Смешанные совместимые катализаторы циглера-натты/хромовые для получения улучшенных полимерных продуктов
Иллюстрации
Показать всеПредложены каталитическая система для получения полимеров и сополимеров на основе олефинов, которые имеют мономодальное распределение молекулярной массы, способ получения мономодальных полимеров на основе олефинов и олефиновый полимер или сополимер, полученный указанным способом. Каталитическая система включает катализатор Циглера-Натты, нанесенный на оксид кремния хромовый катализатор и сокатализатор, включающий алкилалюминий, причем молярное отношение алюминия к титану составляет меньше чем 35:1, а молярное отношение алкилалюминия к хрому составляет менее чем 300:1. Катализатор Циглера-Натты содержит Mg и Ti, причем катализатор Циглера-Натты получен путем либо: а) соединения одного или более носителей с одним или более магнийсодержащим соединением при условиях реакции с получением первого прореагировавшего продукта; б) соединения первого прореагировавшего продукта с соединениями, выбранными из группы, состоящей из хлоридов алкилалюминия, галогензамещенных силанов и комбинации перечисленного, с получением второго прореагировавшего продукта и в) соединения второго прореагировавшего продукта с одним или более титансодержащим соединением, выбранным из группы, состоящей из алкоксидов титана, галогенидов титана, амидов титана и комбинации перечисленного, при условиях реакции с получением катализатора Циглера-Натты; либо распылительной сушкой раствора, включающего один или более из элементов Si, Mg, Ti, Hf и Zr в спиртовом растворителе, с последующим галогенированием Mg, Ti, Hf и Zr. Нанесенный на оксид кремния хромовый катализатор включает по меньшей мере один из перечисленных компонентов: а) нанесенный восстановленный силилхроматный катализатор и б) нанесенный восстановленный хромоксидный катализатор, который был восстановлен с помощью этоксида диэтилалюминия (ЭДЭАЛ). Катализаторы Циглера-Натты в каталитических системах работают исключительно хорошо без добавления избыточных количеств сокатализатора, что дает возможность применять нанесенные катализаторы на основе хрома, действие которых в ином случае было бы подавлено присутствием алкилалюминия. Было найдено, что включение хромовых катализаторов в состав катализаторов Циглера-Натты или их совместная подача обеспечивает молекулярную архитектуру конечных полиолефинов, например полиэтиленов, которая может обеспечить получение полимера с мономодальным распределением молекулярной массы. 3 н. и 8 з.п. ф-лы, 2 ил., 2 табл., 5 пр.
Реферат
Область техники, к которой относится изобретение
Предпочтительные варианты, описанные в настоящем описании, относятся в общем к получению полимеров на основе олефинов и сополимеров с применением каталитических систем, включающих в качестве компонентов катализатор Циглера-Натты и хромовый катализатор.
Предпосылки создания изобретения
Полиолефины широко применяют в самых различных направлениях, включая упаковку для пищевых продуктов, текстильные изделия и полимерные материалы для различных литых изделий. В зависимости от предполагаемого использования полимера, могут быть желательными различные свойства полимера (индекс текучести, распределение молекулярных масс, плотность и т.д.). Например, для изделий, получаемых литьем под давлением, могут подходить полиолефины с относительно низкой молекулярной массой и узким распределением молекулярных масс. С другой стороны, полиолефины, имеющие относительно высокие молекулярные массы и широкое распределение молекулярных масс, могут подходить для изделий, которые изготавливают литьем с раздувом. В других применениях желательно получение полиэтиленов, имеющих молекулярную массу от средней до высокой. Такие полиэтилены имеют достаточную прочность для применений, в которых желательна такая прочность (например, при применении в трубах), и одновременно они обладают хорошими технологическими свойствами. Аналогично, полиолефины, имеющие конкретные значения индекса текучести или значения, находящиеся в определенном интервале, подходят для различных применений.
