Эффективный механизм отбрасывания при развертывании небольших сот

Иллюстрации

Показать все

Изобретение относится к области радиосвязи. Техническим результатом является повышение эффективности отбрасывания данных нисходящей линии связи, предназначенных для мобильной станции, присоединенной как к ведущей базовой станции, так и ко вторичной базовой станции. Ведущая базовая станция конфигурирует вторичную функцию отбрасывания на нижнем уровне вторичной базовой станции на основе ведущей функции отбрасывания на верхнем уровне ведущей базовой станции. Ведущая базовая станция перенаправляет пакет данных из верхнего уровня на нижний вторичной базовой станции. Вторичная функция отбрасывания нижнего уровня во вторичной базовой станции отбрасывает принимаемый пакет данных после истечения вторичного таймера, запускаемого посредством нижнего уровня при приеме пакета данных из верхнего уровня в ведущей базовой станции. 5 н. и 24 з.п. ф-лы, 1 табл., 39 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее раскрытие сущности относится к способам для отбрасывания пакетов данных для мобильной станции, присоединенной к двум базовым станциям одновременно. Настоящее раскрытие сущности также предоставляет базовые станции для осуществления способов, описанных в данном документе.

Уровень техники

Проект долгосрочного развития (LTE)

Мобильные системы третьего поколения (3G) на основе технологии радиодоступа WCDMA широкомасштабно развертываются по всему миру. Первый этап совершенствования или развития этой технологии влечет за собой введение высокоскоростного пакетного доступа по нисходящей линии связи (HSDPA) и усовершенствованной восходящей линии связи, также называемого "высокоскоростным пакетным доступом по восходящей линии связи (HSUPA)", что обеспечивает очень конкурентоспособную технологию радиодоступа.

Чтобы подготавливаться к постоянно растущим запросам пользователей и сохранять конкурентоспособность относительно новых технологий радиодоступа, 3GPP ввело новую систему мобильной связи, которая называется "проектом долгосрочного развития (LTE)". LTE разработан в соответствии с потребностями в несущих для высокоскоростной транспортировки данных и мультимедиа, а также в поддержке передачи речи с высокой пропускной способностью на следующее десятилетие. Способность предоставлять высокие скорости передачи битов является ключевым показателем для LTE.

Спецификация рабочих элементов (WI) в проекте долгосрочного развития (LTE), называемых "усовершенствованным наземным радиодоступом UMTS (UTRA)" и "наземной сетью радиодоступа UMTS (UTRAN)", завершена в качестве версии 8 (LTE версия 8). LTE-система представляет эффективный радиодоступ с коммутацией пакетов и сети радиодоступа, которые предоставляют полные функциональности на основе IP с небольшим временем задержки и низкими затратами. В LTE, указывается несколько масштабируемых полос пропускания передачи, таких как 1,4, 3,0, 5,0, 10,0, 15,0 и 20,0 МГц, чтобы достигать гибкого развертывания системы с использованием данного спектра. В нисходящей линии связи радиодоступ на основе мультиплексирования с ортогональным частотным разделением каналов (OFDM) приспособлен благодаря его внутренне присущей устойчивости к помехам при многолучевом распространении (MPI) вследствие низкой скорости передачи символов, использования циклического префикса (CP) и похожести с различными компоновками полос пропускания передачи. Радиодоступ на основе множественного доступа с частотным разделением каналов с одной несущей (SC-FDMA) приспособлен в восходящей линии связи, поскольку обеспечение глобального покрытия приоритезировано относительно повышения пиковой скорости передачи данных с учетом ограниченной мощности передачи абонентского устройства (UE). Множество ключевых технологий радиодоступа с коммутацией пакетов используется, в том числе технологии передачи по каналу со многими входами и многими выходами (MIMO), и высокоэффективная структура передачи управляющих служебных сигналов достигается в LTE (версия 8/9).

Архитектура LTE

Общая архитектура показывается на фиг. 1, и более подробное представление E-UTRAN-архитектуры приводится на фиг. 2. E-UTRAN состоит из усовершенствованного узла B, предоставляющего оконечные узлы протокола пользовательской плоскости (PDCP/RLC/MAC/PHY) и плоскости управления (RRC) E-UTRA для абонентского устройства (UE). Усовершенствованный узел B (eNB) хостит физический уровень (PHY), уровни управления доступом к среде (MAC), управления радиосвязью (RLC) и протокола управления пакетными данными (PDCP), которые включают в себя функциональность сжатия заголовков и шифрования пользовательской плоскости. Он также предлагает функциональность управления радиоресурсами (RRC), соответствующую плоскости управления. Он выполняет множество функций, в том числе управление радиоресурсами, управление доступом, диспетчеризацию, обеспечение согласованного качества обслуживания (QoS) восходящей линии связи, широковещательную передачу информации соты, шифрование/расшифровку данных пользовательской плоскости и плоскости управления и сжатие/распаковку заголовков пакетов пользовательской плоскости нисходящей/восходящей линии связи. Усовершенствованные узлы B соединяются между собой посредством X2-интерфейса.

