Система уменьшения интенсивности рентгеновского излучения

Иллюстрации

Показать все

Изобретение относится к рентгеновской системе. Система содержит источник рентгеновского излучения, детектор, имеющий входную зону, монитор, выполненный с возможностью воспроизведения зафиксированных изображений, средства для определения местоположения области исследования на указанном отображаемом изображении и коллиматор, содержащий средства для проецирования указанной области исследования на выбранную часть указанной входной зоны, облучаемой указанным источником рентгеновского излучения. При этом указанный коллиматор обладает возможностью перемещения в плоскости, параллельной указанной входной зоне детектора, и содержит набор отверстий, имеющих различные размеры, каждое из которых выполнено с возможностью проецирования указанной выбранной части облучаемой зоны для отдельного масштаба детектора. Техническим результатом является оптимизация изображения, отображаемого на мониторе, в соответствии с частью изображения, находящейся в пределах области исследования. 4 н. и 22 з.п. ф-лы, 36 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к области формирования рентгеновских изображений в многокадровом режиме и, более конкретно, к области регулирования величины рентгеновского излучения при формировании рентгеновских изображений в многокадровом режиме.

Перекрестная ссылка на родственные патентные заявки

Настоящая патентная заявка испрашивает приоритет и связана с предварительной заявкой на патент США, серийный №61/730,987, поданной 11/29/2012, содержание которой включено в настоящий документ посредством ссылки.

Уровень техники

В типичной системе формирования рентгеновских изображений в многокадровом режиме рентгеновская трубка генерирует рентгеновское излучение в пределах относительно широкого телесного угла. Чтобы избежать ненужного облучения пациента и медицинской бригады, применяют коллиматоры из материалов, поглощающих рентгеновское излучение, таких как свинец, с целью блокирования избыточного излучения. При этом на выходе рентгеновской трубки будет формироваться только необходимый телесный угол полезного излучения, чтобы подвергать облучению только необходимые элементы.

Такие коллиматоры обычно используют в статическом режиме, однако они могут иметь разнообразные конструкции и геометрию рентгеновского излучения. Коллиматоры можно настраивать вручную или автоматически, используя в качестве входных данных, например, размеры среды органов, связанных с данной процедурой.

При формировании рентгеновских изображений в многокадровом режиме ситуация является более динамичной, чем в случае одиночного рентгеновского снимка. Рентгеновское излучение остается активным в течение довольно длительного времени, при этом лечащему врачу обычно приходится находиться рядом с пациентом и, таким образом, рядом с рентгеновским излучением. В связи с этим, желательно обеспечить способы минимизации воздействия на медицинскую бригаду. Были предложены способы уменьшения интенсивности рентгеновского излучения, в которых полученное уменьшенное отношение сигнал/шум рентгеновского изображения компенсируется улучшением изображения цифровыми методами. В других способах предлагается коллиматор, ограничивающий телесный угол рентгеновского излучения частью зоны усилителя изображения, и перемещение коллиматора с целью полной замены входной зоны усилителя изображения, при этом область исследования (ОИ) подвергается облучению в большей степени, чем остальная часть зоны. В этом случае ОИ принимает достаточное сильное излучение для формирования изображения с хорошим отношением сигнал/шум, в то время как остальная часть изображения подвергается воздействию рентгеновского излучения низкой интенсивности, обеспечивая получение изображения с относительно низким отношением сигнал/шум. Размер и расположение ОИ могут определяться множеством способов. Например, она может представлять собой фиксированную зону в центре изображения или автоматически центрироваться относительно наиболее активной зоны изображения, причем эта активность обусловлена временным анализом изображений на основе s-последовательности киноизображений, полученных от видеокамеры системы формирования рентгеновских изображений в многокадровом режиме.

Сущность изобретения

Согласно первому аспекту настоящего изобретения предлагается рентгеновская система, содержащая источник рентгеновского излучения, детектор, монитор для отображения рентгеновского изображения в поле обзора и датчик отслеживания движения глаза, причем указанный датчик отслеживания движения глаза выполнен с возможностью предоставления координат взгляда пользователя в области (зоне) изображения; указанная система выполнена с возможностью определения области исследования ОИ так, чтобы точка взгляда (наблюдения) находилась в указанной ОИ; и оптимизации изображения, отображаемого на указанном мониторе в соответствии с частью изображения, находящейся в пределах указанной ОИ.

