Компонент газовой турбины, газотурбинный двигатель, способ изготовления компонента газотурбинного двигателя
Иллюстрации
Показать всеКомпонент газовой турбины, имеющий теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания, содержит металлическую подложку, крепящий слой на поверхности подложки, теплозащитное покрытие, структуру выступающих элементов и структуру элементов в виде канавок. Теплозащитное покрытие включает слой внешнего теплозащитного покрытия, имеющий внутреннюю поверхность, нанесенную поверх и сцепленную с крепящим слоем, и внешнюю поверхность для воздействия газообразных продуктов сгорания. Структура в виде выступающих элементов имеет высоту выступов, составляющую от 2 до 75% совокупной общей толщины слоев теплозащитного покрытия. Структура элементов в виде канавок имеет канавки, сформированные в ранее нанесенном слое внешнего теплозащитного покрытия, по его внешней поверхности, и проникающие в этот слой. Структура выступающих элементов и структура элементов в виде канавок находятся в соответственно ограниченных, отделенных, трехмерных, независимо выровненных структурах, проходящих по компоненту. Другое изобретение относится к газотурбинному двигателю, содержащему указанный выше компонент. При изготовлении указанного выше компонента газотурбинного двигателя наращивают крепящий слой на поверхности подложки и формируют в крепящем слое структуру выступающих из него элементов. Затем формируют слой теплозащитного покрытия и формируют структуру элементов в виде канавок в ранее нанесенном слое внешнего теплозащитного покрытия по его внешней поверхности, проникающих в этот слой. Группа изобретений позволяет повысить надежность покрытия и обеспечить возможность локализации трещин распространяющихся в теплозащитном покрытии и вызванных тепловыми напряжениями или повреждениями посторонними предметами. 3 н. и 11 з.п. ф-лы, 49 ил.
Реферат
ПРИТЯЗАНИЯ НА ПРИОРИТЕТ И ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] В этой заявке выдвигаются притязания на приоритет согласно нижеследующим заявкам на патенты США, содержание каждой из которых включено сюда посредством ссылки:
[0002] ʺTURBINE ABRADABLE LAYER WITH PROGRESSIVE WEAR ZONE HAVING A FRANGIBLE OR PIXELATED NIP SURFACEʺ («ИСТИРАЕМЫЙ СЛОЙ ТУРБИНЫ C ЗОНОЙ ПРОГРЕССИРУЮЩЕГО ИЗНОСА, ИМЕЮЩИЙ ПОВЕРХНОСТЬ С ХРУПКИМИ ИЛИ МОЗАИЧНЫМИ ШИПАМИ»), поданная 25 февраля 2014 г. и получившая порядковый номер 14/188941; и
[0003] ʺTURBINE ABRADABLE LAYER WITH PROGRESSIVE WEAR ZONE MULTI LEVEL RIDGE ARRAYSʺ («ИСТИРАЕМЫЙ СЛОЙ ТУРБИНЫ С МАТРИЦАМИ МНОГОУРОВНЕВЫХ ГРЕБНЕЙ В ЗОНЕ ПРОГРЕССИРУЮЩЕГО ИЗНОСА»), поданная 25 февраля 2014 г. и получившая порядковый номер 14/188958.
[0004] Одновременно поданная заявка на патент под названием ʺTURBINE ABRADABLE LAYER WITH AIRFLOW DIRECTING PIXELATED SURFACE FEATURE PATTERNSʺ («ИСТИРАЕМЫЙ СЛОЙ ТУРБИНЫ СО СТРУКТУРАМИ НАПРАВЛЯЮЩИХ МОЗАИЧНЫХ ОСОБЕННОСТЕЙ ПОВЕРХНОСТИ»), имеющая номер 2013P20413WO (WO2015/130519) в реестре патентных поверенных и получившая порядковый номер (не известен), идентифицирована как родственная заявка и включена сюда посредством ссылки.