Усовершенствованные узлы B также соединяются посредством S1-интерфейса с EPC (усовершенствованное ядро пакетной коммутации), более конкретно, с MME (объект управления мобильностью) посредством S1-MME и с обслуживающим шлюзом (SGW) посредством S1-U. S1-интерфейс поддерживает отношение "многие-ко многим" между MME/обслуживающими шлюзами и усовершенствованными узлами B. SGW маршрутизирует и перенаправляет пакеты пользовательских данных, также выступая в качестве привязки для мобильности для пользовательской плоскости во время передач обслуживания между усовершенствованными узлами B и в качестве привязки для мобильности между LTE и другими 3GPP-технологиями (завершение S4-интерфейса и ретрансляция трафика между 2G/3G-системами и PDN GW). Для абонентских устройств в состоянии бездействия SGW завершает тракт данных нисходящей линии связи и инициирует поисковый вызов, когда данные нисходящей линии связи поступают для абонентского устройства. Он управляет и сохраняет контексты абонентского устройства, например, параметры службы однонаправленного IP-канала, информацию внутренней сетевой маршрутизации. Он также выполняет репликацию пользовательского трафика в случае законного перехвата.

MME является ключевым управляющим узлом для LTE-сети доступа. Он регулирует процедуру отслеживания и поисковых вызовов абонентского устройства в режиме бездействия, в том числе повторные передачи. Он участвует в процессе активации/деактивации однонаправленного канала и также регулирует выбор SGW для абонентского устройства при начальном присоединении и во время перебазирования узлов базовой сети (CN), участвующих в передаче обслуживания внутри LTE. Он регулирует аутентификацию пользователя (посредством взаимодействия с HSS). Передача служебных сигналов на не связанном с предоставлением доступа уровне (NAS) завершается в MME, и он также регулирует формирование и выделение временных идентификационных данных для абонентских устройств. Он проверяет авторизацию абонентского устройства, чтобы закрепляться в наземной сети мобильной связи общего пользования (PLMN) поставщика услуг, и принудительно активирует роуминговые ограничения абонентского устройства. MME является оконечной точкой в сети для шифрования/защиты целостности для передачи служебных NAS-сигналов и обрабатывает управление ключами защиты. Законный перехват служебных сигналов также поддерживается посредством MME. MME также предоставляет функцию плоскости управления для мобильности между LTE- и 2G/3G-сетями доступа с S3-интерфейсом, завершающимся в MME, из SGSN. MME также завершает S6a-интерфейс к собственному HSS для абонентских устройств в роуминге.

Структура компонентной несущей в LTE (версия 8)

Компонентная несущая нисходящей линии связи 3GPP LTE-системы подразделяется в частотно-временной области на так называемые субкадры. В 3GPP LTE, каждый субкадр разделен на два временных кванта нисходящей линии связи, как показано на фиг. 3, при этом первый временной квант нисходящей линии связи содержит область каналов управления (PDCCH-область) в первых OFDM-символах. Каждый субкадр состоит из данного числа OFDM-символов во временной области (12 или 14 OFDM-символов в 3GPP LTE (версия 8)), при этом каждый OFDM-символ охватывает полную полосу пропускания компонентной несущей. OFDM-символы в силу этого состоят из определенного числа символов модуляции, передаваемых на соответствующих поднесущих, как также показано на фиг. 4.

При условии системы связи с несколькими несущими, например, при использовании OFDM, которая, например, используется в проекте долгосрочного развития (LTE) 3GPP, наименьшая единица ресурсов, которая может назначаться посредством планировщика, составляет один "блок ресурсов". Блок физических ресурсов (PRB) задается как последовательных OFDM-символов во временной области (например, 7 OFDM-символов) и последовательных поднесущих в частотной области, как проиллюстрировано на фиг. 4 (например, 12 поднесущих для компонентной несущей). В 3GPP LTE (версия 8), блок физических ресурсов в силу этого состоит из элементов ресурсов, соответствующих одному временному кванту во временной области и 180 кГц в частотной области (для получения дальнейшей информации по сетке ресурсов нисходящей линии связи см., например, документ 3GPP TS 36.211, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)", раздел 6.2, доступный по адресу http://www.3gpp.org и содержащийся в данном документе по ссылке).

