Газожидкостный струйный элемент для обработки объектов, средство для локальной абляции и средство для локальной инъекции
Иллюстрации
Показать всеГруппа изобретений относится к области биохимии. Предложен газожидкостный струйный элемент для обработки объектов, средство для локальной абляции и средство для локальной инъекции. Газожидкостный струйный элемент включает предназначенный для генерации и выброса струи пузырьков пузырьково-струйный элемент и охватывающую пузырьково-струйный элемент внешнюю оболочку. Пузырьково-струйный элемент содержит сердцевину с заостренным концом, оболочку с вытянутым участком и образованную между вытянутым участком и заостренным концом сердцевины внутреннюю полость с выпускным отверстием для струйного выброса пузырьков. При этом внешняя оболочка и пузырьково-струйный элемент связаны между собой с возможностью продольного перемещения относительно друг друга. Средство для локальной абляции и средство для локальной инъекции представляют собой вышеуказанный газожидкостный струйный элемент. Изобретения обеспечивают уменьшение вероятности прокола и повреждения обрабатываемой мишени, возможность обработки мишени более точно без повреждения концевой части, облегчение регулировки по положениям пузырьково-струйного элемента и обрабатываемой мишени, а также предотвращение утечки раствора. 3 н. и 4 з.п. ф-лы, 19 ил., 11 пр.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к пузырьково-струйному элементу, газожидкостному струйному элементу, устройству для локальной абляции и устройству для локальной инъекции и, в частности, относится: 1) к пузырьково-струйному элементу, в котором конец традиционного пузырьково-струйного элемента обработан так, чтобы он был утолщенным, при этом выпускное отверстие пузырьково-струйного элемента выполнено меньшего размера, и маловероятно, что упомянутый конец будет поврежден, даже если к нему будет приложено высокое электрическое напряжение; 2) к газожидкостному струйному элементу, в котором образована внешняя оболочка (образующая оболочку), которая выполнена с возможностью перемещения относительно пузырьково-струйного элемента, при этом положение пузырьково-струйного элемента при обработке целевого объекта (мишени) можно легко регулировать; 3) к устройству для локальной абляции, которое содержит пузырьково-струйный элемент или газожидкостный струйный элемент, и 4) к устройству для локальной инъекции, которое содержит газожидкостный струйный элемент.
Уровень техники
Развитие биотехнологии, наблюдаемое в последние годы, сопровождается повышением требования к локальной обработке клеток и тому подобного и включает создание отверстия в клеточной мембране или клеточной стенке и удаление из клетки ядра или введение в клетку ДНК или другого вещества, содержащего нуклеиновую кислоту. Широко известны способы, использующие ряд методов локальной обработки (иногда называемые «методами локальной абляции»), такие как методы контактной обработки, использующие зонд, в частности, электронож или тому подобное, или метод бесконтактной абляции, использующий лазеры или тому подобные средства.
Однако в известных методах контактной обработки, использующих зонд, в частности электронож, существует тенденция к выжиганию обрабатываемого объекта (мишени) благодаря выделению Джоулевого тепла под воздействием непрерывных высоких частот, что приводит к значительной неровности рассеченной поверхности и окружающих тканей, которые вследствие нагревания в значительной степени подвержены воздействию термической инвазии, и повреждение рассеченной поверхности за счет нагрева заметно, в особенности, при обработке биоматериалов в жидкой фазе (Проблема 1). Восстановление и регенерация затруднены вследствие денатурации протеинов и/или фрагментации с разрывом амидных связей (Проблема 2); и при непрерывной обработке адсорбция на поверхности зонда денатурированных нагреванием протеинов и/или адсорбция пузырьков, генерируемых за счет подвода теплоты, заметно ухудшают наблюдаемое состояния рассеченной поверхности, что затрудняет обработку объекта с высокой разрешающей способностью (Проблема 3).
В методе бесконтактной обработки, использующем лазеры, например, фемтосекундные лазеры и тому подобные с таким же успехом, имеет место воздействие нагревания на мягкие ткани, окружающие рассеченную поверхность, за счет локального облучения энергией с высокой плотностью, и, в частности, в процессе обработки объекта, находящегося в жидкой фазе, генерирование пузырьков и тому подобное, за счет теплоты, которая выделяется во время обработки, что делает непрерывную обработку затруднительной.
