Способ и устройство для мониторинга и лечения сезонного аффективного расстройства

Иллюстрации

Показать все

Группа изобретений относится к области медицины и медицинской техники. Офтальмологическое устройство содержит: источник энергии; источник света; биомаркерный датчик, выполненный с возможностью обнаруживать изменения в биомолекулах слезной жидкости и генерировать сигналы; а также процессор, находящийся в логической связи с биомаркерным датчиком, выполненный с возможностью получения и обработки данных сигналов и преобразования их в выходные данные. При этом источник света управляется процессором и находится поблизости от него. При использовании офтальмологическое устройство осуществляет измерение изменений в слезной жидкости, строит корреляции между изменениями в биомаркерах слезной жидкости и симптомами сезонного аффективного расстройства и генерирует данные, относящиеся к фототерапии. С помощью фототерапии проводят лечение симптомов сезонного аффективного расстройства. Изобретение позволяет повысить эффективность лечения, что достигается за счет используемого офтальмологического устройства. 2 н. и 18 з.п. ф-лы, 10 ил.

Реферат

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ

Данное изобретение относится к устройствам и способам, используемым для диагностики и лечения сезонного аффективного расстройства (САР). Говоря более конкретно, речь пойдет об энергозависимых биомедицинских офтальмологических устройствах, способных осуществлять мониторинг симптомов САР и лечение светом.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Сезонное аффективное расстройство (САР) - это хорошо известное расстройство настроения, при котором больные испытывают депрессивные симптомы в определенное время года, чаще всего зимой. Люди, страдающие САР, часто не проявляют признаков психических расстройств на протяжении большей части года. Симптомы САР могут включать без ограничений повышенную сонливость, слабость, тягу к углеводам, недостаточную концентрацию и отказ от социальной активности. Симптомы приводят к ощущению уныния, безнадежности, пессимизму и отсутствию удовольствия от жизни.

Считается, что сезонные колебания настроения связаны с изменениями уровня инсоляции. САР чаще проявляется у людей, проживающих в таких географических областях, как Арктика, где световой день короче, интенсивность инсоляции ниже, а небо чаще бывает затянуто облаками. Колебания распространенности САР среди взрослого населения отчетливо прослеживаются на территории США, варьируясь от низких показателей во Флориде и других солнечных штатах до гораздо более высоких показателей в штатах Аляска, Нью-Гэмпшир и других северных или облачных областях.

Фототерапия разрабатывалась и внедрялась как основной и наиболее эффективный способ лечения классического зимнего сезонного аффективного расстройства. Обычная светотерапия заключается в том, что используется устройство, излучающее больше просветов, чем стандартная лампа накаливания. Типовые примеры осуществления включают предпочтительный яркий белый полноспектральный свет освещенностью 10 000 люкс, или необязательно синий свет с длиной волны 480 нм и освещенностью 2500 люкс, или зеленый свет с длиной волны 500 нм и освещенностью 350 люкс. Обычно во время фототерапии пациент сидит с открытыми глазами на предписанном расстоянии от источника света в течение 30-60 мин каждые сутки. Данное сезонное лечение проводится в течение нескольких недель до тех пор, пока пациент не сможет часто находиться под воздействием естественного света. Большинство пациентов считают такое лечение неудобным, и значительный процент (по данным некоторых исследований, до 19%) бросают лечение. Поэтому желательна разработка новых методов и подходов, которые позволили бы осуществлять светолечение более удобным, контролируемым и разумным способом.

ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Следующие потребности в значительной мере удовлетворяются данным изобретением, в котором один из аспектов заключается в предоставлении энергозависимого биомедицинского офтальмологического устройства, способного анализировать небольшие объемы слезной жидкости для мониторинга и осуществлять рациональную фототерапию для лечения САР. В данном документе раскрываются способ мониторинга САР и предоставления интеллектуальной фототерапии, а также энергозависимое биомедицинское офтальмологическое устройство с датчиком биомаркеров, использующееся для мониторинга симптомов САР и связанное логической связью с источником света. В некоторых вариантах осуществления изобретения энергозависимое биомедицинское офтальмологическое устройство может быть энергозависимой офтальмологической линзой, включающей один или несколько датчиков и встроенный источник света, способный лечить САР. В альтернативных вариантах осуществления изобретения энергозависимая офтальмологическая линза может содержать один или несколько датчиков и средства связи для передачи данных, полученных сенсором, на орган управления, связанный с невстроенным источником света, способным лечить САР.