Один субкадр состоит из двух временных квантов, так что имеется 14 OFDM-символов в субкадре, когда используется так называемый "нормальный" CP (циклический префикс), и 12 OFDM-символов в субкадре, когда используется так называемый "расширенный" CP. Для терминологии, далее частотно-временные ресурсы, эквивалентные идентичным последовательным поднесущим, охватывающим полный субкадр, называются "парой блоков ресурсов", либо эквивалентно, "RB-парой" или "PRB-парой".

Термин "компонентная несущая" означает комбинацию нескольких блоков ресурсов в частотной области. В будущих версиях LTE, более не используется термин "компонентная несущая"; вместо этого, терминология изменяется на "соту", которая означает комбинацию ресурсов нисходящей линии связи и необязательно восходящей линии связи. Соединение между несущей частотой ресурсов нисходящей линии связи и несущей частотой ресурсов восходящей линии связи указывается в системной информации, передаваемой по ресурсам нисходящей линии связи.

Аналогичные допущения для структуры компонентной несущей также применимы к последующим версиям.

Агрегирование несущих в LTE-A для поддержки более широкой полосы пропускания

Частотный спектр для усовершенствованного стандарта IMT определен на Всемирной конференции по радиосвязи 2007 (WRC-07). Хотя определен полный частотный спектр для усовершенствованного стандарта IMT, фактическая доступная полоса пропускания частот отличается согласно каждому региону или стране. Тем не менее, согласно решению по доступной структуре частотного спектра, стандартизация радиоинтерфейса начата в партнерском проекте третьего поколения (3GPP). На съезде 3GPP TSG RAN #39 подтверждено описание практического исследования "Further Advancements for E-UTRA (LTE-Advanced)". Практическое исследование охватывает технологические компоненты, которые должны рассматриваться для развития E-UTRA, например, чтобы удовлетворять требованиям по усовершенствованному стандарту IMT.

Полоса пропускания, которую имеет возможность поддерживать система по усовершенствованному стандарту LTE, составляет 100 МГц, тогда как LTE-система может поддерживать только 20 МГц. В настоящее время, нехватка спектра радиочастот становится узким местом разработки беспроводных сетей, и в результате, затруднительно находить полосу частот спектра, которая является достаточно широкой для системы по усовершенствованному стандарту LTE. Следовательно, крайне необходимо находить способ получения более широкой полосы частот спектра радиочастот, при этом возможный ответ заключается в функциональности агрегирования несущих.

При агрегировании несущих, две или более компонентных несущих (компонентные несущие) агрегируются для того, чтобы поддерживать более широкие полосы пропускания передачи вплоть до 100 МГц. Несколько сот в LTE-системе агрегированы в один более широкий канал в системе по усовершенствованному стандарту LTE, который является достаточно широкой для 100 МГц, даже если эти соты в LTE находятся в различных полосах частот.

Все компонентные несущие могут быть выполнены с возможностью быть совместимыми с LTE версия 8/9, по меньшей мере, когда агрегированные числа компонентных несущих в восходящей линии связи и нисходящей линии связи являются идентичными. Не все компонентные несущие, агрегированные посредством абонентского устройства, обязательно могут быть совместимыми с версией 8/9. Существующий механизм (например, запрещение) может использоваться для того, чтобы исключать закрепление абонентских устройств версии 8/9 в компонентной несущей.

Абонентское устройство может одновременно принимать или передавать одну или несколько компонентных несущих (соответствующих нескольким обслуживающим сотам) в зависимости от своих характеристик. Абонентское устройство LTE-A версия 10 с характеристиками приема и/или передачи для агрегирования несущих может одновременно принимать и/или передавать на нескольких обслуживающих сотах, тогда как абонентское устройство LTE версия 8/9 может принимать и передавать только на одной обслуживающей соте при условии, что структура компонентной несущей соответствует техническим требованиям версии 8/9.

Агрегирование несущих поддерживается для смежных и несмежных компонентных несущих, причем каждая компонентная несущая ограничена максимумом 110 блоками ресурсов в частотной области с использованием численных данных 3GPP LTE (версия 8/9).