В то же время известные методы электропорации и сонопорации, использующие ультразвук, а также методы генной пушки и тому подобные широко используются в качестве методов локальной механической инъекции (способов инъекции) для доставки веществ, содержащих нуклеиновую кислоту, или тому подобных в клетки или подобные объекты обработки. Однако в традиционном методе электропорации, в зависимости от напряженности электрического поля, существуют ограничения по улучшению проницаемости клеточной мембраны, что затрудняет инъекцию в объекты, имеющие жесткие клеточные мембраны или стенки, в отличие от мембран, имеющих мягкие липидные бислои, и вследствие ограничений, связанных с перемещением электрода и тому подобному, локальная инъекция в заданный участок была затруднительной. В методе сонопорации, использующем ультразвук, трудно сфокусировать ультразвук, что препятствует возникновению локальной кавитации пузырьков и увеличению разрешающей способности. В способах инъекции, которые основаны на методе генной пушки, помимо прочего, возникала проблема низкой эффективности внедрения вследствие отделения вещества, осажденного на поверхности частицы, при выстреле этой частицей в мишень.
В целях решения вышеупомянутых проблем авторы настоящего изобретения обнаружили, что рассечение (локальная абляция) обрабатываемого объекта может быть осуществлено посредством использования пузырьково-струйного элемента, содержащего сердцевину (центрального стержня), изготовленную из проводящего материала, оболочку, которая выполнена из изоляционного (непроводящего) материала, охватывает сердцевину и содержит вытянутый участок, проходящий от конца сердцевины, и полость, образованную между вытянутым участком оболочки и концом сердцевины; погружения пузырьково-струйного элемента в раствор; приложения высокочастотного напряжения к раствору с образованием пузырьков; и непрерывного выброса пузырьков на обрабатываемый объект.
Кроме того, было обнаружено, что пузырьки, в которых на поверхностях раздела фаз адсорбируется раствор растворенного и/или распределенного вещества для инъекции, могут быть образованы за счет размещения внешней оболочки снаружи оболочки пузырьково-струйного элемента так, чтобы между указанными оболочками оставался кольцевой зазор, и введения раствора растворенного и/или распределенного вещества, подлежащего инъекции, в указанный кольцевой зазор; при этом обрабатываемый объект может быть рассечен и может быть произведена инъекция вещества, содержащегося в растворе вокруг пузырьков, в обрабатываемый объект посредством непрерывной инжекции пузырьков в указанный обрабатываемый объект. В результате проведенных работ была подана заявка на патент (патент Японии №5526345 [D1]).
Сущность изобретения
Проблемы, решаемые настоящим изобретением
При осуществлении локальной абляции с использованием пузырьково-струйного элемента, описанного в патентном документе D1, локальная абляция может быть реализована, если мишенью для обработки являются клетки или иной мягкий материал. В то же время при осуществлении локальной абляции в сравнительно твердом обрабатываемом объекте может быть к пузырьково-струйному элементу необходимо приложить высокое напряжение для повышения скорости выбрасываемых пузырьков и увеличения энергии соударений. Однако при этом возникла новая проблема, которая заключается в том, что в случае приложения к пузырьково-струйному элементу, описанному в D1, высокого напряжения концевой участок пузырьково-струйного элемента будет поврежден.
Кроме того, при осуществлении локальной абляции на обрабатываемом объекте необходимо регулировать взаимное положение пузырьково-струйного элемента относительно обрабатываемого объекта, наблюдая в то же время выпускное отверстие пузырьково-струйного элемента под микроскопом. Однако возникла новая проблема, которая заключается в том, что поскольку пузырьково-струйный элемент изготовлен из стекла путем его разделения при растягивании и т.д., выпускное отверстие пузырьково-струйного элемента получается с заостренным концом, и обрабатываемый объект при проведении локальной абляции будет подвержен негативному воздействию заостренного конца.
Кроме того, при использовании газожидкостного струйного элемента, описанного в документе D1, из-за того, что внешняя оболочка насажена на внешнюю поверхность установочной кольцевой прокладки, расстояние между выпускным отверстием пузырьково-струйного элемента и концом внешней оболочки изменить невозможно. В связи с этим возникла новая проблема вследствие того, что пузырьки, в которых на поверхностях раздела фаз (называемых далее поверхность раздела «газ/жидкость») адсорбируется раствор, содержащий вещество для инъекции, при достижении обрабатываемого объекта теряют энергию, и указанная поверхность раздела «газ/жидкость» может быть отброшена обрабатываемым объектом в обратном направлении, в зависимости от конкретного обрабатываемого объекта. Следовательно, несмотря на необходимость увеличения величины напряжения, приложенного к пузырьково-струйному элементу, для увеличения энергии соударений на границе «газ/жидкость», возникла новая проблема из-за того, что при высокой величине приложенного напряжения концевой участок пузырьково-струйного элемента подвержен повреждению, как это отмечено выше.