[0005] В целях экспертизы настоящим подаваемой заявки, нижеследующие заявки на патенты США идентифицированы как родственные заявки, все содержание каждой из которых включено сюда посредством ссылки:
[0006] ʺTURBINE ABRADABLE LAYER WITH PROGRESSIVE WEAR ZONE TERRACED RIDGESʺ («ИСТИРАЕМЫЙ СЛОЙ ТУРБИНЫ СО СТУПЕНЧАТЫМИ ГРЕБНЯМИ В ЗОНЕ ПРОГРЕССИРУЮЩЕГО ИЗНОСА»), поданная 25 февраля 2014 г. и получившая порядковый номер 14/188992;
[0007] ʺTURBINE ABRADABLE LAYER WITH PROGRESSIVE WEAR ZONE MULTI DEPTH GROOVESʺ («ИСТИРАЕМЫЙ СЛОЙ ТУРБИНЫ С КАНАВКАМИ, ИМЕЮЩИМИ НЕСКОЛЬКО ГЛУБИН, В ЗОНЕ ПРОГРЕССИРУЮЩЕГО ИЗНОСА»), поданная 25 февраля 2014 г. и получившая порядковый номер 14/188813;
[0008] ʺTURBINE ABRADABLE LAYER WITH ASYMMETRIC RIDGES OR GROOVESʺ («ИСТИРАЕМЫЙ СЛОЙ ТУРБИНЫ С АСИММЕТРИЧНЫМИ ГРЕБНЯМИ ИЛИ КАНАВКАМИ»), поданная 25 февраля 2014 г. и получившая порядковый номер 14/189035;
[0009] ʺTURBINE ABRADABLE LAYER WITH ZIG-ZAG GROOVE PATTERNʺ («ИСТИРАЕМЫЙ СЛОЙ ТУРБИНЫ СО СТРУКТУРОЙ ЗИГЗАГООБРАЗНЫХ КАНАВОК»), поданная 25 февраля 2014 г. и получившая порядковый номер 14/189081; и
[0010] ʺTURBINE ABRADABLE LAYER WITH NESTED LOOP GROOVE PATTERNʺ («ИСТИРАЕМЫЙ СЛОЙ ТУРБИНЫ СО СТРУКТУРОЙ КАНАВОК В ВИДЕ ВЛОЖЕННЫХ КОНТУРОВ»), поданная 25 февраля 2014 г. и получившая порядковый номер 14/189,011,
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0011] Изобретение относится к газотурбинным или паротурбинным двигателям, имеющим слои теплозащитного покрытия (ТЗП) на поверхностях своих компонентов, которые подвергаются воздействию нагретых рабочих текучих сред, таких, как газообразные продукты сгорания или водяной пар высокого давления, включая отдельные субкомпоненты, которые включают в себя такие теплозащитные покрытия. Изобретение также относится к способам уменьшения распространения трещин или повреждений вследствие отслаивания, причиняемых таким слоям ТЗП компонентов турбин и зачастую обуславливаемых тепловыми циклическими нагрузками или повреждениями посторонними предметами (ППП). Конкретнее, различные варианты осуществления, описываемые здесь, относятся к структурным модификациям, вносимым в нижележащую подложку компонента турбины или в промежуточные слои, нанесенные на эту подложку, посредством включения проектируемых особенностей (элементов) поверхности (ПОП) для улучшения прикрепления вышележащего теплозащитного покрытия (ТЗП). ПОП способствуют креплению слоя ТЗП и/или локализации распространения трещин, вызываемых тепловыми напряжениями или повреждениями посторонними предметами (ППП) в пределах ТЗП, которые в противном случае могли приводить к избыточному отслаиванию ТЗП и последующим повреждениям из-за тепловых воздействий, причиняемым нижележащей подложке компонента турбины.
УРОВЕНЬ ТЕХНИКИ
[0012] Известные турбинные двигатели, включая газотурбинные двигатели или турбинные двигатели внутреннего сгорания и паротурбинные двигатели, включают в себя установленные на валу рабочие турбины, охваченные в окружном направлении корпусом или кожухом турбины. В остальной части этого описания внимание сосредоточено на приложениях в рамках технического применения турбинных двигателей внутреннего сгорания или газотурбинных двигателей и окружающей их среды, хотя возможные варианты осуществления, описываемые здесь, применимы и к паротурбинным двигателям. В газотурбинном двигателе или турбинном двигателе внутреннего сгорания, горячие газообразные продукты сгорания протекают по тракту сгорания, который начинается внутри камеры сгорания, и направляются по переходу, в целом трубчатому, в секцию турбины. Передняя или принадлежащая ряду 1 направляющая лопатка направляет газообразные продукты сгорания мимо последовательных чередующихся рядов рабочих лопаток и направляющих лопаток турбины. Горячие газообразные продукты сгорания, бьющие по рабочим лопаткам турбины, вызывают вращение рабочих лопаток, тем самым преобразуя тепловую энергию, заключенную в горячих газах, в механическую работу, которая доступна для энергоснабжения вращающихся машин, таких, как электрический генератор.
[0013] Внутренние компоненты двигателя в пределах тракта горячих газообразных продуктов сгорания подвергаются воздействию температур сгорания, составляющих приблизительно 900 градусов по Цельсию (1600 градусов по Фаренгейту). Внутренние компоненты двигателя в пределах тракта сгорания, такие, как, например, переходы секции сгорания, направляющие лопатки и рабочие лопатки, зачастую выполнены из жаростойких суперсплавов. Направляющие лопатки и рабочие лопатки часто включают в себя каналы охлаждения, оканчивающиеся в отверстиях для охлаждения на внешней поверхности компонента, для пропускания охлаждающей текучей среды в тракт сгорания.