Полимеры, получаемые на хромовых катализаторах, например, восстановленном силилхромате, обычно обладают хорошими экструзионными свойствами. Однако конечные прочностные характеристики обычно хуже по сравнению с характеристиками полимеров, полученных на других катализаторах. Аналогично, полимеры, полученные на других катализаторах, могут проявлять хорошую прочность, но могут обладать плохими экструзионными свойствами.
Поэтому были предложены различные смешанные каталитические системы с целью обеспечения сочетания желаемых свойств полимера, например, смеси катализаторов типа Циглера-Натты и металлоценовых катализаторов. К сожалению, не все каталитические системы совместимы, как указано в заявке US 2006/0160965, в которой описана необходимость осторожных переходов между полимеризацией на катализаторах Циглера-Натты и полимеризацией на хромовых катализаторах, поскольку эти катализаторы являются несовместимыми, и применение переходной добавки, предназначенной для улавливания сокатализатора, используемого при полимеризации Циглера-Натты.
В патентах US 5330950 и 5408015 описана смешанная система, включающая катализатор Циглера-Натты и хромовый катализатор, в которой катализатор Циглера-Натты включает титан или алюминий на оксиде магния в качестве носителя, а хромовый катализатор включает оксид хрома на оксиде кремния в качестве носителя. Чтобы максимально увеличить совместимость, в патенте US 5330950 предложено применение массового отношения хромового катализатора к катализатору Циглера-Натты в интервале от 3:1 до 15:1, а в патенте US 5408015 описан более широкий интервал, от 6:1 до 100:1. Следует отметить, что в этих патентах предложено применять хромовые катализаторы в качестве основного компонента катализатора с целью увеличения совместимости до максимума. Не желая ограничиваться конкретной теорией, в настоящее время полагают, что хромовый катализатор должен служить основным компонентом катализатора, поскольку катализатор Циглера-Натты требует применения значительного количества сокатализатора на основе алкилалюминия, который отрицательно взаимодействует с хромовым катализатором.
Было бы выгодным иметь катализатор Циглера-Натты, способный хорошо работать без добавления больших количеств сокатализатора, таким образом становится возможным его применение совместно с нанесенными катализаторами на основе хрома, что в ином случае привело бы к подавлению каталитического действия большими количествами сокатализатора.
Краткое изложение сущности изобретения
Было обнаружено, что катализаторы Циглера-Натты, как более подробно описано ниже, можно применять совместно с хромовым катализатором в реакторе полимеризации олефинов с получением улучшенных полимерных продуктов. Катализаторы Циглера-Натты в каталитических системах, описанных в настоящем описании, действуют исключительно хорошо без добавления избыточных количеств сокатализатора, таким образом обеспечивается использование нанесенных катализаторов на основе хрома, действие которых в ином случае было бы подавлено присутствием алкилалюминия. Далее, предпочтительные варианты, описанные в настоящем описании, можно осуществлять без присутствия внутреннего донора электронов, и отсутствие внутреннего донора электронов в системе также предотвращает отравление хромовых катализаторов под действием такого соединения. Путем включения или совместной подачи катализатора на основе хрома с этими катализаторами Циглера-Натты, как было найдено, молекулярная архитектура получаемых полиолефинов, например, полиэтиленов, может обеспечить полимеры с превосходными технологическими свойствами.
В одном из аспектов, предпочтительные варианты, описанные в настоящем описании, относятся к каталитической системе для полимеризации полимеров на основе олефинов, а также сополимеров. Каталитическая система может включать катализатор Циглера-Натты, содержащий наполнитель, Mg и Ti; а также нанесенный хромовый катализатор.
В другом аспекте предпочтительные варианты, описанные в настоящем описании, относятся к способу получения полимеров на основе олефинов. Способ может включать полимеризацию по меньшей мере одного олефинового мономера в реакторе в присутствии смешанной каталитической системы с получением полимера на основе олефина. Смешанная каталитическая система может включать катализатор Циглера-Натты, содержащий наполнитель, Mg и Ti; а также нанесенный хромовый катализатор.