Настоящее изобретение было создано для решения указанных выше проблем, и после проведения всесторонних тщательных исследований было обнаружено, что: (1) за счет увеличения толщины конца вытянутого участка, образованного путем растягивания и разделения изоляционного материала, концевая часть вытянутого участка не повреждается даже в случае приложения к пузырьково-струйному элементу высокого напряжения; (2) поскольку концевая часть становится утолщенной, менее вероятно, что обрабатываемая мишень будет проколота и повреждена; (3) поскольку диаметр выпускного отверстия пузырьково-струйного элемента имеет меньшую величину, если эту концевую часть обрабатывают до получения большей толщины, мишень может быть обработана более точно без повреждения концевой части; (4) изготовление газожидкостного струйного элемента таким образом, что пузырьково-струйный элемент и внешняя оболочка способны к взаимному относительному перемещению, облегчает регулировку по положениям пузырьково-струйного элемента и обрабатываемой мишени при осуществлении локальной абляции или локальной инъекции; и (5) создание усилия давления, оказываемого внешней оболочкой на обрабатываемую мишень, может предотвратить утечку раствора, содержащего вещество для инъекции, из внешней оболочки, и позволяет в таком состоянии регулировать относительное расположение пузырьково-струйного элемента и обрабатываемого объекта.
Таким образом, устройство для локальной абляции и устройство для локальной инъекции, содержащие газожидкостный струйный элемент, соответствующий настоящему изобретению, могут быть использованы в атмосферном воздухе и применительно, например, к безыгольному инъектору.
Средства для решения проблем
Настоящее изобретение относится к пузырьково-струйному элементу, газожидкостному струйному элементу, устройству для локальной абляции и устройству для локальной инъекции, представленным ниже.
(1) Пузырьково-струйный элемент, содержащий:
сердцевину, выполненную из проводящего материала;
оболочку, выполненную из изоляционного материала, содержащую вытянутый участок, который выходит за пределы конца сердцевины, плотно прилегает к сердцевине и охватывает сердцевину снаружи; и
внутреннюю полость, образованную между вытянутым участком и концом сердцевины и имеющую выпускное отверстие для выброса пузырьков;
при этом на конце вытянутого участка образован утолщенный участок, который имеет большую толщину, чем остальная часть вытянутого участка.
(2) Газожидкостный струйный элемент, содержащий:
пузырьково-струйный элемент в соответствии с (1); и
внешнюю оболочку, которая образована с внешней стороны оболочки пузырьково-струйного элемента и размещена на некотором расстоянии от этой оболочки так, что между указанными оболочками остается кольцевой зазор.
(3) Газожидкостный струйный элемент в соответствии с (2), в котором внешняя оболочка и пузырьково-струйный элемент выполнены с возможностью перемещения относительно друг друга.
(4) Газожидкостный струйный элемент в соответствии с (3), в котором конец внешней оболочки присоединен к пузырьково-струйному элементу с помощью элемента, способного к удлинению и сокращению.
(5) Газожидкостный струйный элемент в соответствии с любым из пунктов (2)-(4), в котором на внешней оболочки образован участок сужения, при этом указанный участок сужения служит в качестве направляющей при относительном перемещении внешней оболочки и пузырьково-струйного элемента.
(6) Газожидкостный струйный элемент в соответствии с любым из пунктов (2)-(5), дополнительно содержащий противоэлектрод, который вместе с сердцевиной газожидкостного струйного элемента образует пару электродов.
(7) Газожидкостный струйный элемент в соответствии с любым из пунктов (2) - (6), в котором концевой участок внешней оболочки имеет большую толщину, чем остальная внешняя оболочка.
(8) Устройство для локальной абляции, содержащее пузырьково-струйный элемент по пункту 1 или газожидкостный струйный элемент по любому из пунктов (2) – (7).
(9) Устройство для локальной инъекции, содержащее пузырьково-струйный элемент по пункту 1 или газожидкостный струйный элемент по любому из пунктов (2) – (7).