Оптимизация изображения может быть осуществлена путем регулирования любых из следующих параметров: тока рентгеновской трубки (в непрерывном или импульсном режиме); пикового анодного напряжения (ПАН) рентгеновской трубки; длины импульса рентгеновских лучей; автоматической регулировки усиления (АРУ), аналоговой или цифровой; тоновоспроизведения изображения, реализованного в виде функции яркости; тоновоспроизведения изображения, реализованного в виде функции контрастности; тоновоспроизведения изображения, реализованного в виде гамма-функции; тоновоспроизведения изображения, реализованного в виде функции смещения; тоновоспроизведения изображения, реализованного в виде линейной функции n-й степени; и тоновоспроизведения изображения, реализованного в виде нелинейной функции.

Рентгеновская система может также включать в себя коллиматор, выполненный с возможностью модификации дозы рентгеновского излучения на пиксель ДНП в поле обзора в соответствии с местоположением точки наблюдения.

Рентгеновская система может также включать в себя коллиматор, выполненный с возможностью модификации дозы на пиксель (ДНП) в поле обзора в соответствии с местоположением точки наблюдения.

Согласно второму аспекту настоящего изобретения предлагается рентгеновская система, содержащая источник рентгеновского излучения, детектор, монитор для отображения рентгеновского изображения и коллиматор; указанный коллиматор выполнен с возможностью подвергать первую зону воздействию первого уровня излучения, а вторую зону - воздействию второго уровня излучения; при этом указанная система выполнена с возможностью обработки указанной второй зоны для превращения ее в зону с параметрами, аналогичными первой зоне, с помощью функции коррекции тона.

Функция коррекции тона может быть одной из по меньшей мере двух функций коррекции тона, каждая из которых связана с конкретным ПАН.

Система может также быть выполнена с возможностью создания функции коррекции тона путем интерполяции двух других функций коррекции тона, каждая из которых связана с конкретным ПАН.

Система может также быть выполнена с возможностью оценки функции коррекции тона для третьей зоны по функции коррекции тона, используемой для указанной второй области.

Для оценки могут применяться экспоненциальные вычисления.

Система может также быть выполнена с возможностью регулировки масштаба входных данных для функции коррекции тона в соответствии с изменениями тока рентгеновской трубки.

Регулировка может осуществляться с использованием коэффициента, равного относительному изменению тока рентгеновской трубки.

Согласно третьему аспекту настоящего изобретения предлагается способ вычисления функции коррекции тона, содержащий следующие шаги: подвергают первую зону воздействию первого рентгеновского излучения, а вторую зону - воздействию второго рентгеновского излучения, причем по меньшей мере часть указанного первого и второго излучения проходит через фантом с переменным поглощением таким образом, чтобы для каждого заданного уровня пропускания указанного фантома существовала по меньшей мере одна зона, подвергаемая воздействию указанного первого излучения, и по меньшей мере одна зона, подвергаемая воздействию указанного второго излучения; для каждого такого заданного уровня пропускания вычисляют среднее значение пикселей; вычисляют соотношение между двумя указанными средними значениями пикселей для всех заданных уровней поглощения; и подбирают функцию для указанных вычисляемых соотношений, чтобы использовать ее в качестве функции коррекции тона.

Фантом с переменным поглощением может представлять собой ступенчатый оптический клин.

Фантом с переменным поглощением может представлять собой фантом переменной толщины с непрерывной наклонной функцией.

Согласно четвертому аспекту настоящего изобретения предлагается способ вычисления функции коррекции тона, содержащий следующие шаги: подвергают какую-то зону воздействию первого рентгеновского излучения, затем подвергают указанную зону воздействию второго рентгеновского излучения, причем указанное первое и второе излучение проходят через человеческую ткань в указанной зоне; вычисляют соотношение между по меньшей мере одним значением пикселя в указанной зоне, соответствующим указанному первому излучению, и аналогичным значением пикселя в указанной зоне, соответствующим указанному второму излучению; подбирают функцию для указанного по меньшей мере одного вычисляемого соотношения и значения пикселя в указанной зоне, соответствующего указанному второму излучению, чтобы использовать ее в качестве первой функции коррекции тона.

Используют больше одной зоны.

Вторую функцию коррекции тона можно вычислить, используя также данные, полученные после сбора данных, используемых для вычисления указанной первой функции коррекции тона.