Другие аспекты и преимущества будут очевидными из приведенного ниже описания и приложенной формулы изобретения.
Краткое описание чертежей
На фиг. 1 показаны распределения молекулярной массы полимеров, полученных на разнообразных каталитических системах, описанных в настоящем описании;
На фиг. 2 показаны распределения молекулярной массы полимеров, полученных на разнообразных каталитических системах, описанных в настоящем описании.
Определения
До того, как соединения, компоненты, составы и/или способы по настоящему изобретению будут описаны и изложены, следует понять, что, если не указано иное, настоящее изобретение не ограничено конкретными соединениями, компонентами, составами, реагентами, условиями реакций, лигандами, структурами или подобным, поскольку все это может меняться, если не указано иное. Также следует понять, что терминология, применяемая в настоящем описании, предназначена только для описания конкретных предпочтительных вариантов и не предназначена для ограничения сферы действия изобретения.
Следует отметить, что в настоящем описании и приложенной формуле изобретения формы единственного числа включают множественное число, если не указано иное. Так, например, ссылка на «уходящую группу», как в группировке, «замещенной уходящей группой», включает более одной уходящей группы, например, группировка может быть замещена двумя или более такими группами. Аналогично, ссылка на «атом галогена», как в группировке, «замещенной атомом галогена», включает более одного атома галогена, например, группировка может быть замещена двумя или более атомами галогена; ссылка на заместитель включает один или более заместителей, ссылка на лиганд включает один или более лигантов, и т.п.
Настоящее изобретение обеспечивает каталитические системы для полимеризации олефинов, способы получения и способы применения указанных каталитических систем, а также полимер и изготовленные из него продукты. Выражения «смешанная каталитическая система» и «смешанный катализатор» можно применять в настоящем описании взаимозаменяемо с выражением «каталитическая система».
В настоящем описании выражение «характеризуется формулой» и/или «характеризуется структурой» не предназначено для ограничения и применяется в тех же случаях, в которых обычно применяют выражение «включающий».
Выражение «полимер» в настоящем описании используется для обозначения гомополимера, сополимера или тримера. Выражение «полимер», как оно применяется в настоящем описании, включает сополимеры, например, полученные сополимеризацией этилена с С3-10альфа-олефинами, или пропилена с этиленом и/или С4-10альфа-олефинами. Выражение «сополимер» в настоящем описании обозначает полимеры, полученные полимеризацией по меньшей мере двух различных типов мономеров. Общее выражение «сополимер» включает, таким образом, сополимеры и применяется для обозначения полимеров, полученных из двух различных типов мономеров; выражение также включает полимеры, полученные из более чем двух различных типов мономеров.
Выражение «полимер на основе олефина» в настоящем описании означает полимер, который включает по меньшей мере большее количество молярных процентов олефина, например, этилена, или пропилена, или подобного олефина (в расчете на общее количество полимеризованного мономера) и необязательно один или более дополнительных сомономеров. Как известно в данной области техники, в полимере олефин присутствует в полимеризованной форме. Выражение «полимер на основе этилена» в настоящем описании означает полимер, который включает по меньшей мере большее количество молярных процентов этилена (в расчете на общее количество полимеризованного мономера) и необязательно один или более дополнительных сомономеров. Выражение «сополимер на основе этилена и альфа-олефина» в настоящем описании означает сополимер на основе этилена, который включает по меньшей мере большее количество молярных процентов этилена (в расчете на общее количество полимеризованного мономера), альфа-олефин и необязательно один или более дополнительных сомономеров.
В настоящем описании выражение «силил» означает радикал -SiZ1Z2Z3, в котором каждую из групп Z1, Z2 и Z3 независимо выбирают из группы, включающей гидрид и необязательно замещенный алкил, алкенил, алкинил, содержащий гетероатом алкил, содержащий гетероатом алкенил, содержащий гетероатом алкинил, арил, гетероарил, алкоксил, арилоксил, амино-группу, силил и комбинации перечисленного.