Положительные эффекты изобретения
Поскольку концевая часть пузырьково-струйного элемента согласно настоящему изобретению имеет увеличенную толщину, менее вероятно, что эта концевая часть устройства для локальной абляции, использующего пузырьково-струйный элемент или газожидкостный струйный элемент, соответствующий настоящему изобретению, будет повреждена даже в случае приложения к ней высокого напряжения. Соответственно, энергия столкновений выбрасываемых пузырьков может быть увеличена, и локальная абляция может быть соответственно осуществлена даже в случае обрабатываемых объектов, имеющих большую твердость. Кроме того, поскольку при обработке концевой части с увеличенной толщиной выпускное отверстие пузырьково-струйного элемента может быть выполнено меньшего размера, обрабатываемый объект может быть обработан более точно. Помимо этого, поскольку образованный при разрыве конец пузырьково-струйного элемента может быть выполнен гладким, менее вероятно, что обрабатываемый объект при осуществлении локальной инъекции будет подвержен негативному воздействию.
Газожидкостный струйный элемент в соответствии с настоящим изобретением выполнен так, что пузырьково-струйный элемент и внешняя оболочка способны перемещаться друг относительно друга. Соответственно, может быть легко осуществлено регулирование положения пузырьково-струйного элемента относительно обрабатываемого объекта при проведении локальной абляции или локальной инъекции с помощью устройства для локальной абляции или устройства для локальной инъекции, в которых используется газожидкостный струйный элемент согласно настоящему изобретению. Помимо этого, прижатие внешней оболочки к обрабатываемому объекту в процессе регулирования их относительного расположения может предотвратить утечки проводящего раствора или раствора, содержащего вещество для инъекции, и позволяет в таком состоянии регулировать взаимное положение пузырьково-струйного элемента и обрабатываемого объекта.
Таким образом, устройство для локальной абляции и устройство для локальной инъекции, содержащие газожидкостный струйный элемент, соответствующий настоящему изобретению, могут быть использованы в атмосферном воздухе и могут быть применены, например, в безыгольном инъекторе.
Краткое описание чертежей
Фиг. 1 - иллюстрация одного примера способа изготовления пузырьково-струйного элемента 1 в соответствии с настоящим изобретением.
Фиг. 2 – один пример способа изготовления воплощения газожидкостного струйного элемента 10 в соответствии с настоящим изобретением.
Фиг. 3 – другая процедура изготовления внешней оболочки 13.
Фиг. 4 - схема устройства 20 для локальной абляции в целом.
Фиг. 5 – один пример воплощения устройства для локальной инъекции в соответствии с настоящим изобретением.
Фиг. 6 – фотографические снимки, используемые вместо чертежа. Фиг. 6(1) – фотография концевого участка пузырьково-струйного элемента 1, изготовленного в примере 1. Фиг. 6(2) - фотография концевого участка пузырьково-струйного элемента 1, изготовленного в сравнительном примере 1.
Фиг. 7 - фотография, используемая вместо чертежа, которая является фотографией общего вида устройства для локальной инъекции, изготовленного в примере 2, а также фотографией в увеличении концевого участка и участка газожидкостного струйного элемента 10, способного к удлинению/сокращению.
Фиг. 8 - фотографические снимки, используемые вместо чертежа. Фиг. 8(1) – фотография перед прижатием конца устройства для локальной инъекции, изготовленного в примере 2, к обрабатываемому объекту. Фиг. 8(2) – фотография после прижатия конца к объекту обработки.
Фиг. 9 – фотографический снимок, используемый вместо чертежа, который является фотографией общего вида устройства для локальной инъекции, изготовленного в примере 3, а также фотографиями, показывающими в увеличении концевой участок и участок удлинения/сокращения газожидкостного струйного элемента 10.
Фиг. 10 – фотографические снимки, используемые вместо чертежа. Фиг. 10(1) – фотография концевого участка пузырьково-струйного элемента 1 перед подводом электрической энергии в примере 4. Фиг. 10(2) – фотография указанного концевого участка непосредственно после его повреждения вследствие подвода электрической энергии. Фиг. 10(3) - фотография концевого участка пузырьково-струйного элемента 1 перед подводом электрической энергии в сравнительном примере 3. Фиг. 10(4) – фотография указанного концевого участка непосредственно после повреждения вследствие подвода электрической энергии.
Фиг. 11 – фотографические снимки, используемые вместо чертежа. Фиг. 11 (1) – фотография, сделанная непосредственно после струйного выброса пузырьков в неоплодотворенную яйцеклетку Xenopus laevus (гладкой шпорцевой лягушки) в примере 5, и фиг. 11(2) - фотография, сделанная непосредственно после струйного выброса пузырьков в неоплодотворенную яйцеклетку Xenopus laevus в сравнительном примере 4.