Можно конфигурировать совместимое с 3GPP LTE-A (версия 10) абонентское устройство с возможностью агрегировать различное число компонентных несущих, исходящих из идентичного усовершенствованного узла B (базовой станции), и возможно различных полос пропускания в восходящей линии связи и нисходящей линии связи. Число компонентных несущих нисходящей линии связи, которые могут быть сконфигурированы, зависит от возможностей агрегирования в нисходящей линии связи UE. С другой стороны, число компонентных несущих восходящей линии связи, которые могут быть сконфигурированы, зависит от возможностей агрегирования в восходящей линии связи UE. Может быть невозможным конфигурировать мобильный терминал с большим числом компонентных несущих восходящей линии связи по сравнению с компонентными несущими нисходящей линии связи.

В типичном TDD-развертывании, число компонентных несущих и полоса пропускания каждой компонентной несущей в восходящей линии связи и нисходящей линии связи являются идентичными. Компонентные несущие, исходящие из идентичного усовершенствованного узла B, не должны предоставлять идентичное покрытие.

Разнесение между центральными частотами непрерывно агрегированных компонентных несущих должно быть кратным 300 кГц. Это служит для того, чтобы обеспечивать совместимость с частотным растром в 100 кГц для 3GPP LTE (версия 8/9) и одновременно сохранять ортогональность поднесущих с разнесением в 15 кГц. В зависимости от сценария агрегирования, разнесение в nx300 кГц может быть упрощено посредством вставки низкого числа неиспользуемых поднесущих между смежными компонентными несущими.

Характер агрегирования нескольких несущих раскрывается только вплоть до MAC-уровня. Для восходящей линии связи и нисходящей линии связи, требуется один HARQ-объект в MAC для каждой агрегированной компонентной несущей. Предусмотрен (в отсутствие SU-MIMO для восходящей линии связи) самое большее один транспортный блок в расчете на компонентную несущую. Транспортный блок и его потенциальные повторные HARQ-передачи должны преобразовываться на идентичной компонентной несущей.

Структура уровня 2 с активированным агрегированием несущих показана на фиг. 5 и фиг. 6 для нисходящей линии связи и восходящей линии связи, соответственно.

Когда агрегирование несущих сконфигурировано, мобильный терминал имеет только одно RRC-соединение с сетью. При установлении/повторном установлении RRC-соединения, одна сота предоставляет входные данные системы безопасности (один ECGI, один PCI и один ARFCN) и информацию мобильности не связанного с предоставлением доступа уровня (например, TAI), аналогично LTE версия 8/9. После установления/повторного установления RRC-соединения, компонентная несущая, соответствующая этой соте, упоминается в качестве первичной соты нисходящей линии связи (PCell). Всегда конфигурируется одна и только одна PCell нисходящей линии связи (DL PCell) и одна PCell восходящей линии связи (UL PCell) в расчете на каждое абонентское устройство в присоединенном состоянии. В сконфигурированном наборе компонентных несущих, другие соты упоминаются в качестве вторичных сот (SCell), при этом несущие SCell представляют собой вторичную компонентную несущую нисходящей линии связи (DL SCC) и вторичную компонентную несущую восходящей линии связи (UL SCC). Характеристики PCell нисходящей линии связи и восходящей линии связи следующие:

1. Для каждой SCell, использование ресурсов восходящей линии связи посредством UE, в дополнение к ресурсам восходящей линии, может конфигурироваться; число сконфигурированных DL SCC, следовательно, всегда больше или равно числу UL SCC, и SCell не могут быть выполнены с возможностью использования только ресурсов восходящей линии связи

2. PCell восходящей линии связи используется для передачи управляющей информации восходящей линии связи уровня 1

3. PCell нисходящей линии связи не может быть деактивирована, в отличие от SCell

4. С точки зрения UE, каждый ресурс восходящей линии связи принадлежит только одной обслуживающей соте

5. Число обслуживающих сот, которые могут быть сконфигурированы, зависит от возможностей агрегирования UE

6. Повторное установление инициируется, когда PCell нисходящей линии связи подвергается рэлеевскому затуханию (RLF), а не когда нисходящие SCell подвергаются RLF

7. PCell-сота нисходящей линии связи может изменяться при передаче обслуживания (т.е. при изменении ключа защиты и с помощью RACH-процедуры)

8. Информация не связанного с предоставлением доступа уровня принимается из PCell нисходящей линии связи

9. PCell может изменяться только с помощью процедуры передачи обслуживания (т.е. при изменении ключа защиты и с помощью RACH-процедуры)

10. PCell используется для передачи PUCCH

Конфигурирование и переконфигурирование компонентных несущих может выполняться посредством RRC. Активация и деактивация выполняется через элементы MAC-управления. При передаче обслуживания внутри LTE, RRC также может добавлять, удалять или переконфигурировать SCell для использования в целевой соте. При добавлении новой SCell, выделенная передача служебных RRC-сигналов используется для отправки системной информации SCell, причем информация требуется для передачи/приема (аналогично версии 8/9 для передачи обслуживания).

