Способ создания сенсорного элемента на основе микрорезонатора из пористого кремния для детекции паров взрывчатых веществ
Иллюстрации
Показать всеИзобретение относится к области физики. Способ включает введение в микрорезонатор из пористого кремния органических полимеров класса полифениленвиниленов, причем микрорезонатор из пористого кремния размещают на дне металлической емкости, которую заполняют раствором органического полимера с концентрацией 0,1-1 мг/мл в органическом растворителе, после чего в емкость нагнетают инертный газ и поддерживают избыточное давление на уровне 1-9 бар в течение 10-100 минут при фиксированной температуре из диапазона от +10°С до +50°С. Достигается упрощение, повышение надежности и уменьшение ресурсозатратности процесса. 2 з.п. ф-лы, 1 пр., 2 ил.
Реферат
Изобретение относится к области нанотехнологии и физики, в частности к способу создания люминесцентного сенсорного элемента. Способ может быть использован для создания высокочувствительных сенсоров взрывчатых веществ. Предложенный способ приводит к повышению однородности проникновения и сокращению расхода органического полимера, введенного в микрорезонатор, по сравнению с известными методами создания сенсорных элементов из пористого кремния.
Известен способ, «изучение оптических свойств полимеров, введенных в пористую матрицу на основе кремния» (Cheylan S. и др. Optical study of polymer infiltration into porous Si based structures // Proc. of SPIE Vol. 6593, 2007. C. 65931K). В данном способе органические полимеры вводят в монослой пористого кремния за счет нанесения капли раствора полимера на поверхность пористой матрицы из кремния. Недостатком данного способа является неоднородность внедрения, которая не может быть достигнута из-за неоднородного распределения капли раствора по поверхности образца. В результате чего снижается эффективность и появляется разброс характеристик сенсорного элемента.
Наиболее близким способом является, «флуоресцентные гибридные устройства на основе полимеров-микрорезонаторов из пористого кремния для обнаружения взрывчатых веществ» (Levitsky I.A. и др. Fluorescent polymer-porous silicon microcavity devices for explosive detection // Appl. Phys. Lett. 2007. T. 90. №4. C. 41904.). Данный способ включает в себя введение органического полимера в микрорезонатор на основе пористого кремния. Введение органического полимера происходит путем нанесения капли раствора полимера в вакууме на пористую поверхность микрорезонатора. После нанесения полимер удаляется методом спин-коатига, а затем камеру наполняют азотом с атмосферным давлением. Этот способ выбран в качестве прототипа предложенного решения.
Основным недостатком приведенного выше способа является отсутствие однородных условий введения раствора органического полимера в микрорезонатор на разных участках его поверхности, что приводит к уменьшению эффективности и надежности сенсорного элемента. Также к недостаткам этого способа можно отнести высокий расход раствора используемого полимера, что приводит к увеличению ресурсозатрат.
Технический результат изобретения заключается в упрощении способа создания сенсорного элемента на основе микрорезонатора из пористого кремния и в повышении надежности, уменьшении ресурсозатратности процесса введения полимера, благодаря снижению разброса основных характеристик сенсорного элемента.
Указанный технический результат достигается тем, что в способе создания сенсорного элемента на основе микрорезонатора из пористого кремния для детекции паров взрывчатых веществ, микрорезонатор из пористого кремния размещают на дне металлической емкости, которую заполняют раствором органического полимера с концентрацией 0,1-1 мг/мл в органическом растворителе, после чего в емкость нагнетают инертный газ и поддерживают избыточное давление на уровне 1-9 бар в течение 10-100 минут при фиксированной температуре из диапазона от +10°С до +50°С.
В частном случае в качестве органического растворителя используют толуол.
Также в качестве органического растворителя используют хлороформ.