В некоторых аспектах данного варианта осуществления возможен подбор индивидуального режима световой терапии. Персонализированный режим доз возможен с использованием рациональной световой терапии, где различные данные анализируются для коррекции программируемого графика лечения. Анализируемые данные могут включать в числе прочего полученные датчиком данные об изменениях биомаркеров в слезной пленке пользователя энергозависимого биомедицинского офтальмологического устройства. Коррекция может включать изменения частоты лечения, продолжительности и/или интенсивности света для проведения более эффективного лечения, что учитывает предпочтения пользователя, тем самым улучшая восприятие лечения.

В некоторых вариантах осуществления изобретения мониторинг биомаркеров проводится с помощью одного или нескольких электромеханических датчиков с аналитической чувствительностью, содержащихся в биомедицинском офтальмологическом устройстве. Электромеханические датчики могут анализировать биомаркеры в слезной пленке, включая, например, наличие и/или концентрацию биомолекул, имеющих корреляцию с симптомами. Биомолекулы, взаимосвязанные с различными симптомами САР, могут включать среди прочего следующие: серотонин, мелатонин и интерлейкин-6. Анализ биомолекул может происходить с заданной частотой или в определенный период дня, например каждый час, через три часа или во время определенных занятий или время дня, когда пользователь наиболее подвержен симптомам САР. Другие датчики, которые могут помогать в отслеживании симптомов САР, также могут быть включены в состав некоторых вариантов осуществления изобретения, включая, например, датчики света или датчики, способные определять изменения циркадного ритма пользователя.

В соответствии с некоторыми вариантами осуществления изобретения датчики могут быть микрочипом с возможностью электрофореза и избирательной хемолюминисцентной аналитической чувствительностью. В некоторых стандартных датчиках аналитическая чувствительность может быть достигнута с помощью энергозависимого микрочипа, способного измерять и хранить данные о биомолекулах слезной пленки, например: электрическую проводимость, сопротивление или емкость; изменения во флуоресценции, поглощении света, рассеянии света или плазмонном резонансе, освещенности, циркадном ритме для мониторинга, диагностики и/или проведения рациональной световой терапии для лечения САР.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 иллюстрирует этапы способа, которые могут быть использованы для осуществления некоторых аспектов данного изобретения.

Фиг.2 демонстрирует примерное энергозависимое биомедицинское офтальмологическое устройство с датчиком биомаркеров, которое может быть использовано в линзах при некоторых осуществлениях данного изобретения.

Фиг.3 демонстрирует примерный процессор, который может быть использован в некоторых осуществлениях данного изобретения.

Фиг.4 демонстрирует энергозависимое биомедицинское офтальмологическое устройство с примером центрального вкладыша, включающего микроконтроллер, который может быть использован в некоторых реализациях линз данного изобретения.

Фиг.5 демонстрирует поперечный разрез энергозависимого биомедицинского офтальмологического устройства, содержащего источники света в соответствии с некоторыми вариантами осуществления линз данного изобретения.

Фиг.6 демонстрирует вид сзади образца дополнительных очков с встроенными источниками света в линзах и сопутствующей электроникой, которые могут быть использованы в некоторых вариантах осуществления данного изобретения.

Фиг.7 демонстрирует поперечный разрез образца дополнительных очков с встроенными образцами света, направляющими свет на энергозависимое биомедицинское офтальмологическое устройство в соответствии с некоторыми вариантами осуществления контактных линз данного изобретения.

Фиг.8 демонстрирует поперечный разрез образца дополнительных очков с сопутствующей электроникой с беспроводной связью с энергозависимым биомедицинским офтальмологическим устройством, содержащим источники света в соответствии с некоторыми вариантами осуществления контактных линз данного изобретения.