Фиг. 12 – фотографические снимки, используемые вместо чертежа. Фиг. 12(1)-(4) – фотографий во временной последовательности в случае локальной инъекции в неоплодотворенную яйцеклетку Xenopus laevus (гладкой шпорцевой лягушки) в примере 6. Фиг. 12(5)-(8) - фотографий во временной последовательности в случае локальной инъекции в неоплодотворенную яйцеклетку Xenopus laevus в сравнительном примере 5.
Фиг. 13 - фотографический снимок, используемый вместо чертежа, который представляет фотографию неоплодотворенной яйцеклетки, снятую камерой CCD (на приборах с зарядовой связью), освещаемой ртутной лампой, через 10 секунд после ударного воздействия пузырьков в примере 6.
Фиг. 14 - фотографический снимок, используемый вместо чертежа, который представляет собой фотографию томата после осуществления локальной инъекции в примере 7.
Фиг. 15 - фотографический снимок, используемый вместо чертежа, который представляет фотографию темной области листа ростка редьки после локальной инъекции.
Фиг. 16 - фотографический снимок, используемый вместо чертежа, который представляет фотографию темной области куриного филе после локальной инъекции.
Фиг. 17 - фотографический снимок, используемый вместо чертежа, который представляет фотографию темной области коричневого риса после локальной инъекции.
Фиг. 18 - фотографический снимок, используемый вместо чертежа, который демонстрирует внешний вид устройства для локальной инъекции в примере 11, в другом воплощении устройства для локальной инъекции согласно настоящему изобретению.
Фиг. 19 - фотографический снимок, используемый вместо чертежа, который демонстрирует перемещение концевой части устройства для локальной инъекции, изготовленного в примере 8 в соответствии с настоящим изобретением.
Описание предпочтительных воплощений
На фиг. 1 представлен один пример способа изготовления пузырьково-струйного элемента 1 в соответствии с настоящим изобретением. Пузырьково-струйный элемент 1 в соответствии с настоящим изобретением может быть изготовлен с помощью описанной ниже процедуры.
(1) Предварительно подготавливают полый изоляционный материал 2, и в полый изоляционный материал 2 вводят сердцевину (центральный стержень) 3, выполненную из проводящего материала, после чего сборку подвергают нагреванию и разрыву.
(2) Вследствие различия вязкоэластичности изоляционного материала 2 и сердцевины 3 образуется оболочка 5, включающая вытянутый участок 4, на котором изоляционный материал 2 проходит дальше конца сердцевины 3 так, что он плотно прилегает к внешней поверхности сердцевины 3.
(3) На конце вытянутого участка 4 размещают средства 6 нагревания и прижимают их к указанному вытянутому участку 4.
(4) На конце вытянутого участка 4 образуется утолщенный участок 41, и, таким образом, можно получить пузырьково-струйный элемент 1, который содержит внутреннюю полость 7, образованную между концом сердцевины 3 и вытянутым участком 4, имеющую выпускное отверстие 8 для струйного выброса пузырьков.
(5) Удаленный конец сердцевины 3 может быть снабжен набивкой из проводящего материала 9, и для покрытия удаленного конца может быть использован также изоляционный материал 91, чтобы облегчить соединение с электродом устройства для локальной абляции или устройства для локальной инъекции.
В отношении выбора изоляционного материала 2 не существует определенных ограничений при условии, что этот материал является изолятором электрического тока. Например, в качестве таких материалов здесь могут быть названы стекло, слюда, кварц, нитрид кремния, диоксид кремния, керамические материалы, и другие такие неорганические изоляционные материалы, силиконовый каучук, этиленпропиленовый каучук, и другие такие каучуковые материалы, смолы сополимеры этилена и винилацетата, модифицированные силаном олефиновые смолы, эпоксидные смолы, полиэфирные смолы, смолы винилхлорида, акриловые смолы, меламиновые смолы, фенольные смолы, полиуретановые смолы, полистирольные смолы, фтор-каучуки, силиконовые смолы, полисульфидные смолы, полиамидные смолы, полиимидные смолы, полиэтилен, полипропилен, целлюлозные смолы, УФ-отверждаемые смолы и другие такие изоляционные смолы.