Когда абонентское устройство сконфигурировано с агрегированием несущих, предусмотрена одна пара компонентных несущих восходящей линии связи и нисходящей линии связи, которая всегда является активной. Компонентная несущая нисходящей линии связи из этой пары также может упоминаться как "несущая привязки к DL". То же применимо также для восходящей линии связи.

Когда сконфигурировано агрегирование несущих, абонентское устройство может быть диспетчеризовано по нескольким компонентным несущим одновременно, но самое большее одна процедура произвольного доступа должна выполняться в любое время. Перекрестная диспетчеризация несущих обеспечивает возможность PDCCH компонентной несущей диспетчеризовать ресурсы на другой компонентной несущей. С этой целью, в соответствующих DCI-форматах вводится поле идентификации компонентной несущей, называемое "CIF".

Связывание между компонентными несущими восходящей линии связи и нисходящей линии связи обеспечивает возможность идентификации компонентной несущей восходящей линии связи, для которой применяется разрешение на передачу, когда отсутствует перекрестная диспетчеризация несущих. Связывание компонентных несущих нисходящей линии связи с компонентной несущей восходящей линии связи не обязательно должно быть "один-к-одному". Другими словами, более одной компонентной несущей нисходящей линии связи может связываться с идентичной компонентной несущей восходящей линии связи. Одновременно, компонентная несущая нисходящей линии связи может связываться только с одной компонентной несущей восходящей линии связи.

Общее представление OSI-уровня

Фиг. 7 предоставляет краткое общее представление касательно OSI-модели, на которой основано дальнейшее обсуждение LTE-архитектуры и на основе которой также поясняется изобретение в данном документе.

Эталонная модель взаимодействия открытых систем (OSI-модель, или эталонная модель OSI) представляет собой многоуровневое абстрактное описание для структуры протоколов сети связи и компьютерных сетевых протоколов. OSI-модель разделяет функции системы на последовательность уровней. Каждый уровень имеет такое свойство, что он использует только функции уровня ниже и экспортирует функциональность только на уровень выше. Система, которая реализует поведение протокола, состоящее из последовательности этих уровней, известна как "стек протоколов" или "стек". Его основной признак заключается в соединении между уровнями, которое предписывает технические требования в отношении того, как один уровень взаимодействует с другим. Это означает то, что уровень, написанный посредством одного изготовителя, может работать с уровнем от другого изготовителя. Для нашей цели, ниже подробнее описываются только первые три уровня.

Физический уровень или уровень Vs: основная цель заключается в передаче информации (битов) по конкретной физической среде (например, по коаксиальным кабелям, витым парам, оптоволокнам, радиоинтерфейсу и т.д.). Он преобразует или модулирует данные в сигналы (или символы), которые передаются по каналу связи.

Цель канального уровня (или уровня 2) состоит в том, чтобы формировать информационный поток способом, совместимым с конкретным физическим уровнем, посредством разбивания входных данных на кадры данных (функции сегментации и повторной сборки (SAR)). Кроме того, он может обнаруживать и корректировать потенциальные ошибки при передаче посредством запроса повторной передачи потерянного кадра. Он типично предоставляет механизм адресации и может предлагать алгоритмы управления потоками, чтобы совмещать скорость передачи данных с пропускной способностью приемного устройства. Если совместно используемая среда параллельно используется посредством нескольких передающих устройств и приемных устройств, канальный уровень типично предлагает механизмы для того, чтобы упорядочивать и управлять доступом к физической среде.

Поскольку предлагается множество функций посредством канального уровня, канальный уровень зачастую подразделяется на подуровни (например, RLC- и MAC-подуровни в UMTS). Типичные примеры протоколов уровня 2 представляют собой PPP/HDLC, ATM, ретрансляцию кадров для стационарных линейных сетей и RLC, LLC или MAC для беспроводных систем. Ниже приводится более подробная информация в отношении подуровней PDCP, RLC и MAC для уровня 2.