[0014] Внутренние компоненты турбинных двигателей зачастую включают в себя теплозащитный слой или теплозащитное покрытие (ТЗП) из металлокерамического материала, нанесенного непосредственно на наружную сторону поверхности подложки компонента или поверх промежуточного металлического связующего покрытия (СП), которое ранее нанесено на поверхность подложки. ТЗП обеспечивает изолирующий слой поверх подложки компонента, что уменьшает температуру подожки. Совокупность нанесения ТЗП c каналами охлаждения в компоненте дополнительно понижает температуру подложки.
[0015] Из-за различий в тепловом расширении, вязкости разрушения и модуля упругости - помимо всего прочего - между типичными материалами металлокерамических ТЗП и типичными материалами суперсплавов, используемыми для изготовления вышеупомянутых компонентов турбин, существует потенциальный риск растрескивания слоя ТЗП, а также потери адгезии между ТЗП и компонентами турбин на поверхности раздела разнородных материалов. Трещины и/или потеря адгезии или расслаивание негативно влияют на структурную целостность слоя ТЗП и потенциально ведут к его отслаиванию, т.е. отделению изолирующего материала от компонентов турбины. Например, вертикальные трещины, развивающиеся в пределах слоя ТЗП, могут распространяться к поверхности раздела ТЗП и подложки, а затем простираться горизонтально. Аналогичным образом, горизонтально ориентированные трещины могут начинаться в пределах слоя ТЗП или вблизи поверхности раздела ТЗП и подложки. Такие потери структурной целостности ТЗП из-за трещинообразования могут приводить также к причинению преждевременных повреждений нижележащей положке компонента. Когда слой ТЗП отрывается от нижележащей подложки, последняя утрачивает свое покрытие в виде теплозащитного слоя. В течение длительной эксплуатации турбинного двигателя, со временем становится возможной ситуация, в которой горячие газообразные продукты сгорания станут эродировать или иным образом причинять повреждение отрытой поверхности компонента турбины, потенциально сокращая эксплуатационный ресурс двигателя. Потенциальный риск отслаивания увеличивается с последовательным возбуждением циклов включения-выключения, когда двигатель эксплуатируют с целью генерирования электрической энергии в ответ на повышенную потребляемую электрической сетью нагрузку и перевод в режим холостого хода, когда потребляемая электрической сетью нагрузка уменьшается. Чтобы справиться с риском отслаивания ТЗП и другими потребностями в техническом обслуживании двигателя, газотурбинные двигатели зачастую выводят из эксплуатации для осмотра и технического обслуживания через определенное количество тепловых циклов включения-выключения.
[0016] В дополнение к подверженности трещинообразованию из-за тепловых или вибрационных механических напряжений, слой ТЗП на компонентах двигателя также подвержен повреждениям посторонними предметами (ППП), когда частицы загрязняющих веществ, находящиеся в пределах горячих газообразных продуктов сгорания, бьют в относительно хрупкий материал ТЗП. Удар посторонним предметом может обуславливать растрескивание поверхности ТЗП, вызывая, в конце концов, обусловленную отслаиванием утрату целостности поверхности, аналогичную появлению выбоин на дороге. Сразу же после того, как посторонний предмет отслаивает участок слоя ТЗП, остальной материал ТЗП подвергается распространению структурных трещин и/или дальнейшему отслаиванию изолирующего слоя. Помимо повреждений слоя ТЗП посторонними предметами из окружающей его среды, загрязняющие вещества, присутствующие в газообразных продуктах сгорания, такие, как кальций, магний, алюминий и кремний (зачастую собирательно именуемыми «КМАК»), могут прилипать к слою ТЗП или вступать с ним в реакцию, увеличивая вероятность отслаивания ТЗП и обнажения нижележащего связующего покрытия.