Данные, используемые для вычисления указанной первой функции коррекции тона, могут быть получены по меньшей мере от 2 пациентов.

Согласно пятому аспекту настоящего изобретения предлагается рентгеновская система, содержащая источник рентгеновского излучения, коллиматор, детектор и монитор, средства для перемещения указанного коллиматора в плоскости, в целом параллельной плоскости указанного коллиматора; указанный коллиматор содержит апертуру, позволяющую всему излучению проходить через нее, внешнюю кольцевую зону, уменьшающую излучение, проходящее через нее, на величину, зависящую от материала и толщины указанной внешней кольцевой зоны, и внутреннюю кольцевую зону между указанной апертурой и указанной внешней кольцевой зоной, с толщиной, изменяющейся в зависимости от расстояния от указанной апертуры, начиная с малой толщины на стороне апертуры и заканчивая толщиной внешней кольцевой зоны на стороне внешней кольцевой зоны; и система, выполненная с возможностью модификации данных изображения, чтобы по существу регулировать изображение, полученное через внутреннюю кольцевую зону, и изображение, полученное через внешнюю кольцевую зону, таким образом, чтобы оно выглядело визуально аналогичным изображению, полученному через указанную апертуру, при этом параметры, используемые для указанных регулировок, зависят от положения указанного коллиматора. Система может быть выполнена с возможностью получения указанных параметров при помощи процедуры калибровки, причем указанная процедура калибровки включает в себя измерения, выполняемые при различных положениях указанного коллиматора. Различные положения коллиматора могут включать в себя различные положения в плоскости коллиматора.

Различные положения коллиматора могут включать в себя различные расстояния от источника рентгеновского излучения.

Толщина внутренней кольцевой зоны может быть по существу симметричной относительно плоскости, находящейся по существу посредине между двумя наружными поверхностями указанной внешней кольцевой зоны.

Система может содержать слой материала, отличного от указанного материала внешней кольцевой зоны, при этом указанный слой расположен в зоне указанной апертуры.

Этот слой может перекрывать по меньшей мере часть указанной внутренней кольцевой зоны.

Согласно шестому аспекту настоящего изобретения предлагается рентгеновская система, содержащая источник рентгеновского излучения, детектор, монитор для отображения рентгеновского изображения, коллиматор и устройство ввода; причем указанное устройство ввода выполнено с возможностью предоставления координат, относящихся к рентгеновскому изображению; система выполнена с возможностью выбора области изображения в соответствии с указанными координатами; и

регулирования по меньшей мере одного из следующих параметров в соответствии с указанными координатами:

формы указанной области; положения указанной области.

Система может также быть выполнена с возможностью регулирования по меньшей мере одного из следующих параметров, соответствующих указанной области: тока (мА) рентгеновской трубки; заряда (мА-с) рентгеновской трубки; пикового анодного напряжения (ПАН) рентгеновской трубки; яркости указанного рентгеновского изображения; контрастности указанного изображения; и тона указанного изображения.

Устройство ввода может представлять собой по меньшей мере одно из следующих устройств: датчик отслеживания движения глаза; джойстик; клавиатуру; интерактивный дисплей; устройство считывания жестов; и голосовой интерпретатор.

Краткое описание чертежей

Настоящее изобретение будет легче понять с помощью следующих чертежей, на которых:

на фиг. 1А представлено упрощенное схематическое изображение примера расположения клинического оборудования и системы формирования рентгеновских изображений в многокадровом режиме;

на фиг. 1В представлен пример расположения системы, показанной на фиг. 1А, с изображением дополнительных деталей компонентов системы согласно настоящему изобретению;

на фиг. 2 схематически показан пример изображения, отображаемого на мониторе системы формирования рентгеновских изображений в многокадровом режиме;

на фиг. 3 схематически показаны дополнительные аспекты примера системы, представленной на фиг. 1А;

на фиг. 4 схематически показан пример областей рентгеновского облучения детектора применительно к параметрам, представленным на фиг. 3;

на фиг. 5 схематически показан пример коллиматора согласно настоящему изобретению;

на фиг. 6 схематически показан пример облучаемой области усилителя изображения при определенном угле поворота коллиматора, представленного на фиг. 5;

на фиг. 7 схематически показан пример картины освещения (облучения) датчика при определенном угле поворота коллиматора, представленного на фиг. 5;