Данный технический результат позволяет снизить расход органического полимера, так как образец размещается на дне емкости, благодаря чему требуется небольшой объем заливаемого полимера. При этом экспериментально подобранная концентрация раствора органического полимера в органическом растворителе в диапазоне 0,1-1 мг/мл обеспечивает высокий люминесцентный сигнал и высокую проникающую способность. В металлическую емкость нагнетают давление инертного газа, который не взаимодействует с органическим полимером. Минимальная величина давления в 1 бар обеспечивает однородное введения полимера, что в свою очередь существенно влияет на качество сенсорного элемента. Максимальный предел величины давления в 9 бар подобран экспериментально и определяет порог, выше которого скорость введения полимера не изменяется, но существенно усложняется конструкция установки. При этом время приложения давления ниже 10 минут приводит к уменьшению люминесцентного сигнала сенсорного элемента, тем самым снижая его эффективность. При превышении времени приложения давления 100 минут наблюдается образование пленки полимера на поверхности образца, тем самым ухудшаются характеристики сенсорного элемента. Температурные режимы экспериментально подобраны таким образом, чтобы обеспечить стабильность люминесцентного сигнала и определенную вязкость. Стоит отметить, что от величина люминесцентного сигнала зависит скорость и точность детекции паров взрывчатых веществ, а вязкость влияет на однородность введение полимера, преимущества которого рассмотрены выше. Тем самым минимальная величина составляет температуру +10°С. Значения температуры выше +50°С приводят к снижению мощности люминесцетного сигнала полимера, введенного в микрорезонатор.
Примеры конкретной реализации предлагаемого способа
На фиг. 1 изображена схема установки для ввведения полимера в микрорезонатор.
Трубка для подачи давления азота - 1; металлическая емкость - 2; раствор органического полимера - 3; микрорезонатор из пористого кремния - 4;
На фиг. 2 изображено распределение амплитуды люминесценции введенного полимера в зависимости от расстояния от центра микрорезонатора.
Пример применения
Данный способ реализован с помощью установки, изображенной на фиг. 1. Металлическая емкость наполняется раствором органического полимера из класса полифинилвинеленов с концентрацией 0,1 мг/мл в толуоле. Данная концентрация позволяет обеспечить высокую проникающую способность и люминесцентный сигнал полимера. Объем раствора составляет 1,5 мл. Затем в емкость с полимером на дно погружается образец микрорезонатора на основе пористого кремния. На следующем этапе емкость с раствором полимера и микрорезонатором нагревается до температуры 30°С. Данная температура обеспечивает необходимую вязкость органического полимера и поддерживается на протяжении всего процесса введения полимера. Затем через трубку - 1 в емкость нагнетается особо чистый азот. Азот химически не взаимодействует с органическим полимером и с микрорезонатором из пористого кремния. Величина давления при этом поддерживается на уровне 1,5 бара, таким образом создаются условия для однородного внедрения полимера. Время, в течение которого поддерживается избычное давление, составляет 100 мин. За этот временной промежуток в микрорезонатор проникает необходимое количество полимера для обеспечения высокого люминесцентного сигнала сенсорного элемента. Также, при данном времени введения, не образуется пленка на поверхности микрорезонатора, которая препятствует однородному проникновению полимера, что в свою очередь снижает качество сенсорного элемента. Однородность введения полимера продемонстрирована на фиг. 2, на которой показано распределение амплитуды люминесценции введенного полимера в зависимости от расстояния от центра микрорезонатора. Отклонение интенсивности от максимума составляет не более 30%. На краю образца интенсивность люминесценции полимера может быть меньше из-за краевых эффектов, связанных с качеством изготовления микрорезонаторов. На заключительном этапе отсоединяется трубка для подачи азота. Из емкости с раствором полимера, с помощью пинцета, извлекается образец микрорезонатора. Затем микрорезонатор помещается на чистую поверхность и высушивается при нормальных условиях от остатков раствора полимера.
Таким образом данный способ позволяет снизить расход органического полимера, что позволяет уменьшить ресурсозатратность. Также благодаря экспериментально подобранным параметрам: концентрации полимера, величине избыточного давления, времени приложения избыточного давления и температурным режимам, может быть обеспечено однородно введение полимера по поверхности микрорезонатора из пористого кремния, что приводит к увеличению надежности и снижению разброса основных характеристик сенсорного элемента.
1. Способ создания сенсорного элемента на основе микрорезонатора из пористого кремния для детекции паров взрывчатых веществ, включающий введение в микрорезонатор из пористого кремния органических полимеров класса полифениленвиниленов, отличающийся тем, что микрорезонатор из пористого кремния размещают на дне металлической емкости, которую заполняют раствором органического полимера с концентрацией 0,1-1 мг/мл в органическом растворителе, после чего в емкость нагнетают инертный газ и поддерживают избыточное давление на уровне 1-9 бар в течение 10-100 минут при фиксированной температуре из диапазона от +10°С до +50°С.
2. Способ по п. 1, отличающийся тем, что в качестве органического растворителя используют толуол.
3. Способ по п. 1, отличающийся тем, что в качестве органического растворителя используют хлороформ.