[0017] Предпринятые в прошлом попытки улучшения структурной целостности слоя ТЗП и прикрепления его к нижележащим подложкам компонентов турбины предусматривали разработку более прочных материалов ТЗП, способных лучше выдерживать тепловое растрескивание или ППП, но с компромиссами, выражающимися в пониженном удельном тепловом сопротивлении или повышенной стоимости материалов. В общем случае, относительно более прочные и менее хрупкие потенциальные материалы для нанесения ТЗП обладали меньшим удельным тепловым сопротивлением. В качестве альтернативы, на подложки компонентов турбин наносили несколько отдельно наносимых слоев материалов ТЗП, обладающих разными преимущественными свойствами, например, более хрупкий или более мягкий материал ТЗП, обладающий лучшими теплоизолирующими свойствами, который, в свою очередь, покрывали более прочным материалом ТЗП как более вязким «броневым» внешним покрытием, способным лучше сопротивляться ППП и/или прилипанию таких загрязняющих веществ, как КМАК. Чтобы увеличить адгезию ТЗП к нижележащей подложке, непосредственно поверх подложки наносили слои промежуточного металлического связующего покрытия (СП). Структурные свойства и/или профиль подложки или поверхности раздела СП и ТЗП также модифицировали, уходя от плоской незащищенной поверхности. Некоторые известные модификации поверхности подложки и/или СП (например, с получением так называемых «шероховатых связующих покрытий» или ШСП) включали в себя придание шероховатости поверхности посредством абляции или другой дробеструйной обработки, осаждения термическим напылением, или аналогичными методами. В некоторых случаях, поверхность СП или поверхность подложки подвергали травлению через маску из фоторезиста или лазерному травлению, придавая поверхности особенности, форме в плане которых присущи высота и ширина промежутков от края до края поверхности, составляющие приблизительно несколько микронов (мкм). Эти особенности (элементы) формировали непосредственно на поверхности подложки законцовок рабочих лопаток турбины, чтобы сгладить механическое напряжение, воздействию которого подвергаются покрытия законцовок рабочих лопаток. Шероховатые связующие покрытия наносили термическим напылением, оставляя пористые поверхности особенностей, имевших размер в несколько микронов. Слои ТЗП наносили за счет локального изменения гомогенности наносимого металлокерамического материала с целью создания предварительно ослабленных зон для стимулирования распространения в них трещин в управляемых направлениях. Например, ослабленную зону создавали в слое ТЗП, соответствующем известной или вероятной зоне концентрации механических напряжений, так что любые трещины, развивающиеся в ней, распространяются в желаемом направлении, минимизируя общие структурные повреждения, причиняемые слою ТЗП.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0018] Различные варианты осуществления конструкции компонентов турбин и способов изготовления компонентов турбин, которые здесь описываются, способствуют сохранению структурной целостности слоя теплозащитного покрытия (ТЗП) компонента турбины во время эксплуатации турбинного двигателя. В некоторых вариантах осуществления проектируемые особенности поверхности (ПОП)(выступающие элементы), сформированные непосредственно в подложке компонента или промежуточных слоях, нанесенных поверх подложки, повышают адгезию слоя ТЗП к компоненту. В некоторых вариантах осуществления, ПОП функционируют как стенки или барьеры, которые ограничивают или изолируют трещины в слое ТЗП, препятствуя дальнейшему распространению трещин в пределах этого слоя или его отслаиванию от примыкающих сцепленных слоев.
[0019] В некоторых вариантах осуществления, в слое ТЗП - по всей его внешней поверхности - формируют проектируемые особенности (элементы) в виде канавок (ПОК), например - с помощью лазерной или водоструйной абляции или механического врезания в ранее сформированный слой ТЗП. ПОК, функционирующие как эквивалент противопожарной полосы, которая предотвращает распространение огня от края до края раковины или зазора в горючем материале, останавливают дальнейшее распространение трещин в слое ТЗП поперек канавки в другие зоны в слое ТЗП. ПОК в некоторых вариантах осуществления выровнены с зонами механических напряжений, подверженными развитию трещин во время эксплуатации двигателя. В таких вариантах осуществления, формирование канавки в зоне механических напряжений приводит к удалению материала, которое - возможно или вероятно - приведет к образованию трещины под действием механических напряжений во время эксплуатации двигателя. В других вариантах осуществления, ПОК формируют в виде удобных двумерных или многоугольных в плане структур в слое ТЗП. ПОК локализуют распространение трещин, обуславливаемых тепловыми напряжениями или повреждениями посторонними предметами (ППП), в пределах ТЗП, которые в противном случае могли бы обеспечить избыточное отслаивание ТЗП и последующие повреждения тепловыми воздействиями, причиняемые нижележащей подложке компонентов турбины. Некоторую заданную площадь поверхности ТЗП, имеющую развитую одну или несколько трещин, вызываемых механическими напряжениями, изолируют от не растрескавшихся участков, которые находятся снаружи от ПОК. Следовательно, если растрескавшийся участок, изолированный одной или несколькими ПОК, отслаивается от компонента, остальная поверхность ТЗП вне содержащих трещины канавок не будет отслаиваться из-за содержащейся в них трещины (содержащихся в них трещин).
[0020] В некоторых вариантах осуществления, отслаивание растрескавшегося материала ТЗП, которое ограничено в пределах ПОП и/или ПОК, оставляет частичный нижележащий слой ТЗП, который аналогичен выбоине на дороге. Нижележащий материал ТЗП, который образует дно или основание «выбоины», обеспечивает непрерывную тепловую защиту для нижележащей подложки компонента турбинного двигателя.
[0021] В некоторых вариантах осуществления компонент турбины имеет термически напыленное вышележащее теплозащитное покрытие (ТЗП) с изменяющимися по глубине свойствами материала. Возможные изменяющиеся по глубине свойства материала включают в себя модуль упругости, вязкость разрушения и удельную теплопроводность, которые изменяются от внутренней к внешней поверхности слоя ТЗП. Возможные способы модификации физических свойств включают в себя нанесение нескольких отдельных наносимых друг на друга слоев с разным составом материала или изменение состава наносимого материала во время нанесения слоя ТЗП термическим напылением.