Фиг.9А демонстрирует энергозависимое биомедицинское офтальмологическое устройство, содержащее образец кольцевой антенны, в соответствии с некоторыми вариантами осуществления контактных линз данного изобретения.

Фиг.9В демонстрирует энергозависимое биомедицинское офтальмологическое устройство, содержащее образец спиральной антенны, в соответствии с некоторыми вариантами осуществления контактных линз данного изобретения.

Фиг.9С является функциональной схемой реализации антенны и принимающей цепи в соответствии с некоторыми вариантами осуществления данного изобретения.

Фиг.10 демонстрирует приблизительную схему процессора, который может быть использован в некоторых вариантах осуществления данного изобретения.

Подробное описание изобретения

Данное изобретение включает способы и энергозависимое биомедицинское офтальмологическое устройство для мониторинга симптомов САР и управления световой терапией для лечения САР. В частности, данное изобретение включает способы и реализации устройства, которые способны к мониторингу биомаркеров в слезной пленке и/или отслеживанию состояния поверхности глаза и признаков, соотносящихся с симптомами САР для проведения рациональной световой терапии.

В следующих разделах будет приведено подробное описание вариантов осуществления настоящего изобретения. Описания как предпочтительных, так и альтернативных примеров осуществления изобретения являются только примерами осуществления изобретения. Предполагается, что специалисту в данной области будут понятны возможности создания модификаций и других вариантов осуществления изобретения. Поэтому следует учитывать, что область, охватываемая настоящим изобретением, не ограничивается приведенными примерами реализации изобретения.

Определения

В данном описании, относящемся к настоящему изобретению, используется ряд терминов, для которых будут приняты следующие определения.

«Биомедицинское офтальмологическое устройство» относится к любому офтальмологическому устройству, способному находиться в глазу или на нем. Эти устройства способны выполнять одну или несколько следующих функций: оптическая коррекции, терапия или косметическая. Например, биомедицинское офтальмологическое устройство может соответствовать активной контактной линзе, внутриглазной линзе, поверхностной линзе, глазной вставке, оптической вставке, окклюдеру слезных точек или другому сходному офтальмологическому устройству, корректирующему или изменяющему зрение, улучшающему и защищающему состояние глаза и/или косметически меняющему физиологию глаза (цвет). В некоторых вариантах осуществления изобретения биомедицинское офтальмологическое устройство может включать мягкие контактные линзы из силиконовых эластомеров или гидрогелей, которые включают среди прочего силиконовые гидрогели и фторгидрогели.

«Компонент» - используемый здесь термин, относящийся к устройству, проводящему электрический ток из источника энергии для изменения логического состояния и/или физического состояния.

Термин «запитываемый энергией» или «энергозависимый» в настоящем документе обозначает состояние, которое способно обеспечить подачу электрического тока или хранение в себе запаса электрической энергии.

«Сборщик энергии» - используемый здесь термин, относящийся к устройству, способному получать энергию из окружающей среды и превращать ее в электрическую энергию.

«Источник энергии» - используемый здесь термин, означающий устройство, способное к снабжению энергией или приводящее устройство в активированное положение.

Термин «энергия» в настоящем документе относится к способности физической системы совершать работу. В рамках настоящего изобретения упомянутая способность, как правило, может относиться к способности выполнения электрических действий при совершении работы.

«Рациональная световая терапия» - используемый здесь термин, означающий способ проведения световой терапии, где используется процессор, получающий различные данные, и, основываясь на этих данных, проводящий соответствующие изменения в запрограммированном режиме световой терапии и/или функции. Рациональная световая терапия может осуществляться, например, путем изменений в световой терапии в зависимости среди прочего от следующих критериев: влияние естественного света, измеренные биомаркеры в слезной пленке и контролируемый циркадный ритм.

«Источник света» - используемый здесь термин, означающий источник излучаемого света.

«Световая терапия» - используемый здесь термин, означающий воздействие света с определенной частотой волны, управляемое различными устройствами, проводимое определенный промежуток времени с заданной интенсивностью и в некоторых случаях в определенное время суток.

