 40 совершает вращательное движение относительно единой оси), и сохранять неизменное относительное положение упора 30 и анкерного колесного узла 40 в осевом направлении DA, как будет показано ниже.
В конкретном варианте реализации изобретения составляющая магнитного или, соответственно, электростатического поля в направлении DA, не меняет своего направления во всем диапазоне относительного перемещения полюсного башмака 3 и противоположной поверхности 4.
Возможны различные конфигурации, в зависимости от природы поля, а также от того, выполняют упор 30 и/или анкерный колесный узел 40 активную или пассивную функцию в создании магнитного или электростатического поля по меньшей мере в одном воздушном зазоре между упором и анкерным колесным узлом 40. В действительности, может быть несколько воздушных зазоров 5 между различными полюсными башмаками 3 упора 30 и различными дорожками анкерного колесного узла 40. Различные неограничивающие предпочтительные варианты реализации описаны ниже.
Так, в одном из возможных вариантов каждый полюсный башмак на упоре 30 представляет собой постоянный или, соответственно, электрически заряжаемый магнит, который создает постоянное магнитное или, соответственно, электростатическое поле, а каждая поверхность 4, взаимодействующая с каждым полюсным башмаком 3, образует с соответствующим полюсным башмаком 3 воздушный зазор 5, в котором образуется магнитное или, соответственно, электростатическое поле, изменяющееся в зависимости от продвижения анкерного колесного узла 40 по своей траектории, а также от положения в поперечном направлении соответствующего полюсного башмака 3 относительно анкерного колесного узла 40, и связано с угловым перемещением упора 30, если он поворачивается, как в случае с анкерной вилкой, или с его перемещением в поперечном направлении, если он приводится каким-либо иным способом резонатором 20.
В еще одном из возможных вариантов каждый полюсный башмак на упоре 30 выполнен из постоянно-ферромагнитного или, соответственно, электростатически проводящего материала, а каждая поверхность 4, взаимодействующая с каждым полюсным башмаком 3, образует с соответствующим полюсным башмаком 3 воздушный зазор 5, в котором образуется магнитное или, соответственно, электростатическое поле, изменяющееся в зависимости от продвижения анкерного колесного узла 40 по своей траектории, а также от положения в поперечном направлении соответствующего полюсного башмака 3 относительно анкерного колесного узла 40, и связано с угловым перемещением упора 30, если он поворачивается, как в случае с анкерной вилкой, или с его перемещением в поперечном направлении, если он приводится каким-либо иным способом резонатором 20.
В еще одном возможном варианте каждая дорожка 50 с противоположной поверхностью 4 представляет собой постоянный или, соответственно, электрически заряжаемый однородный магнит, и создает постоянное магнитное или, соответственно, электростатическое поле на своей поверхности, обращенной к соответствующему полюсному башмаку