на фиг. 8 схематически показан пример процесса считывания значений пикселей датчика;

на фиг. 9 схематически показан пример процесса считывания значений пикселя датчика;

на фиг. 10А схематически показан вид сверху примера коллиматора согласно настоящему изобретению;

на фиг. 10В схематически показан вид снизу примера коллиматора, представленного на фиг. 10А;

на фиг. 10С схематически показан вид в поперечном разрезе примера коллиматора, представленного на фиг. 10А;

на фиг. 11А схематически показаны основные части другого примера коллиматора согласно настоящему изобретению;

на фиг. 11В схематически показаны части, представленные на фиг. 11A, в рабочей конфигурации;

на фиг. 11C схематически показан вид в поперечном разрезе конструкции, представленной на фиг. 11В;

на фиг. 11D схематически показаны части коллиматора, пример которого представлен на фиг. 11B;

на фиг. 12А схематически показаны основные модули другого примера коллиматора согласно настоящему изобретению;

на фиг. 12B схематически показаны модули, представленные на фиг. 12А, в рабочей конфигурации;

на фиг. 13A схематически показан другой пример коллиматора согласно настоящему изобретению;

на фиг. 13B схематически показан другой пример коллиматора согласно настоящему изобретению;

на фиг. 14А схематически показаны основные части другого примера коллиматора согласно настоящему изобретению;

на фиг. 14B схематически показаны части, представленные на фиг. 14А, в рабочей конфигурации;

на фиг. 15 схематически показаны еще 4 примера другого коллиматора согласно настоящему изобретению и качественный профиль облучения, создаваемого коллиматором в зависимости от расстояния от центра вращения;

на фиг. 16 схематически показаны еще 4 примера другого коллиматора согласно настоящему изобретению;

на фиг. 17А схематически показан пример ОИ, в целом не расположенной вокруг центра вращения;

на фиг. 17В схематически показан пример изменения профиля скорости вращения коллиматора для повышения качества изображения ОИ, представленной на фиг. 17А;

на фиг. 18 схематически показан пример невращающегося коллиматора и его воздействие на изображение, отображаемое на мониторе;

на фиг. 19 показан пример ОИ, представленной на фиг. 17А, и коллиматор, который можно смещать, чтобы подвести центр вращения к центру ОИ;

на фиг. 20А показан тот же пример коллиматора, который представлен на фиг. 5, для визуального сравнения с коллиматором, представленным на фиг. 20В;

на фиг. 20B показан тот же пример коллиматора, который представлен на фиг. 5, с большим диаметром и более длинным секторным отверстием, применяемыми, чтобы избежать затемнения изображения при смещении коллиматора;

на фиг. 21А представлен типичный фантом в виде ступенчатого оптического клина для использования с рентгеновским излучением;

на фиг. 21В показано различное поглощение в ОИ и фоновых областях, обусловленное фильтром фона и изменением в спектре рентгеновского излучения;

на фиг. 21С показан пример функции коррекции тона, созданной для коррекции тона фонового изображения в соответствии с изображением ОИ;

на фиг. 21D показан пример функции коррекции тона, отрегулированной для удвоенного рентгеновского облучения в отличие от рентгеновского облучения на этапе вычислений;

на фиг. 21Е показан вид в увеличенном масштабе функции, представленной на фиг. 21D, в диапазоне использования;

на фиг. 22А изображены местоположение ОИ и фон для вычисления функции коррекции тона;

на фиг. 22В изображены другое местоположение ОИ и фон для вычисления функции коррекции тона;

на фиг. 23А изображен ход двух рентгеновских лучей через коллиматор, представленный на фиг. 18, в одном положении коллиматора;

на фиг. 23В изображен ход двух рентгеновских лучей через коллиматор, представленный на фиг. 18, во втором положении коллиматора;

на фиг. 24А изображен ход двух рентгеновских лучей через коллиматор с симметричным краем апертуры в одном положении коллиматора;

на фиг. 24В изображен ход двух рентгеновских лучей через коллиматор с симметричным краем апертуры во втором положении коллиматора;

на фиг. 25 изображен видоизмененный пример коллиматора, представленного на фиг. 18;

на фиг. 26 представлено упрощенное схематическое изображение примера расположения клинического оборудования и системы формирования рентгеновских изображений в многокадровом режиме, к которой добавлен датчик отслеживания движения глаза;