Проводящие материалы, из которых выполняют сердцевину 3, не являются особо ограниченными при условии, что этот материал может быть использован в качестве электрода. Предпочтительно использование металла, примеры которого включают золото, серебро, медь, алюминий и тому подобные, а также сплавы, в которые добавлено небольшое количество олова, магния, хрома, никеля, циркония, железа, кремния, или тому подобных материалов. Как отмечено выше, внутренняя полость 7 образована между концом сердцевины 3 и вытянутым участком 5, которым изоляционный материал 3 продолжается далее от конца сердцевины, и, следовательно, допустимой является любая комбинация подходящих материалов при условии, что вязкоэластичность изоляционного материала 2 превышает вязкоэластичность сердцевины.
Примеры комбинации изоляционного материала 2 и сердцевины 3 включают стекло и медь, стекло и платину, стекло и алюминий, стекло и золото, стекло и серебро, стекло и никель, эпоксидную смолу и медь, эпоксидную смолу и платина, эпоксидную смолу и алюминий, эпоксидную смолу и золото, эпоксидную смолу и серебро, эпоксидную смолу и никель, акриловую смолу и медь, акриловую смолу и платину, акриловую смолу и алюминий, акриловую смолу и золото, акриловую смолу и серебро, акриловую смолу и никель, кремнийорганическую смолу и медь, кремнийорганическую смолу и платину, кремнийорганическую смолу и алюминий, кремнийорганическую смолу и золото, кремнийорганическую смолу и серебро, и кремнийорганическую смолу и никель.
При необходимости струйного выброса пузырьков, с помощью пузырьково-струйного элемента 1, создают электрический ток, и пузырьки, образованные на одном конце, вылетают из выпускного отверстия 8, при этом в полости 7 происходит их разделение. Следовательно, отсутствует необходимость подачи газа в пузырьково-струйный элемент 1 с внешней стороны. Соответственно, сердцевина 3 в настоящем изобретении после растяжения её проводящего материала внутри остается сплошной, и, как показано на фиг. 1, трубка или тому подобное средство для подачи воздуха во внутренний объем сердцевины 3, не используется. По меньшей мере, участок оболочки 5 выполнен с возможностью плотного прилегания к сердцевине вблизи конца пузырьково-струйного элемента 1 благодаря различию вязкоэластичных свойств изоляционного материала 2 и сердцевины 3.
Размер выбрасываемых пузырьков можно регулировать за счет изменения диаметра выпускного отверстия 8 пузырьково-струйного элемента. При использовании устройства для локальной абляции или устройства для локальной инъекции раствор, который проводит электрический ток (называемый ниже - «проводящий раствор»), должен заполнять внутреннюю полость 7 пузырьково-струйного элемента 1 за счет капиллярного действия. Поэтому диаметр выпускного отверстия 8 должен быть достаточным для того, чтобы проводящий раствор проходил через него за счет капиллярного действия, и предпочтительно составляет приблизительно 100 нм или более, более предпочтительно 200 нм или более, или, в особенности, предпочтительно 500 нм или более.
Следует отметить, что верхний предел диаметра особо не ограничен при условии, что диапазон величины диаметра такой, что возможен выброс пузырьков при отсутствии повреждения обрабатываемого объекта. Однако в случае использования пузырьково-струйного элемента для абляции клеток или инъекции, объектом которой являются животные и т.п., величина диаметра предпочтительно составляет приблизительно 100 мкм или менее, более предпочтительно 50 мкм или менее, и особо предпочтительно 15 мкм или менее. Диаметр выпускного отверстия 8 для струйного выброса пузырьков можно устанавливать заданной величины за счет температуры и скорости растяжения при нагревании, и параметров, характеризующих нажимное усилие, создаваемое нагревательным устройством 6.
Выбор нагревательного устройства 6 особо не ограничен при условии, что оно обеспечивает возможность увеличения толщины за счет нагревания до температуры плавления или выше температуры плавления изоляционного материала 2, и обжатия при плавлении концевой части вытянутого участка 4. Например, для этого следует использовать микрокузницу или иное широко известное устройство. Для получения вытянутого участка 4 в известных пузырьково-струйных элементах 1 был непосредственно использован разрыв изоляционного материала 2. Поэтому в известных пузырьково-струйных элементах 1 вытянутый участок 4 вблизи выпускного отверстия 8 для струйного выброса пузырьков уменьшается по толщине, выпускное отверстие 8 выполнено меньших размеров, и обрабатываемый объект легче может быть подвергнут вредному воздействию. Кроме того, для улучшения направленности выбрасываемых пузырьков, вытянутый участок выполнен тонким благодаря также тому, что разрыв при растяжении осуществляют с определенной скоростью, чтобы весь вытянутый участок стал коническим сужающимся.