[0022] В некоторых вариантах осуществления также наносят материал-ингибитор на основе кальция-магния-алюминия-кремния (КМАК) поверх слоя ТЗП, чтобы замедлить реакцию слоя ТЗП с мелкодисперсными продуктами сгорания, содержащими КМАК, или понизить их адгезию к слою ТЗП. Когда слои ингибитора на основе КМАК наносят поверх ПОК, они замедляют накапливание постороннего материала внутри канавок и обеспечивают более гладкие поверхности пограничных слоев, повышая аэродинамическое качество потока газообразных продуктов сгорания.
[0023] Конкретнее, в описываемых здесь вариантах осуществления изобретения предложен компонент газовой турбины, имеющий теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания, который включает в себя: металлическую подложку, имеющую поверхность подложки; крепящий слой, наращенный на поверхности подложки; и теплозащитное покрытие (ТЗП), получаемое термическим напылением или осаждением из паровой фазы или плазменным напылением из раствора или суспензии. ТЗП включает в себя, по меньшей мере, слой внешнего теплозащитного покрытия (ВТЗП), имеющий внутреннюю поверхность ВТЗП, поверх которой нанесен и сцеплен крепящий слой, и внешнюю поверхность ВТЗП для воздействия газообразных продуктов сгорания. Из крепящего слоя выступают проектируемые особенности поверхности (ПОП), имеющие планарную структуру. ПОП имеют высоту выступов, приблизительно составляющую от 2 до 75 процентов совокупной общей толщины слоев ТЗП. Планарная структура проектируемых особенностей в виде канавок (ПОК) внедрена в ранее нанесенный слой ВТЗП по внешней поверхности ВТЗП и пронизывает его. Соответствующие ПОК имеют некоторую глубину канавок.
[0024] В других описываемых здесь вариантах осуществления изобретения предложен способ изготовления компонента газовой турбины, имеющего теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания. Предусматривают металлическую подложку, которая имеет поверхность подложки. На поверхности подложки создают крепящий слой, в котором формируют планарную структуру выступающих проектируемых особенностей поверхности (ПОП). На крепящем слое формируют и сцепляют с ним слой теплозащитного покрытия (ТЗП), получаемого термическим напылением или осаждением из паровой фазы или плазменным напылением из раствора или суспензии. Слой ТЗП включает в себя, по меньшей мере, слой внешнего теплозащитного покрытия (ВТЗП), имеющий внутреннюю поверхность ВТЗП, поверх которой наносят и сцепляют с ней крепящий слой, и внешнюю поверхность ВТЗП для воздействия газообразных продуктов сгорания. В ранее нанесенный слой ВТЗП по внешней поверхности ВТЗП внедряют планарную структуру проектируемых особенностей в виде канавок (ПОК), которая пронизывает его. Соответствующие ПОК имеют некоторую глубину канавок. Соответствующие ПОП, внедренные в крепящий слой, имеют высоту выступов, приблизительно составляющую от 2 до 75 процентов совокупной общей толщины слоев ТЗП.
[0025] В дополнительных вариантах осуществления изобретения, описываемых здесь, предложен способ борьбы с распространением трещин во внешнем слое теплозащитного покрытия (ТЗП) компонента газотурбинного двигателя. Предложенный газотурбинный двигатель включает в себя компонент, имеющий теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания. Предложенный компонент включает в себя металлическую подложку, которая имеет поверхность подложки и крепящий слой, наращенный на поверхности подложки. Из крепящего слоя выступает планарная структура выступающих проектируемых особенностей поверхности (ПОП). Слой внешнего теплозащитного покрытия (ВТЗП), получаемого термическим напылением или осаждением из паровой фазы или плазменным напылением из раствора или суспензии, имеет внутреннюю поверхность ВТЗП, поверх которой нанесен и сцеплен крепящий слой, и внешнюю поверхность ВТЗП для воздействия газообразных продуктов сгорания. Планарная структура проектируемых особенностей в виде канавок (ПОК) внедрена в ранее нанесенный слой ВТЗП по внешней поверхности ВТЗП и пронизывает его. Соответствующие ПОК имеют глубину канавок. В предложенном компоненте, все слои NPG имеют совокупную толщину, приблизительно составляющую от 300 до 2000 микрон, а соответствующие сформированные ПОП имеют высоту выступов, приблизительно составляющую от 2 до 75 процентов совокупной общей толщины слоев ТЗП. Предложенный газотурбинный двигатель, включающий в себя установленный компонент, вводят в эксплуатацию. Во время эксплуатации двигателя, тепловые или механические напряжения в ВТЗП в процессе тепловых циклов, или механические напряжения вносятся в ВТЗП за счет ударов посторонними предметами. Любые из вносимых напряжений генерируют трещину в ВТЗП. Распространение трещин в ВТЗП задерживается при пересечении с одним или несколькими из ПОК или ПОП.