на фиг. 27 представлена блок-схема, относящаяся к фиг. 1А и описывающая базовый процесс формирования рентгеновских изображений в многокадровом режиме с использованием датчика отслеживания движения глаза;

на фиг. 28А представлена блок-схема, описывающая способ отображения полных данных одного ЦО (цикла облучения) с использованием нескольких кадров, где нормализация по каждому кадру выполняется отдельно;

на фиг. 28В представлена блок-схема, описывающая способ отображения полных данных одного ЦО с использованием нескольких кадров, где нормализация выполняется после суммирования кадров;

на фиг. 28С представлена блок-схема, описывающая способ отображения полных данных одного ЦО с использованием нескольких кадров, где экран обновляется после каждого кадра;

на фиг. 29 представлена блок-схема, относящаяся к фиг. 8 и описывающая процесс считывания значений пикселей датчика;

на фиг. 30 представлена блок-схема, относящаяся к фиг. 17В и описывающая изменения профиля скорости вращения коллиматора для охвата ОИ, не находящейся в центре отображения;

на фиг. 31 представлена блок-схема, относящаяся к фиг. 18D и описывающая регулировки, необходимые для достижения однородного отношения сигнал/шум по всей переменной ширине кольцевой зоны коллиматора;

на фиг. 32 представлена блок-схема, описывающая способ постепенного смещения отображения для области изображения, раньше входившего в ОИ, которая была перемещена в фоновую область;

на фиг. 33А представлена блок-схема, относящаяся к фиг. 21А, 21В, 21С и описывающая процесс генерации функции коррекции тона с использованием фантома с переменным поглощением (ФПП);

на фиг. 33В представлена блок-схема, относящаяся к фиг. 22А, 22В и описывающая процесс генерации функции коррекции тона с использованием тела пациента.

На фиг. 34А представлено схематическое изображение рентгеновской системы с детектором, используемым при различных уровнях масштабирования.

На фиг. 34В представлена схема примера коллиматора с 3 элементами ОИ.

На фиг. 34С представлена схема другого примера коллиматора с 3 элементами ОИ.

На фиг. 35А показан вид коллиматора, выполненного из 4 пластин, частично прозрачных для рентгеновского излучения.

На фиг. 35В показан вид сверху коллиматора, представленного на фиг. 35А, с ОИ, находящейся в центре.

На фиг. 35С показан вид сверху коллиматора, представленного на фиг. 35А, с ОИ, смещенной относительно центра.

На фиг. 35D показан вид сверху коллиматора, представленного на фиг. 35С, с ОИ меньшего размера.

На фиг. 35Е показан вид сверху коллиматора, представленного на фиг. 35С, с ОИ большего размера и другой геометрией.

На фиг. 36 изображено распределение интенсивности рентгеновского излучения в различных зонах изображения когда ОИ находится в положении, представленном на фиг. 35В.

Подробное раскрытие изобретения

Обратимся теперь к фиг. 1А, представляющем типовое расположение клинического оборудования для формирования рентгеновских изображений в многокадровом режиме.

Рентгеновская трубка 100 генерирует рентгеновское излучение 102, направленное вверх, охватывая относительно большой телесный угол, к коллиматору 104. Коллиматор 104 блокирует часть излучения, позволяя меньшему телесному углу излучения продолжаться в верхнем направлении, проходить через кушетку 108, как правило, изготовленную из материала, относительно прозрачного для рентгеновского излучения, и через тело пациента 110, лежащего на кушетке 108. Часть излучения поглощается и рассеивается телом пациента, а оставшееся излучение поступает во входную зону 112 (как правило, круглую) усилителя изображения 114. Входная зона усилителя изображения обычно имеет диаметр порядка 300 мм, но может иметь и другой размер в зависимости от модели и технологии. Изображение, генерируемое усилителем изображения 114, фиксируется видеокамерой 116, обрабатывается процессором 117 изображений, а затем отображается на мониторе 118 в виде изображения 120.