«Литий-ионный электрохимический элемент» - является электрохимическим элементом, который использует движение ионов лития для генерации электрической энергии. Такая электрохимическая ячейка, как правило,, называемая батареей, в своей типичной форме может быть возвращена в состояние с более высоким зарядом или перезаряжена.

«Люкс» - используемый здесь термин, означающий единицу света в Международной системе единиц (СИ). Люкс представляет собой меру светового потока, воздействующего на единицу площади. Один люкс - это количество освещенности, при котором световой поток мощностью один люмен равномерно распределен по площади, равной одному квадратному метру. Это также эквивалентно освещению, полученному всей поверхностью, находящейся на расстоянии в один метр от точечного источника света силой в одну канделу. Один люкс эквивалентен 2,8316 см-кд (0,0929 футо-кд).

Термин «оптическая зона» в настоящем документе означает участок офтальмологической линзы, через который пользователь офтальмологической линзы может видеть.

В настоящем документе термин «мощность» означает совершаемую работу или переданную энергию за единицу времени.

«Программируемый график световой терапии» - использованный здесь термин, означающий набор автоматических инструкций, управляющих временем световой терапии, продолжительностью и интенсивностью, основанными на различных измеренных данных, таких как дата, географический регион и тяжесть сезонного аффективного расстройства у пользователя. Программируемый график световой терапии может быть установлен специалистом в офтальмологии, врачом, программным обеспечением, встроенным в процессор и/или пользователем.

«Перезаряжаемый» - используемый здесь термин, означающий способность восстановления высокой готовности к работе. В рамках настоящего изобретения упомянутая способность, как правило, может относиться к восстановлению способности испускать электрический ток определенной величины в течение определенного промежутка времени.

«Перезарядка» - используемый здесь термин, означающий восстановление высокой готовности к работе. Многие пользователи данного изобретения связывают восстанавливаемое устройство со способностью проведения электрического тока с определенной частотой повторно через определенные промежутки времени.

«Сезонное аффективное расстройство» - используемый здесь термин, означающий периодические состояния с симптомами нарушения настроения, обычно испытываемые людьми с нехваткой солнечного света или света с заданной длиной волны. Это может включать нарушения настроения во время, когда солнечный свет ограничен, проходящие с наступлением весны или началом световой терапии.

Человеческие глаза, подобно глазам других млекопитающих, содержат жидкое покрытие, известное как слезная пленка. Слезная пленка смазывает и увлажняет поверхность глаза, защищает ее и обеспечивает необходимую среду для здоровья глаза и зрения. Так же как кровь и слюна, компоненты слезной жидкости включают некоторые белковые биомолекулы, которые поступают из различных источников и чье содержание может варьироваться в зависимости от физиологических факторов и/или факторов окружающей среды. Возможность измерить характеристики биомолекул, такие как концентрация, может стать источником полезной информации для идентификации и корреляции состояний и симптомов и/или мониторинга оптимального уровня для охраны здоровья и воздействия на него.

Белковые биомолекулы в слезной жидкости могут быть анализированы способами, включающими электрофорез, системы на основе микрожидкостных чипов, спектрометрию и жидкостную хроматографию. Однако сбор слезной жидкости представляет трудности, включая необходимость сбора малых объемов для испытаний и предотвращения загрязнений такими способами, которые были бы относительно безвредны для индивидуума, в особенности из-за выраженной чувствительности здорового глаза в большинстве случаев. Данное изобретение представляет способы и энергозависимые биомедицинские офтальмологические устройства, которые могут анализировать биомолекулы, конкретнее биомолекулы с идентифицированными белками, соотносящимися с состояниями или симптомами, также известными как биомаркеры.

В соответствии с фиг.1 шаги способа могут быть использованы для мониторинга симптомов САР, как показано. На этапе 101 индивидуум может носить одно или несколько энергозависимых офтальмологических устройств. Энергозависимое биомедицинское офтальмологическое устройство может устанавливаться на или в глаз. Некоторые биомедицинские офтальмологические устройства желательно устанавливать на переднюю поверхность глаза, они предназначены для следующих функций: оптической коррекции, терапии или косметической. Например, это может быть энергозависимая офтальмологическая линза или энергозависимое офтальмологическое устройство, включая контактные линзы, внутриглазные линзы, поверхностные линзы, глазные вставки, оптические вставки, окклюдеры слезных точек или другие сходные офтальмологические устройства, корректирующие или изменяющие зрение, улучшающие и защищающие состояние глаза и/или косметически меняющие физиологию глаза (цвет).