[0026] Соответствующие признаки различных вариантов осуществления описываемого здесь изобретения применимы в совокупности или по отдельности в любой комбинации или субкомбинации.
В формуле изобретения заявлен компонент газовой турбины, имеющий теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания, содержащий:
металлическую подложку, имеющую поверхность подложки;
крепящий слой, наращенный на поверхности подложки;
теплозащитное покрытие (ТЗП), полученное термическим напылением или осаждением из паровой фазы или плазменным напылением из раствора или суспензии, включающее в себя, по меньшей мере, слой внешнего теплозащитного покрытия (ВТЗП), имеющий внутреннюю поверхность ВТЗП, нанесенную поверх и сцепленную с крепящим слоем, и внешнюю поверхность ВТЗП для воздействия газообразных продуктов сгорания;
структуру выступающих элементов, выступающих из крепящего слоя и имеющих высоту выступов, приблизительно составляющую от 2 до 75 процентов совокупной общей толщины слоев ТЗП; и
структуру элементов в виде канавок, сформированных в ранее нанесенный слой ВТЗП по внешней поверхности ВТЗП и проникающих в него,
причем структура выступающих элементов и структура элементов в виде канавок находятся в соответственно ограниченных, отделенных, трехмерных, независимо выровненных структурах, проходящих по компоненту.
Предпочтительно крепящий слой дополнительно содержит:
слой связующего покрытия (СП), сцепленный с не имеющей элементов поверхностью подложки;
структура выступающих элементов, сформированная в СП.
Предпочтительно крепящий слой дополнительно содержит:
слой связующего покрытия (СП), сцепленный с поверхностью подложки;
структура выступающих элементов, сформирована в подложке.
Предпочтительно крепящий слой дополнительно содержит:
слой связующего покрытия (СП), сцепленный с поверхностью подложки;
участок слоя нижнего теплозащитного покрытия (НТЗП), термически напыленного или осажденного из паровой фазы или полученного плазменным напылением из раствора или суспензии, контактирующий с участком слоя ВТЗП, причем структура элементов в виде канавок проникает в слой НТЗП;
структура выступающих элементов, сформированная на участке термически напыленного слоя ВТЗП.
Предпочтительно компонент дополнительно содержит участок термически напыленного слоя НТЗП, имеющий более высокую удельную теплопроводность и более высокую вязкость разрушения, чем участок слоя ВТЗП.
Предпочтительно компонент дополнительно содержит структуру выступающих элементов и структуру элементов в виде канавок, соответственно имеющие повторяющиеся трехмерные структуры.
Предпочтительно компонент дополнительно содержит структуру выступающих элементов, имеющая трапециевидное поперечное сечение.
Предпочтительно крепящий слой дополнительно содержит:
слой связующего покрытия (СП), сцепленный с поверхностью подложки;
структура выступающих элементов, сформированная в подложке или слое СП;
слой шероховатого связующего покрытия, нанесенный поверх слоя СП.
Согласно формуле изобретения заявлен газотурбинный двигатель, содержащий вышеуказанный компонент, в котором внешняя поверхность ВТЗП сообщается с трактом сгорания в двигателе для воздействия газообразных продуктов сгорания.
Предпочтительно упомянутый компонент содержит рабочую лопатку турбины, направляющую лопатку или переход либо кольцевой сегмент секции сгорания.
Предпочтительно структура выступающих элементов дополнительно нанесена вместе с крепящим слоем.
Согласно формуле изобретения заявлен способ изготовления компонента газотурбинного двигателя, имеющего теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания, заключающийся в том, что:
предусматривают металлическую подложку, имеющую поверхность подложки;
наращивают крепящий слой на поверхности подложки;
формируют в крепящем слое структуру выступающих из нее элементов;
формируют слой теплозащитного покрытия (ТЗП), получаемого термическим напылением или осаждением из паровой фазы или плазменным напылением из раствора или суспензии, сцепленный с крепящим слоем и включающий в себя, по меньшей мере, слой внешнего теплозащитного покрытия (ВТЗП), имеющий внутреннюю поверхность ВТЗП, нанесенную поверх и сцепленную с крепящим слоем, и внешнюю поверхность ВТЗП для воздействия газообразных продуктов сгорания; и
формируют структуру элементов в виде канавок в ранее нанесенном слое ВТЗП по внешней поверхности ВТЗП, проникающих в этот слой,
причем упомянутая сформированная структура в виде выступающих элементов имеет высоту выступов, приблизительно составляющую от 2 до 75 процентов совокупной общей толщины слоев ТЗП,
причем структура выступающих элементов и структура элементов в виде канавок находятся в соответственно ограниченных, отделенных, трехмерных, независимо выровненных структурах, проходящих по компоненту.