Хотя изобретение описано, главным образом, со ссылкой на комбинацию усилителя 114 изображения и камеры 116, следует принимать во внимание, что оба этих элемента можно заменить цифровым рентгенографическим датчиком, использующим любую технологию, например, плоскими панелями на основе ПЗС, КМОП или других технологий, такими как плоскопанельный детектор из аморфного кремния и сцинтилляторов, расположенный в плоскости 112. Одним из примеров такой панели является CXDI-50RF, выпускаемая компанией Canon U.S.A., Inc, Лейк Саксесс, штат Нью-Йорк. Термин «детектор» будет использоваться, охватывая любые из этих технологий, в том числе сочетание любого усилителя изображения с любой видеокамерой, и включая любой тип плоскопанельного датчика или любого другого устройства, преобразующего рентгеновское излучение в электронный сигнал.

Термины «зона» и «область» в разделе «Подробное раскрытие изобретения» применяются альтернативно, означают одно и то же и используются в качестве синонимов.

Термин «источник рентгеновского излучения» используется, чтобы обеспечить расширительную интерпретацию для устройств, содержащих точечный источник рентгеновского излучения, необязательно имеющий форму трубки. Хотя термин «рентгеновская трубка» используется в примерах настоящего изобретения в соответствии со стандартной терминологии, принятой в данной области техники, в настоящей заявке предполагается, что примеры изобретения не ограничиваются узкой интерпретацией рентгеновской трубки, и что в этих примерах может использоваться любой источник рентгеновского излучения (например, даже радиоактивный материал с возможностью функционировать в качестве точечного источника).

Оператор 122 стоит возле пациента, чтобы выполнять медицинскую процедуру, наблюдая за изображением 120.

У оператора имеется ножная педаль 124. При нажатии на педаль непрерывное рентгеновское излучение (или относительно высокочастотное импульсное рентгеновское излучение, как объясняется ниже) испускается для получения киноизображения 120. Интенсивность рентгеновского излучения, как правило, оптимизируется с целью выбора компромиссного соотношения между низкой интенсивностью, требующейся для уменьшения воздействия на пациента и оператора, и высокой интенсивностью, требующейся для обеспечения высококачественного изображения 120 (с высоким отношением сигнал/шум). При низкой интенсивности рентгеновского излучения и, вследствие этого, низкой дозе облучения входной зоны усилителя изображения отношение сигнал/шум у изображения 120 может быть таким низким, что изображение 120 становится бесполезным.

Система 126 координат представляет собой эталонную декартову систему координат с осью Y, направленной перпендикулярно плоскости страницы, при этом плоскость X-Y параллельна плоскости коллиматора 104 и входной плоскости 112 усилителя изображения.

Целью настоящего изобретения является обеспечение высокой дозы облучения во входной зоне усилителя изображения в пределах требующейся ОИ, что позволит получить изображение с высоким отношением сигнал/шум, в то же время уменьшая степень облучения других участков зоны усилителя изображения за счет более низкого качества изображения (более низкого отношения сигнал/шум). При таком решении оператор может видеть четкое изображение в ОИ и получать достаточно хорошее изображение для общей ориентации в остальной части области изображения. Целью настоящего изобретения является получение более сложной карты сегментов изображения, в которой каждый сегмент обусловлен разным уровнем рентгеновского излучения, требующимся для конкретного применения. Кроме того, целью настоящего изобретения является предложение различных способов считывания данных с датчика изображения.

В контексте примеров, представленных в разделе «Подробное раскрытие изобретения», при сравнении отношения сигнал/шум в одной зоне с отношением сигнал/шум в другой зоне отношения сигнал/шум сравниваются для пикселей, относящихся к объекту (такому как тело пациента или руки или инструменты оператора) с одинаковым коэффициентом пропускания. Например, когда зона А описана в качестве имеющей более низкое отношение сигнал/шум, чем зона В, предполагается, что пропускание объектом рентгеновского излучения к обеим зонам равномерно по всей зоне и имеет одинаковую величину. Например, в центре зоны А только 1/2 излучения, поступающего на объект, проходит через него к усилителю изображения, при этом отношение сигнал/шум в зоне В сравнимо с зоной А, поскольку в зоне В также только 1/2 излучения, поступающего на объект, проходит через него к усилителю изображения. 5 (сигнал) зоны A представляет собой среднее значение сигнала, считанного с зоны А (среднее по времени или по площади, если она содержит статистически достаточное количество пикселей). 3 (сигнал) зоны B представляет собой среднее значение сигнала, считанного с зоны В (среднее по времени или по площади, если она содержит статистически достаточное количество пикселей). Чтобы упростить изложение, рассеянное излучение при описании осуществления изобретения не рассматривается. Воздействие рассеянного излучения и средства для его уменьшения хорошо известны специалистам.