В некоторых аспектах данного изобретения энергозависимое биомедицинское устройство может использоваться для мониторинга одного или более симптомов, коррелирующих с САР. Мониторинг симптомов происходит путем анализа биомаркеров в слезной пленке, используя датчики, содержащиеся в активном биомедицинском офтальмологическом устройстве. Дополнительно или альтернативно в некоторых вариантах осуществления также предусмотрено измерение длительности и/или интенсивности света, полученного глазной средой пользователя 120, и/или мониторинг циркадного ритма 125 пользователя.

Когда анализ биомаркеров в слезной жидкости с использованием сенсоров происходит на этапе 105, изменения биомаркеров могут коррелировать с известными симптомами САР 110. Примеры коррелирующих симптомов САР могут включать среди прочего сонливость, утомляемость, тягу к углеводам, затруднение внимания и отказ от социальной активности. Эти симптомы часто вызывают ощущения депрессии, безнадежности, пессимизма и нехватку удовольствия, которые коррелируют с изменениями специфичных биомаркеров в слезной пленке. Изменения в биомаркерах в слезной пленке могут включать в том числе изменения в уровне серотонина и генетическом полиморфизме, изменения концентрации мелатонина, что сигнализирует о фазовом изменении циркадного ритма, и повышение уровня интерлейкина-6.

Известные уровни и пороги концентраций биомаркеров в слезной пленке, связанные с САР, могут быть заранее запрограммированы в компоненте устройства, и дополнительно или альтернативно устройство может собирать и изучать данные для конкретного пользователя. Кроме того, так как концентрации могут варьироваться в зависимости от таких факторов, как возраст и условия окружающей среды, нормальные уровни анализируемого вещества, измеренные в крови, плазме или слюне индивидуума или в сравнимой популяции, могут коррелировать с уровнями в слезной пленке. Изменения или определяемые уровни могут отслеживаться на этапе 115, и световая терапия, основанная на изменениях, проводится для пользователя 130, когда ему она необходима.

В соответствии с фиг.2 образец энергозависимого биомедицинского офтальмологического устройства с датчиком биомаркеров компонента 203 может быть использован в некоторых офтальмологических линзах 200 показанного осуществления данного изобретения. В дополнение к сенсору биомаркеров компонента 203 образец энергозависимой офтальмологической линзы 200 содержит источник энергии 202 и источник света 202А. Источник энергии 202 может иметь электрическую связь с источником света 202А и компонентом 203. Источник света 202А может содержать светоизлучающие диоды или другие источники света, которые излучают синий свет в диапазоне длин волн от 450 до 500 нанометров, а наиболее предпочтительно в диапазоне длин волн от 470 до 480 нанометров, при от 2000 до 3000 люкс. В альтернативном варианте осуществления светодиоды или другие источники света могут излучать зеленый свет с длиной волны 475-525 нанометров, наиболее предпочтительно с длиной волны 490-510 нанометров, и освещенностью 300-400 люкс. В другом варианте осуществления изобретения единичный источник света может быть проложен в одном или нескольких участках офтальмологической линзы 201 для проведения освещения, необходимого для световой терапии САР.

Компонент 203 может включать любой датчик света и/или электрохимическое сенсорное устройство с аналитической чувствительностью для установления изменения биомаркеров. Компонент может включать микрочип со способностью к электрофорезу и избирательной хемолюминисценции, включая, например, способность определить изменения во флуоресценции, поглощении света, рассеивании света или плазмонном резонансе слезной пленки, количестве освещения и циркадном ритме. В некоторых вариантах осуществления изобретения компонент 203 может реагировать на электрический разряд изменением состояния и быть, например: микрочипом, например полупроводникового типа; пассивным электрическим устройством; оптическим устройством, таким как хрустальная линза; процессором с микроэлектромеханическим механизмом (МЭММ) или наноэлектромеханическим механизмом (НЭММ).