Предпочтительно формирование крепящего слоя дополнительно предусматривает:
формирование слоя термически напыленного связующего покрытия (СП) на поверхности подложки; и
формирование слоя нижнего теплозащитного покрытия (НТЗП), термически напыленного или осажденного из паровой фазы или полученного плазменным напылением из суспензии или раствора, на слое СП перед формированием слоя ВТЗП поверх участка слоя НТЗП,
причем слои НТЗП и ВТЗП составляют, по меньшей мере, часть совокупной толщины слоев ТЗП.
Предпочтительно способ дополнительно предусматривает формирование дополнительно наносимой структуры выступающих элементов вместе с крепящим слоем.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0027] Варианты осуществления, показанные и описываемые здесь, можно будет понять, рассматривая нижеследующее подробное описание в связи с прилагаемыми чертежами, при этом:
[0028] на фиг.1 представлено частичное осевое сечение газотурбинного или турбинного двигателя внутреннего сгорания, включающего в себя один или несколько возможных вариантов осуществления теплозащитных покрытий согласно изобретению;
[0029] на фиг.2 представлено подробное вертикальное сечение турбинного двигателя согласно фиг.1, иллюстрирующее рабочую лопатку ряда 1 турбины и направляющие лопатки рядов 1 и 2, включающие в себя один или несколько возможных вариантов осуществления теплозащитных покрытий согласно изобретению;
[0030] на фиг.3 представлен вид многопрофильной конфигурации высоких или вертикальных гребней с несколькими высотами и соответствующей структуры канавок для истираемой поверхности законцовки рабочей лопатки турбины, пригодных для использования в режимах либо стандартного, либо «быстрого запуска» двигателя;
[0031] на фиг.4 представлено сечение варианта осуществления истираемой поверхности законцовок рабочих лопаток турбины согласно фиг.3, проведенное вдоль линии C-C, показанной на том чертеже;
[0032] на фиг.5 представлено перспективное изображение истираемой поверхности законцовки рабочей лопатки турбины со структурой, предусматривающей конфигурацию гребней асимметричного профиля и структуру профиля параллельных канавок с несколькими глубинами;
[0033] На фиг.6 представлено перспективное изображение еще одного варианта осуществления истираемой поверхности законцовки рабочей лопатки турбины со структурой, предусматривающей пересекающие канавки асимметричного профиля с несколькими глубинами, причем верхние канавки перпендикулярны и скошены в осевом или продольном направлении относительно верхушки гребня;
[0034] на фиг.7 представлено перспективное изображение имеющего ступенчатый профиль гребня истираемой поверхности законцовки рабочей лопатки турбины, причем гребень верхнего уровня имеет матрицу мозаичных вертикальных шипов, выступающих из нижней полки гребня;
[0035] на фиг.8 представлен альтернативный вариант осуществления вертикальных шипов истираемой поверхности законцовки рабочей лопатки турбины согласно фиг.7, причем соответствующие участки шипов вблизи верхушек шипов выполнены из слоя материала, обладающего физическими свойствами, отличающимися от физических свойств материала под этим слоем;
[0036] на фиг.9 представлен вид в плане или планарный вид отслаивающихся слоев истираемого компонента законцовки рабочей лопатки турбины с криволинейной удлиненной мозаичной основной планарной структурой (МОПС) множества микроособенностей поверхности (МОП);
[0037] на фиг.10 представлено подробное перспективное изображение шевронной микроособенности поверхности (МОП) истираемого компонента согласно фиг.9;
[0038] на фиг.11 представлен фрагментарный вид в плане или планарный вид, иллюстрирующий поверхность истираемого компонента законцовки рабочей лопатки турбины с зигзагообразной волнистой мозаичной основной планарной структурой (МОПС) микроособенностей поверхности (МОП) с первой высотой и большей второй высотой;
[0039] на фиг.12 представлено сечение истираемого компонента законцовки рабочей лопатки турбины согласно фиг.11, проведенное по линии C-C, показанной на том чертеже;
[0040] на фиг.13 представлено сечение истираемого компонента законцовки рабочей лопатки турбины с микроособенностями поверхности (МОП), сформированными в металлическом связующем покрытии, нанесенном на несущую положку, проведенное по линии 13-13 согласно фиг.9;
[0041] на фиг.14 представлено сечение истираемого компонента законцовки рабочей лопатки турбины с микроособенностями поверхности (МОП), сформированными в несущей подложки, проведенное по линии 14-14 согласно фиг.9;
[0042] на фиг.15 представлен альтернативный вариант осуществления истираемого компонента законцовки согласно фиг.14, имеющего металлическое связующее покрытие (СП), нанесенное в качестве промежуточного слоя между подложкой и ТЗП;
[0043] на фиг.16 представлен фрагментарный вид компонента турбины, такого, как, например, рабочая лопатка, направляющая лопатка или переход секции сгорания турбины, имеющего возможный вариант осуществления проектируемых особенностей поверхности (ПОП), сформированных в связующем покрытии (СП), с теплозащитным покрытием слоем (ТЗП), нанесенным поверх ПОП;