В приведенных ниже примерах предполагается, что статистика шумов имеет нормальное (гауссово) распределение, что удовлетворяет большинству практических аспектов реализации изобретения и позволяет достаточно четко представить примеры в описании осуществления изобретения. Это не является ограничением настоящего изобретения и, если желательно, математические соотношения, представленные в связи со статистикой Гаусса, можно заменить математическими соотношениями статистики Пуассона (или другой статистики), не уменьшая объем настоящего изобретения. Значения шума, связанные с каждый сигналом, представлены среднеквадратичным отклонением статистики Пуассона для данного сигнала, известным специалистам как пуассоновский шум.

Кроме того, доза на пиксель ДНП в рамках всего описания осуществления изобретения рассматривается в одинаковом смысле, т.е. когда ДНП пикселя А сравнивают с ДНП пикселя В, предполагается, что пропускание объекта для обоих пикселей одинаково.

Более детальный пример расположения клинического оборудования для формирования рентгеновских изображений в многокадровом режиме согласно настоящему изобретению представлен на фиг. 1В и фиг. 27. Оператор 122 нажимает ножную педаль 124 для активации рентгеновского излучения (шаг 2724). Датчик 128 отслеживания движения глаза (такой как EyeLink 1000, выпускаемый компанией SR Research Ltd., Каната, провинция Онтарио, Канада) или альтернативное устройство ввода обеспечивает индикацию, когда оператор 122 смотрит на изображение (шаг 2728). Данная информация, как правило, предоставляется применительно к монитору 118. Эта информация, «точка взгляда (наблюдения)», может предоставляться, например, в виде координат (X, Z), в плоскости 118 монитора, с использованием системы 126 координат. Следует принимать во внимание, что в этом примере плоскость монитора 118 и, таким образом, также изображение 120 параллельны плоскости (X, Z) системы 126 координат. Могут применяться и другие системы координат, включая системы координат, связанные с монитором 118 и вращающиеся вместе с монитором 118 при его повороте относительно системы 126 координат.

Данные с устройства 128 ввода поступают на контроллер 127, как правило, представляющем собой компьютер, например, любой персональный компьютер (ПК). Если контроллер 127 определяет, что взгляд оператора на зафиксирован на изображении 120, рентгеновская трубка 100 не активируется (шаг 2700). В противном случае рентгеновская трубка 100 активируется на шаге 2710 и рентгеновское излучение испускается в направлении коллиматора 104 (и/или 150/150А).

Блок 150 на фиг. 1В представляет коллиматор согласно настоящему изобретению, например, коллиматор, представленный на фиг. 5, фиг. 10А - фиг. 10С, фиг. 11А - фиг. 11D, фиг. 12А-12В, фиг. 13А - фиг. 13В, фиг. 14А-14В, фиг. 15А-15D, фиг. 16А-16D, фиг. 18А-18С, фиг. 20А-20В, фиг. 24А-24В и фиг. 25.

Блок 150 может располагаться под коллиматором 104, над коллиматором 104, как показано позиционным обозначением 150А, или вместо коллиматора 104 (не показано на фиг. 1B). Управление коллиматорами, представленными блоками 150 и 150А, осуществляет контроллер 127. Рентгеновским излучением также управляет контроллер 127, как правило, с помощью контроллера 130 рентгеновского излучения. В одном из примеров рентгеновское излучение может быть остановлено, даже если оператор 122 нажимает на ножную педаль 124, когда точка взгляда оператора не находится в пределах области изображения 120. Коллиматор частично блокирует излучение в зависимости от определенной точки взгляда оператора (шаг 2720). Часть рентгеновских лучей поглощается телом пациента 110 (шаг 2730), а оставшееся излучение поступает на усилитель 114 изображения (шаг 2740). На шаге 2750 изображение усиливается и фиксируется камерой 116, на шаге 2760 зафиксированное изображение передается на процессор 117 изображений, а на шаге 2770 обработанное изображение отображается на мониторе 120.