К тому же компонент 203 может включать или быть логически связанным с устройством хранения электрической энергии, таким как конденсатор, Ультраконденсатор, суперконденсатор или другой компонент хранения. Источник энергии 202 может включать, например, литий-ионную батарею, расположенную в периферической зоне офтальмологической линзы вне оптической зоны и заряжаемую посредством одной или нескольких радиочастот; светодиоды и устройства магнитной индукции в источнике энергии 202.

Как показано для некоторых вариантов осуществления изобретения, источник энергии 202, источник света 202А и компонент 203 лучше размещать вне пределов оптической зоны 204, где оптическая зона 204 включает часть офтальмологической линзы 200, проводящую линию взгляда 200 владельца линзы. Другие варианты осуществления могут содержать источник энергии 202, находящийся в части оптической зоны офтальмологической линзы. Например, такие варианты осуществления могут включать источник энергии 202, состоящий из проводящих компонентов, которые имеют слишком малые размеры, для того чтобы их можно было увидеть невооруженным глазом.

В некоторых вариантах осуществления предпочтительный тип линз может включать линзы 201, имеющие силиконсодержащий компонент. «Силиконсодержащий компонент» содержит по меньшей мере один элемент [-Si-O-] в мономере, макромере или преполимере. Предпочтительно, чтобы совокупный Si и прикрепленный 0 присутствовали в силиконсодержащем компоненте в доле более 20 весовых процентов, и более предпочтительно, чтобы эта доля была более 30 весовых процентов общего молекулярно веса силиконсодержащего компонента. Полезные для целей настоящего изобретения содержащие силикон компоненты предпочтительно имеют в своем составе полимеризуемые функциональные группы, такие как акрилатная, метакрилатная, акриламидная, метакриламидная, винильная, N-виниллактамовая, N-виниламидная и стирольная функциональные группы.

В соответствии с фиг.3 пример процессора, который может использоваться в некоторых энергозависимых биомедицинских офтальмологических устройствах данного изобретения, показан на этапе 300. На этой иллюстрации источник энергии 310 может включать перезаряжаемую литий-ионную батарею в виде тонкой пленки. Батарея может иметь контактные точки 370, предназначенные для создания соединений. Провода могут представлять собой соединительные провода, подключенные к контактным точкам 370 и соединяющие батарею с фотоэлектрическим элементом 360, который может использоваться для перезарядки батареи источника энергии 310. Дополнительные провода могут соединять источник энергии с гибкой платой через дополнительные контактные площадки второго комплекта контактных точек 350. Эти точки контакта 350 могут быть частью гибкого соединительного субстрата 355, который также может содержать источник света 330.