[0044] на фиг.17 представлен фрагментарный вид компонента турбины имеющего возможный вариант осуществления проектируемых особенностей поверхности (ПОП), сформированных непосредственно в поверхности подложки, с теплозащитным покрытием (ТЗП), нанесенным поверх ПОП;
[0045] на фиг.18 представлен фрагментарный вид компонента турбины, имеющего возможный вариант осуществления проектируемых особенностей поверхности (ПОП), сформированных непосредственно в поверхности подложки, с двухслойным ТЗП, содержащим нижнее теплозащитное покрытие (НТЗП), нанесенное поверх ПОП, и внешнее теплозащитное покрытие (ВТЗП), нанесенное поверх НТЗП;
[0046] на фиг.19 представлен фрагментарный вид компонента турбины, имеющего возможный вариант осуществления проектируемых особенностей поверхности (ПОП), выполненных в связующем покрытии (СП), с двухслойным ТЗП, содержащим нижнее теплозащитное покрытие (НТЗП), нанесенное поверх ПОП, и внешнее теплозащитное покрытие (ВТЗП), нанесенным поверх НТЗП;
[0047] на фиг.20 представлен фрагментарный вид возможного варианта осуществления компонентов турбины, имеющих шестиугольный планарный профиль сплошных выступающих проектируемых особенностей поверхности (ПОП) на своей поверхности подложки;
[0048] на фиг.21 представлено сечение ПОП согласно фиг.20;
[0049] на фиг.22 представлен фрагментарный вид компонента турбины, имеющего возможный вариант осуществления множества проектируемых особенностей поверхности (ПОП) с цилиндрическим или столбиковым профилем, которые образуют в совокупности шестиугольную планарную структуру на своей поверхности подложки, окружающих или очерчивающих еще одну центрально расположенную столбиковую ПОП;
[0050] на фиг.23 представлено сечение ПОП согласно фиг.22;
[0051] на фиг.24 представлен фрагментарный вид компонента турбины, имеющего возможный вариант осуществления слоя шероховатого связующего покрытия (ШСП), нанесенного поверх ранее сформированных проектируемых особенностей поверхности (ПОП) в нижнем СП, которое ранее нанесено на подложку компонента;
[0052] на фиг.25 представлено схематическое сечение компонента турбины, имеющего возможный вариант осуществления проектируемых особенностей поверхности (ПОП), которые наклонены относительно нижележащей поверхности подложки;
[0053] на фиг.26 представлено фрагментарное сечение известного компонента турбины, подвергающегося формированию вертикальных и горизонтальных трещин в двухслойном ТЗП и имеющего связующее покрытие (СП) с лишенной особенностей поверхностью, нанесенное поверх подложки с аналогично лишенной особенностей поверхностью;
[0054] на фиг.27 представлено фрагментарное сечение компонента турбины, имеющего возможный вариант осуществления проектируемых особенностей поверхности (ПОП), сформированных в нижнем слое ТЗП, причем вертикальное и горизонтальное распространение трещин задержано и сорвано посредством ПОП;
[0055] на фиг.28 представлено фрагментарное перспективное изображение компонента турбины, имеющего возможный вариант осуществления проектируемых особенностей в виде канавок (ПОК), сформированных на внешней поверхности теплозащитного покрытия (ТЗП);
[0056] на фиг.29 представлено схематическое сечение компонента турбины согласно фиг.28, имеющего проектируемые особенности в виде канавок (ПОК), сформированные в теплозащитном покрытии (ТЗП);
[0057] на фиг.30 представлено схематическое сечение компонента турбины согласно фиг.29 после удара посторонним предметом, вызывающего повреждение посторонним предметом (ППП) в ТЗП, где распространение трещин вдоль пересечений задержано с помощью ПОК;
[0058] на фиг.31 представлено схематическое сечение компонента турбины согласно фиг.29 после отслаивания участка ТЗП выше трещин с оставлением исходного слоя ТЗП ниже трещины для продолжения теплоизоляции нижележащей подложки компонента турбины;
[0059] на фиг.32 представлено схематическое сечение компонента турбины, имеющего возможный вариант осуществления проектируемой особенности поверхности (ПОП) с трапецеидальным сечением, которая крепит теплозащитное покрытие (ТЗП), причем стрелки указывают зоны концентрации механических напряжений в пределах ТЗП;
[0060] на фиг.33 представлено схематическое сечение компонента турбины согласно фиг.32, в котором возможные варианты осуществления наклонных проектируемых особенности в виде канавок (ПОК) врезаны в ТЗП сообразно с зонами концентрации механических напряжений, чтобы ослабить потенциальную концентрацию механических напряжений;
[0061] на фиг.34 представлено схематическое сечение возможного варианта осуществления компонента турбины, имеющего и проектируемые особенности поверхности (ПОП), и проектируемые особенности в виде канавок (ПОК);
[0062] на фиг.35 представлено схематическое сечение компонента турбины согласно фиг.34, в котором распро