Процессор 117 изображений может принимать много различных форм и включаться в настоящее изобретение различными способами. В примере, представленном на фиг. 1В, процессор 117 изображений содержит два основных подблока: подблок 117А обеспечивает основную коррекцию изображения, например, в случае неоднородности пикселей (темновая компенсация, чувствительность, восстановление битых пикселей и т.д.), подблок 117С обеспечивает обработку в целях улучшения качества изображения (такую как уменьшение шума, применение метода нечеткой маски, коррекцию градаций яркости и т.д.). В традиционных системах изображение с подблока 117А передается для дальнейшей обработки в подблок 117С. Работа каждого из подблоков процессора 117 изображений может поддерживаться специализированной аппаратурой, однако они могут также представлять собой логические подблоки, поддерживаемые любой аппаратурой.

В примере, представленном на фиг. 1В, изображение с камеры 116 корректируется подблоком 117А обработки изображений, а затем передается контроллеру 127. Контроллер 127 обрабатывает изображение в соответствии с использованием любых коллиматоров, представляемых блоком 150, и возвращает обработанное изображение подблоку 117С для улучшения качества изображения.

Следует принимать во внимание, что обработка изображения контроллером 127 необязательно должна происходить в контроллере 127 и может выполняться третьим подблоком 117В (не показанным на фиг. 1В), расположенным между 117А и 117С. Подблок 117 В может также представлять собой лишь логическое устройство, реализуемое в процессоре 117 изображений.

Следует принимать во внимание, что контроллер 130 рентгеновского излучения представлен здесь как контроллер системы в широком смысле. В связи с этим он может также обмениваться данными с процессором 117 изображений для определения его рабочих параметров и приема информации, как показано линией 132 связи. Он может управлять усилителем 114 изображений, например, регулируя параметры масштабирования (линия связи не показана), управлять параметрами камерами 116 (линия связи не показана), управлять положением рамы С-типа рентгеновского устройства и кушетки (линия связи не показана) и регулировать рабочие параметры рентгеновской трубки 100 и коллиматора 104 (линия связи не показана).

Для оператора 122 и других сотрудников может быть предусмотрен пользовательский интерфейс для ввода запросов или любых других требований к контроллеру 130 рентгеновского излучения (не показан).

Физически часть или все из таких устройств, как процессор 117 изображений, контроллер 127 и генератор рентгеновского излучения (электрический блок, приводящий в действие рентгеновскую трубку 100), могут входит в состав контроллера 130 рентгеновского излучения. Контроллер 130 рентгеновского излучения может содержать один или несколько компьютеров и подходящее программное обеспечение для поддержания требующихся функциональных возможностей. Примером такой системы с контроллером рентгеновского излучения является рентгеновское устройство OEC 9900 Elite с рамой С-типа, выпускаемое компанией GE OEC Medical Sistems, Inc, Солт-Лейк-Сити, штат Юта, США. Следует принимать во внимание, что данная система не идентична системе, показанной на фиг. 1В, и приведена лишь в качестве общего примера. Часть этих элементов показана на фиг. 26.

Обратимся теперь к фиг. 2, на котором показан пример изображения 120, отображаемого на мониторе 118. В этом примере пунктирная окружность 204 показывает границу между сегментом 200 изображения и сегментом 202 изображения, при этом оба сегмента образуют полное изображение 120. В этом примере требуется получить хорошее качество изображения в сегменте 200, предполагающее более высокую ДНП рентгеновского излучения для сегмента 200, при этом приемлемым является более низкое качество изображения в сегменте 202, предполагающее более низкую ДНП для сегмента 202.

Следует принимать во внимание, что два сегмента 200 и 202 приведены здесь только в качестве примера осуществления настоящего изобретения, не ограничиваемого этим примером, и что изображение 120 можно разделить на любой набор сегментов, управляя формой апертур в коллиматорах и режимом перемещения коллиматоров. Такие примеры будут приведены ниже.

Следует принимать во внимание, что ДНП следует интерпретировать в качестве дозы рентгеновского излучения, доставляемой к сегменту, представляющему один пиксель изображения 120, для генерации считываемого значения пикселя с целью формирования изображения 120 (исключая поглощение телом пациента и другими элементами, не являющимися частью системы, такими как руки и инструменты оператора).

Обратимся теперь к фиг. 3. Типичный коллиматор 104 с круглой апертурой 304 введен в траекторию рентгеновского излучения так, чтобы только рентгеновские лучи 106, проецируемые из фокальной точки 306 рентгеновской трубки 100 и проходящие через апертуру 304, поступали на круглую входную поверхность 112 уси