Соединительная подложка может быть сформирована в форме, приближенной к типичной конической форме линзы, или в другой форме в зависимости от биомедицинского офтальмологического устройства. Вместе с тем в связи с необходимостью обеспечить дополнительную гибкость в некоторых вариантах осуществления изобретения соединительная подложка 355 может иметь дополнительные особенности формы, такие как радиальные вырезы 345 вдоль всей длины. Радиальные вырезы могут быть использованы для формирования индивидуальных мембранных структур соединительной подложки 355 и могут подключать различные электронные компоненты, такие как ИС, дискретные компоненты, пассивные компоненты, и такие устройства, как показано на этапе 390. Компоненты могут быть связаны проводами или другими соединительными средствами 340 с проводящими путями соединительной подложки 355. Различные компоненты могут быть подключены в том числе к гибкой соединительной подложке 355 различными средствами для подсоединения к батарее. Комбинация различных электрических компонентов может определять управляющий сигнал для управления мониторингом биомаркеров, источником света и в некоторых осуществлениях электрооптическим устройством 390. Этот управляющий сигнал может проводиться соответственно по соединению 320. Эта серия типичных энергозависимых офтальмологических линз с энергозависимыми функциями приводится только в целях примера. Ни в коем случае не стоит рассматривать это описание как ограничивающее область применения данного изобретения, так как специалисту в данной области понятно, что возможно использование различных реализаций формы, структуры, схемы подсоединения, схемы энергоснабжения и в целом использования данного изобретения. Например, в некоторых вариантах осуществления будут методы изменения внешнего вида офтальмологических линз. Эстетика поверхности тонкопленочной микробатареи может быть изменена различными способами, позволяющими достичь определенного внешнего вида линзы при внедрении в электроактивную контактную линзу или формованный гидрогелевый элемент. Эта тонкопленочная микробатарея может производиться в эстетически приятной упаковке с узором и/или цветным покрытием, что будет маскировать тонкопленочную микробатарею, либо, напротив, может иметь узор, сходный с радужной оболочкой, однотонный либо разноцветный узор, отражающийся дизайн, переливающийся дизайн, металлический дизайн либо любой другой художественный вид. В других осуществлениях тонкопленочная батарея может быть частично скрыта другими компонентами в линзе, например фотоэлектрическим чипом, смонтированным на передней поверхности, или, напротив, за счет размещения батареи за электрической цепью или ее частью. В других примерах осуществления тонкопленочная батарея может быть стратегически расположена таким образом, чтобы ее частично или полностью скрывало верхнее или нижнее веко.

В предпочтительном варианте осуществления источник энергии и источник света не должны нарушать прохождение света через офтальмологическую линзу. Следовательно, структура должна быть такова, чтобы оптическая зона, занимающая центральные 5-8 мм активной линзы, не перекрывалась никакой непрозрачной частью источника энергии и источника света. Могут быть различные варианты осуществления в зависимости от устройства разных источников энергии и источников света для оптимального взаимодействия с оптически соответствующими разделами активной оптической линзы.

В соответствии с некоторыми аспектами данного изобретения источник энергии и источник света должны размещаться на определенном расстоянии от наружного края контактной линзы для достижения предпочтительной структуры профиля кромки контактной линзы ради создания максимального комфорта, что минимизирует частоту побочных эффектов. Примерами таких предотвращаемых нежелательных явлений являются дуговидные повреждения верхнего слоя роговицы или гигантский папиллярный конъюнктивит.

В некоторых вариантах осуществления катод, электролит и анод встроенного электрохимического элемента могут быть встроены и сформированы, например, пастой для микросхем в формах, определяющих области катода, электролита и анода. Эти батареи могут быть как одноразовыми, основанными, например, на оксидах марганца и цинка, так и перезаряжаемыми, основанными на литий-ионных микропленочных батареях. Специалисту в данной области понятно, что возможны разнообразные варианты разных особенностей и способов формирования активных биомедицинских офтальмологических устройств с использованием печатных технологий.

В соответствии с фиг.4 поперечный разрез энергозависимого биомедицинского офтальмологического устройства 400 с образцом центральной вставки 401, включающей микроконтроллер 404, которая может использоваться в некоторых вариантах осуществления линз, как здесь показано. Активатор процессора 405 может быть использован для осуществления одной или более исполняемых программ, включенных в хранилище памяти микроконтроллера 404. Для управления источником света (не показан), последовательно подключенным к микроконтроллеру, могут использоваться программы. Один или более источников света могут включаться в центральную вставку, находиться вне центральной вставки в/на офтальмологическом устройстве или быть вблизи от них, например, в дополнительных очках (в дальнейшем показаны на фиг.6). Кроме того, в некоторых вариантах осуществления изобретения программы, запускаемые микроконтроллером 404, могут приводить к изменению состояния компонента 403. Хранилище памяти может включать полупроводниковую память с произвольным доступом, полупроводниковую постоянную память, статичную память, стираемую программируемую постоянную память или другие компоненты, способные к сохранению данных и предоставлению их по команде.