Сетевой уровень или уровень 3 предоставляет функциональные и процедурные средства для передачи пакетов переменной длины из источника в назначение через одну или более сетей при поддержании качества обслуживания, запрашиваемого посредством транспортного уровня. Типично, основные цели сетевого уровня состоят в том, чтобы, в числе прочего, выполнять функции сетевой маршрутизации, фрагментации сети и управления перегрузкой. Основные примеры протоколов сетевого уровня представляют собой IP (Интернет-протокол) или X.25.

Относительно уровней 4-7 следует отметить, что в зависимости от приложения и услуги иногда затруднительно приписать приложение или услугу конкретному уровню OSI-модели, поскольку приложения и услуги, работающие выше уровня 3, зачастую реализуют множество функций, которые должны быть приписаны различным уровням OSI-модели. Следовательно, в частности, в сетях на основе TCP(UDP)/IP, уровень 4 и выше иногда комбинируются и формируют так называемый "прикладной уровень".

Услуги и обмен данными на уровне

Ниже термины "служебная единица данных (SDU)" и "протокольная единица данных (PDU)" при использовании в данном документе задаются в связи с фиг. 8. Чтобы формально обобщенно описывать обмен пакетами между уровнями в OSI-модели, введены SDU- и PDU-объекты. SDU является единицей информации (блоком данных/информации), передаваемой из протокола на уровне N+1, который запрашивает услугу из протокола, расположенного на уровне N, через так называемую точку доступа к службам (SAP). PDU является единицей информации, которой обмениваются между равноправными процессами в передающем устройстве и в приемном устройстве идентичного протокола, расположенного на идентичном уровне N.

PDU, в общем, формируется посредством части рабочих данных, состоящей из обработанной версии принимаемой SDU, которой предшествует конкретный для уровня N заголовок, и необязательно завершаемой посредством метки конца. Поскольку отсутствует прямое физическое соединение (за исключением уровня 1) между этими равноправными процессами, PDU перенаправляется на уровень N-1 для обработки. Следовательно, PDU уровня N представляет собой SDU с точки зрения уровня N-1.

LTE-уровень 2 – стек протоколов пользовательской плоскости

Стек протоколов пользовательской плоскости LTE-уровня 2 состоит из трех подуровней, как показано на фиг. 9, PDCP, RLC и MAC. Как пояснено выше, на передающей стороне, каждый уровень принимает SDU из верхнего уровня, для которого уровень предоставляет услугу, и выводит PDU на уровень ниже. RLC-уровень принимает пакеты из PDCP-уровня. Эти пакеты называются "PDCP PDU" с точки зрения PDCP и представляют "RLC SDU" с точки зрения RLC. RLC-уровень создает пакеты, которые предоставляются на уровень ниже, т.е. на MAC-уровень. Пакеты, предоставленные посредством RLC для MAC-уровня, представляют собой RLC PDU с точки зрения RLC и MAC SDU с точки зрения MAC.

На приемной стороне, процесс выполняется в обратном порядке, причем каждый уровень передает SDU на уровень выше, где они принимаются как PDU.

Хотя физический уровень по существу предоставляет битовый конвейер, защищенный посредством турбокодирования и контроля циклическим избыточным кодом (CRC), протоколы канального уровня улучшают предоставление услуг для верхних уровней посредством повышенной надежности, безопасности и целостности. Помимо этого, канальный уровень отвечает за многопользовательский доступ к среде и диспетчеризацию. Одна из основных сложностей для структуры канального LTE-уровня заключается в том, чтобы предоставлять требуемые уровни надежности и задержки для потоков данных по Интернет-протоколу (IP) с широким диапазоном различных услуг и скоростей передачи данных. В частности, объем протокольной служебной информации должен масштабироваться. Например, в широком смысле предполагается, что потоки по протоколу "речь-по-IP" (VoIP) могут допускать задержки порядка 100 мс и потери пакетов до 1 процента. С другой стороны, известно, что TCP-загрузки файлов лучше работают по линиям связи с продуктами с низкой задержкой по полосе пропускания. Следовательно, загрузки на очень высоких скоростях передачи данных (например, 100 Мбит/с) требуют еще меньших задержек и, помимо этого, являются более чувствительными к потерям IP-пакетов, чем VoIP-трафик.

В целом, это достигается посредством трех подуровней канального LTE-уровня, которые частично связаны.