В то же время размер выпускного отверстия 8 для струйного выброса пузырьков согласно настоящему изобретению можно довести до необходимой величины за счет плавления концевой части вытянутого участка 4, используя нагревательное устройство 6. Соответственно, сердцевина 3 и изоляционный материал 2 могут иметь большие размеры, чем в известных пузырьково-струйных элементах 1. Кроме того, за счет: (1) прекращения процесса растягивания в состоянии, в котором выпускное отверстие 8 для струйного выброса пузырьков имеет больший диаметр, чем предусмотрено, а именно, в состоянии, в котором сердцевина 3 может быть разделена при растягивании, но вытянутый участок 4 до осуществления разделения (разрыва) имеет большую толщину вследствие различия вязкоэластичности, (2) формирования выпускного отверстия путем обрезания вытянутого участка, и (3) последующего плавления отверстия с помощью нагревательного устройства 6 и формирования выпускного отверстия 8 для струйного выброса пузырьков с образованием утолщенного участка, (4) выпускное отверстие 8 для струйного выброса пузырьков может быть выполнено меньшего размера, со сформированным в то же время утолщением на вытянутом участке 4. Соответственно, при изготовлении пузырьково-струйного элемента 1, имеющего выпускное отверстие 8 для струйного выброса пузырьков такого же размера, что и выпускное отверстие 8 для струйного выброса пузырьков в известном пузырьково-струйном элементе 1, пузырьково-струйный элемент 1 в соответствии с настоящим изобретением может иметь вытянутый участок 4 большей толщины, и прочность может быть повышена. В случае формирования утолщенного участка с использованием микрокузницы, не существует ограничения формы утолщенного участка, поскольку менее вероятно, что концевая часть вытянутого участка 4 будет повреждена, если эта концевая часть будет выполнена с увеличенной толщиной, но предпочтительным будет увеличение толщины таким образом, чтобы внутренняя поверхность вытянутого участка 4 сужалась в направлении конца, поскольку в этом случае может быть увеличена направленность выброса пузырьков.
Для применения конфигурации, позволяющей избежать негативного воздействия на обрабатываемый объект при осуществлении локальной абляции, конец вытянутого участка 4, у выпускного отверстия 8 пузырьково-струйного элемента, желательно сделать утолщенным с помощью нагревания и нажимного усилия, созданного нагревательным устройством 6, и желательно обработать поверхность, контактирующую с обрабатываемым объектом, указанным нагревательным устройством так, чтобы она стала гладкой.
На фиг. 2 представлен один пример способа изготовления в одном воплощении газожидкостного струйного элемента 10 согласно настоящему изобретению. Газожидкостный струйный элемент 10, иллюстрируемый на фиг. 2, может быть изготовлен с помощью следующей последовательности действий.
(1) Предварительно подготавливают изоляционный материал 11, имеющий больший внутренний диаметр, чем иллюстрируемый на фиг. 1 полый изоляционный материал 2, и затем растягивают, производя в то же время нагревание.
(2) Изоляционный материал 11 подвергают разрыву, и в результате получают трубку 12, имеющую острый конец.
(3) Концевую часть трубки 12 нагревают с помощью нагревательного устройства 6.
(4) Концевую часть трубки 12 отрезают, и тем самым получают внешнюю оболочку 13. Хотя это и не показано, наряду с обрезанием концевой части на этой концевой части внешней оболочки 13 может быть сформирован утолщенный участок с помощью такой же последовательности операций, которую используют для концевой части вытянутого участка 4 пузырьково-струйного элемента 1.
(5) Нагревательное устройство 6 прижимают к внешней оболочки 13 для образования участка сужения, придающего направление пузырьково-струйному элементу 1 в случае перемещения пузырьково-струйного элемента 1 относительно внешней оболочки 13.
(6) На внешней оболочке 13 образуется участок 14 сужения.
(7) На пузырьково-струйный элемент 1 устанавливают кольцевую прокладку 16, содержащую вмонтированное первое кольцо 15.
(8) Снаружи пузырьково-струйного элемента 1 насаживают внешнюю оболочку 13.
(9) Концы первого кольца 15 и внешней оболочки 13 соединяют с помощью элемента 17, способного к удлинению и сокращению, и в результате газожидкостный струйный элемент 10 изготовлен.
На вышеупомянутых стадиях изготовления при необходимости может быть сформирован упомянутый участок 14 сужения, но формирование участка 14 сужения не является необходимым.