Устройство сбора энергии, например фоторецептор 402, может использоваться для подзарядки источника энергии 408, например литиевой батареи или конденсатора. Микроконтроллер 404 может использоваться для управления процессом подзарядки. Например, процессор 405 может получать данные, указывающие на уровень заряда источника энергии 408, и открывать цепь от сборщика энергии 402, например фоторецептора, к источнику энергии 408 (другие примеры могут включать магнитное или индуктивное устройство). В другом аспекте процессор может быть запрограммирован для наблюдения, когда сборщик энергии 402 будет способен обеспечить зарядку источника энергии 408, и обеспечения электропроводящих путей, которые способны для такой зарядки. Путь проведения тока для заряда может включать, например, транзисторы, действующие как переключатели, и диоды, обеспечивающие нужное направление тока.

В соответствии с фиг.5 показан поперечный разрез примера энергозависимого биомедицинского офтальмологического устройства 500, содержащего источники энергии 502 в соответствии с некоторыми вариантами осуществления данного изобретения. В данном примере образцом энергозависимой контактной линзы 501 является контактная линза и, как показано, свет 503 направляется на роговицу 504 глаза 505. В некоторых вариантах осуществления поперечное сечение 500 может быть отображено сверху вниз, при этом один или несколько встроенных источников света 502 расположены вблизи сторон контактной линзы 501. В других вариантах осуществления поперечное сечение 500 может быть отображено сбоку, так что один или несколько встроенных источников света 502 размещены в верхней и нижней части контактной линзы 501. Количество источников света 502 и расположение источников света 502 по периметру контактной линзы 501 могут быть различными. Источник света 502 направляет освещение к глазу владельца так, что освещение не видно наблюдателю. Контактная линза 501 может также включать покрытие, которое скрывает излучение от световой терапии, что значительно снижает заметность терапии наблюдателю, тем самым не снижая интенсивность фототерапии для пользователя.

Встроенные источники света 502 могут включать светоизлучающие диоды (СИД) или другие источники света 502, пригодные для излучения света 1003 для световой терапии. Источники света 502 могут включать светодиоды или другие источники, которые излучают синий свет с длиной волны 450-500 нанометров, наиболее предпочтительно с длиной волны 470-480 нанометров, и освещенностью 2000-3000 люкс. В альтернативном варианте осуществления светодиоды или другие источники света могут излучать зеленый свет с длиной волны 475-525 нанометров, наиболее предпочтительно с длиной волны 490-510 нанометров, и освещенностью 300-400 люкс. Другие варианты осуществления включают единичный источник света, от которого свет может быть проведен к одному или нескольким участкам офтальмологической линзы 501 для обеспечения освещения.

Образец офтальмологической линзы 501 включает поддерживающую электронику, не показанную на этом чертеже, с такими компонентами, как датчики света, датчики биомаркеров, источники энергии, конденсаторы, память, процессор и передающее устройство. Датчики света используются для обнаружения окружающего белого света, синего света или зеленого света. Источник энергии и конденсатор могут снабжать энергией другие компоненты активного биомедицинского офтальмологического устройства. Память может быть использована в качестве одного из примеров для хранения заранее запрограммированных режимов световой терапии, для хранения данных, полученных с одного или более датчиков, для хранения предпочтений пользователя, для хранения актуальных данных световой терапии, времени, продолжительности и интенсивности и для хранения данных, связанных с источником света и работой датчика света для выявления неполадок устройства. К тому же процессор может быть использован, например, для запуска запрограммированных режимов световой терапии, сохраненных в памяти, анализа данных датчика света и определения персонализированного режима световой терапии, основанного на воздействии на владельца естественного освещения, ручных изменениях в запрограммированном режиме световой терапии, проведения компенсаторных изменений, т.е. рациональной световой терапии, и анализа данных источника света и датчика света для выявления неполадок.

Устройство обмена данными может быть использовано для электронного управления одним или несколькими из следующих факторов: передача цифровых данных от энергозависимого биомедицинского офтальмологического устройства (или к нему) и к наружным устройствам и передача цифровых данных между компонентами энергозависимого биомедицинского офтальмологического устройства. Передающее устройство может быть использовано для беспроводной передачи от одного или нескольких наружных устройств, включая в том числе брелок, карманный персональный компьютер (КПК) или приложение для смартфона, используемое для управления активным биомедицинским офтальмологическим устройством. В пределах энергозавис