Подуровень протокола конвергенции пакетных данных (PDCP) отвечает в основном за сжатие IP-заголовков и шифрование. Помимо этого, он поддерживает мобильность без потерь в случае передач обслуживания между eNB и предоставляет защиту целостности в управляющие протоколы верхнего уровня.

Подуровень управления радиосвязью (RLC) содержит в основном ARQ-функциональность и поддерживает сегментацию и конкатенацию данных. Два последних минимизируют объем протокольной служебной информации независимо от скорости передачи данных.

В завершение, подуровень управления доступом к среде (MAC) предоставляет HARQ и отвечает за функциональность, которая требуется для доступа к среде, к такую как операция диспетчеризации и произвольный доступ. Фиг. 10 примерно иллюстрирует поток данных IP-пакета через протоколы канального уровня вниз на физический уровень. Чертеж показывает то, что каждый протокольный подуровень добавляет собственный заголовок протокола в единицы данных.

Протокол конвергенции пакетных данных (PDCP)

PDCP-уровень обрабатывает сообщения по протоколу управления радиоресурсами (RRC) в плоскости управления и IP-пакеты в пользовательской плоскости. В зависимости от однонаправленного радиоканала, основные функции PDCP-уровня следующие:

- сжатие и распаковка заголовков для данных пользовательской плоскости

- функции обеспечения безопасности:

- шифрование и расшифровка для данных пользовательской плоскости и плоскости управления

- защита целостности и верификация для данных плоскости управления

- функции поддержки передачи обслуживания:

- последовательная доставка и переупорядочение PDU для уровня выше при передаче обслуживания;

- передача обслуживания без потерь для данных пользовательской плоскости, преобразованных в режиме с подтверждением приема (AM) RLC

- отбрасывание для данных пользовательской плоскости вследствие тайм-аута.

PDCP-уровень управляет потоками данных в пользовательской плоскости, а также в плоскости управления, только для однонаправленных радиоканалов с использованием либо выделенного канала управления (DCCH), либо выделенного транспортного канала (DTCH). Архитектура PDCP-уровня отличается для данных пользовательской плоскости и данных плоскости управления, как показано на фиг. 11 и 12. Два различных типа PDCP PDU задаются в LTE: PDU PDCP-данных и PDU PDCP-управления. PDU PDCP-данных используются для данных плоскости управления и пользовательской плоскости. PDU PDCP-управления используются только для того, чтобы транспортировать информацию обратной связи для сжатия заголовков и для отчетов о PDCP-состоянии, которые используются в случае передачи обслуживания, и, следовательно, используются только в пользовательской плоскости.

Вследствие низкой релевантности для изобретения, функции сжатия заголовков, безопасности и передачи обслуживания подробно не поясняются; подробности касательно означенного содержатся в документе "LTE – The UMTS Long Term Evolution FROM THEORY TO PRACTICE", под редакцией: Stefania Sesia, Issam Toufik, Matther Baker, второе издание, ISBN 978-0-470-66025-6, главы 4.2.2, 4.2.3 и 4.2.4, содержащемся в данном документе по ссылке.

С другой стороны, ниже подробно поясняется отбрасывание пакетов данных. PDCP-уровень, в общем, и отбрасывание на PDCP-уровне, в частности, задаются в 3GPP TS 36.323 v11.2.0 (2013-03), содержащемся в данном документе по ссылке.

В контексте этого изобретения, термин "отбрасывание" не должен пониматься в самом строгом смысле как удаление пакета сразу, а более широко должен охватывать принцип указания пакета (например, PDCP PDU/SDU) как более не требуемого, и в силу этого должен удаляться. Технический стандарт оставляет открытым то, в какой конкретный момент времени фактически удаляются PDCP PDU/SDU (он только указывает, когда они должны отбрасываться), поскольку управление буфером главным образом зависит от технической реализации. Следовательно, после того, как пакет "отброшен", имеется вероятность того, что согласно одной технической реализации, пакет сразу удаляется, либо согласно другой технической реализации того, что буфер периодически опустошается посредством удаления тех пакетов, которые указываются как отброшенные. Типично, скорость передачи данных, которая доступна по радиоинтерфейсу, меньше скорости передачи данных, доступной по сетевым интерфейсам. Таким образом, когда скорость передачи данных данной услуги выше скорости передачи данных, предоставленной посредством LTE-радиоинтерфейса, результатом является буферизация в UE и в усовершенствованном узле B. Эта буферизация обеспечивает для планировщика на MAC-уровне некоторую свободу в варьировании мгновенной скорости передачи данных на физическом уровне, чтобы адаптироваться к текущим характеристикам радиоканала. Благодаря буферизации, изменения в мгновенной скорости передачи данных в таком случае наблюдаются посредством приложения только в качестве некоторого дрожания в задержке на передачу.