Изоляционный материал 11 может быть таким же материалом, что и вышеупомянутый изоляционный материал 2. Участок 14 сужения, в случае его формирования, предпочтительно должен быть симметричной формы и образован, по меньшей мере, в трех местах (по периметру окружности) для предотвращения сдвига ориентации пузырьково-струйного элемента 1 при его перемещении.
Первое кольцо 15 может быть выполнено из такого же материала, что и изоляционный материал 2. Кольцевая прокладка 16 может быть получена с помощью мягкой литографии или трехмерной фотолитографии с использованием полимерной пленки, силикона, каучука или полидиметилсилоксана (PDMS). В отношении элемента 17, способного к удлинению и сокращению, не существуют особые ограничения при условии, что указанный элемент 17, способный к удлинению и сокращению, может быть присоединен к концам первого кольца 15 и внешней оболочки 13 и может удлиняться и сокращаться для относительного перемещения пузырьково-струйного элемента 1 и внешней оболочки 13. Примеры его выполнения включают лист из PDMS, каучук и упругие элементы (пружины). Желательно, чтобы элемент 17, способный к удлинению и сокращению, обеспечивал приложение усилия в направлении смещения внешней оболочки 13 таким образом, чтобы она находилась впереди выпускного отверстия 8 для струйного выброса пузырьков при отсутствии нажимного усилия на обрабатываемый объект, и, следовательно, элемент 17, способный к удлинению и сокращению, предпочтительно выполнен из материала, который возвращается к первоначальной форме при прекращении действия нажимного усилия.
Фиг. 3 иллюстрирует другую процедуру изготовления внешней оболочки 13. Внешняя оболочка 13, представленная на фиг. 3, может быть получена за счет подвода теплоты к изоляционному материалу 11, его растягивания и последующего прекращения растягивания в состоянии, в котором диаметр нагретого участка изоляционного материала немного превышает диаметр пузырьково-струйного элемента 1. Газожидкостный струйный элемент 10 иного воплощения, чем иллюстрируемый на фиг. 2, может быть изготовлен путем использования внешней оболочки 13, иллюстрируемой на фиг. 3, в качестве внешней оболочка 13 в позициях (8) и (9) на фиг. 2.
Следует отметить, что если обрабатываемый объект (мишень) имеет очень малые размеры, например клетка, следует использовать газожидкостный струйный элемент 10 в воплощении, иллюстрируемом на фиг. 2. Кроме того, при осуществлении локальной инъекции применительно к человеческому организму или к животным, существует вероятность травмирования человека или животного, если расширяющийся участок внешней оболочки 13 имеет малый диаметр, и, поэтому следует использовать газожидкостный струйный элемент 10, который содержит изображенную на фиг. 3 внешнюю оболочку 13 с большей величиной диаметра расширяющегося участка.
При осуществлении порядка действий, иллюстрируемого на фиг. 2, первое кольцо 15 и внешнюю оболочку 13 соединяют с элементом 17, способным к удлинению и сокращению, однако определенного ограничения здесь не существует при условии, что конструкция такова, что пузырьково-струйный элемент 1 и внешняя оболочка 13 выполнены с возможностью относительного перемещения, и отсутствуют утечки проводящего раствора, заполняющего объем между пузырьково-струйным элементом 1 и внешней оболочкой 13. Например, к концу внешней оболочки 13 может быть прикреплено второе кольцо, при этом первое кольцо 15 и второе кольцо могут быть соединены посредством элемента 17, способного к удлинению и сокращению. Кроме того, возможно, что первое кольцо 15 отсутствует, и один конец элемента 17, способного к удлинению и сокращению, может быть присоединен к концу внешней оболочки 13, а другой конец элемента 17, способного к удлинению и сокращению, может быть присоединен к пузырьково-струйному элементу 1. Следует также отметить, что элемент 17, способный к удлинению и сокращению, не ограничен использованием для его изготовления единственного материала, и может быть выполнен с использованием комбинированных материалов. Например, элемент 17, способный к удлинению и сокращению, может быть реализован посредством установки на концах первого кольца 15 и внешней оболочки 13 пружины или другого материала, имеющего просвет и способного к удлинению и сокращению, прикрепленного к ним с помощью адгезива и затем уплотненного с помощью тонкой пленки для того, чтобы предотвратить утечки проводящего раствора через упомянутую пружину и т.п.
Приведенное выше указание на то, что «внешняя оболочка и пузырьково-струйный элемент выполнены с возможностью относительного перемещения», не ограничено примерами, иллюстрируемыми на фиг. 2 и фиг. 3, на которых