Тем не менее, когда скорость передачи данных, предоставленная посредством приложения, превышает скорость передачи данных, предоставленную посредством радиоинтерфейса, в течение длительного периода времени, в результате могут получаться большие объемы буферизованных данных. Это может приводить к большим потерям данных при передаче обслуживания, если передача обслуживания без потерь не применяется к однонаправленному каналу, либо к чрезмерной задержке для приложений реального времени.

Чтобы, например, предотвращать чрезмерную задержку, функция отбрасывания включена в PDCP-уровень для LTE. Эта функция отбрасывания основана на таймере, при этом для каждой PDCP SDU, принимаемой из верхних уровней в передающем устройстве, таймер ("таймер отбрасывания") запускается.

Кроме того, PDCP-уровень продолжает формирование PDCP PDU из PDCP SDU верхнего уровня и, после формирования, перенаправляет сформированную PDCP PDU на нижний уровень, RLC.

Стандарт TS 36.323 глава 5.4 описывает то, что когда таймер истекает для PDCP SDU, либо успешная доставка PDCP SDU подтверждается посредством отчета о PDCP-состоянии, UE должно отбрасывать PDCP SDU вместе с соответствующей PDCP PDU.

Отчет о PDCP-состоянии отправляется в связи с передачей обслуживания мобильной станции от базовой станции другой базовой станции. Хотя не указано явно посредством стандартизации 3GPP и в силу этого зависит от технической реализации, PDCP PDU и SDU также должны удаляться посредством PDCP-уровня после того, как PDCP PDU успешно перенаправлена в UE; в частности, после того, как PDCP PDU перенаправлена на RLC и успешно доставлена в UE посредством RLC (в более общем смысле, а не в связи с передачей обслуживания; что может указываться посредством RLC-уровня), но до истечения таймера. В этом случае, также таймер, который является конкретным для PDCP SDU (и в силу этого для PDCP PDU), должен прерываться/удаляться/останавливаться.

Тем не менее, когда таймер истекает для PDCP SDU, успешная доставка PDCP SDU в UE может еще не достигаться. Как указано посредством стандарта TS 36.323, PDCP-уровень отбрасывает PDCP SDU и PDCP PDU и указывает отбрасывание для конкретной PDCP PDU на нижний уровень, RLC.

Когда из верхнего уровня (т.е. PDCP) указывается необходимость отбрасывать конкретную RLC SDU, передающая сторона AM RLC-объекта или передающего UM RLC-объекта (см. последующую главу) должна отбрасывать указываемую RLC SDU, если сегмент RLC SDU еще не преобразован в PDU RLC-данных (см. 3GPP TS 36.322 глава 5.3).

PDCP-уровень отбрасывает пакеты на основе "таймера отбрасывания", который, например, может быть задан согласно определенным требованиям задержки, предоставленным посредством требуемого QoS однонаправленного радиоканала. Например, пакет не должен передаваться в случае, если он является слишком поздним для услуги. Такое механизм отбрасывания в силу этого позволяет предотвращать чрезмерную задержку и очередь в передающем устройстве.

Равноправный PDCP-объект не информируется, поскольку RLC-уровень отслеживает последовательную доставку. Равноправный PDCP-объект не ожидает PDCP-пакеты, которые не принимаются.

Механизм отбрасывания PDCP-уровня примерно проиллюстрирован на фиг. 13, который является упрощенной блок-схемой последовательности операций способа для обработки PDCP SDU и соответствующего отбрасывания PDCP SDU и PDCP PDU на основе таймера отбрасывания, как задано посредством 3GPP. Как очевидно из него, удаление успешно доставленных PDCP PDU/SDU опускается из чертежа, поскольку оно имеет очень низкую релевантность для механизма отбрасывания, которому уделяется основное внимание в этом изобретении.

PDCP PDU для данных пользовательской плоскости содержат поле D/C, чтобы различать PDU данных и управления, форматы которых показаны на фиг. 14 и 15, соответственно. PDU PDCP-данных содержат 7- или 12-битовый порядковый номер (SN). PDU PDCP-данных для данных пользовательской плоскости содержат либо несжатый (если сжатие заголовков не используется), либо сжатый IP-пакет. PDU PDCP-данных для данных плоскости управления (например, для передачи служебных RRC-сигнал