Подробное описание сущности изобретения
В одном из аспектов изобретения предпочтительные варианты, описанные в настоящем описании, относятся к способам получения полимеров на основе олефина и сополимеров с применением каталитической системы, включающей компонент катализатора типа Циглера-Натты и хромовый компонент катализатора. В другом аспекте предпочтительные варианты, изложенные в настоящем описании, относятся к каталитическим системам, подходящим для полимеризации олефинов, например, этилена и пропилена, а также к другим мономерам и сомономерам, для которых каталитическая система включает компонент катализатора типа Циглера-Натты и хромовый компонент катализатора.
Было найдено, что катализатор Циглера-Натты, как описано более подробно ниже, можно применять совместно с нанесенным катализатором на основе хрома в реакторе полимеризации олефина с получением улучшенных полимерных продуктов. Катализаторы Циглера-Натты в каталитических системах, описанных в настоящем описании, работают исключительно хорошо без добавления избыточных количеств сокатализатора, что позволяет применять нанесенные катализаторы на основе хрома, действию которых в ином случае мешало бы присутствие алкилалюминия. Далее, предпочтительные варианты, описанные в настоящем описании, можно осуществлять без применения внутреннего донора электронов, и отсутствие в системе внутреннего донора электронов также предотвращает отравление хромовых катализаторов внутренним донором электронов. Путем включения в состав или совместной подачи катализаторов на основе хрома совместно с такими катализаторами Циглера-Натты, как было обнаружено, молекулярная архитектура получаемых полиолефинов, например, полиэтиленов, может обеспечить получение смол с исключительными технологическими характеристиками.
Хромовые катализаторы
Нанесенные хромовые катализаторы, которые часто называют катализаторами типа Филипс, подходящие для применения в каталитических системах, описанных в настоящем описании, могут включать, помимо прочего, CrO3, хромоцен, силилхромат, хромилхлорид (CrO2Cl2), 2-этилгексаноат хрома, ацетилацетонат хрома (Cr(АсАс)3), и дизамещенные хроматы, например, CrO2(OR)2, в которых R представляет собой трифенилсилан или третичный полиалициклический алкил. Не ограничивающие сферу действия настоящего изобретения примеры описаны в патентах US 3709853, 3709954, 3231550, 3242099, 4077904 и 4855370, а также в других. В других предпочтительных вариантах нанесенные хромовые катализаторы могут включать любое соединение хрома, которое способно окисляться до CrO3 при подходящих условиях активации. В других предпочтительных вариантах по меньшей мере часть хрома в нанесенном активированном катализаторе может присутствовать в шестивалентном состоянии.
Другие, не ограничивающие сферу действия настоящего изобретения, примеры хромовых катализаторов могут включать диареновые соединения хрома, бисциклопентадиенил хрома (II), ацетат хрома (II), ацетат хрома (III), ацетилацетонат хрома (III), хлорид хрома (И), хлорид хрома (III), фторид хрома (II) , фторид хрома (III), гексакарбонил хрома, нитрат хрома (III), нитрид хрома, 2,4-пентандионат хрома (III), перхлорат хрома (III), калиевый сульфат хрома (III) , сульфат хрома (III), и теллурид хрома (III), а также другие соединения. В других предпочтительных вариантах хромовый катализатор может включать бис(циклопентадиенил)хром Xn, в котором каждая уходящая группа X химически связана с хромом и выбрана из группы, включающей ионы галогена, гидриды, С1-12алкилы, С2-12алкенилы, С6-12арилы, С7-20алкиларилы, C1-12алкоксилы, С6-16арилоксилы, С7-18алкиларилоксилы, С1-12фторалкилы, С6-12фторарилы, С1-12гетероатом-содержащие углеводороды, замещенные производные перечисленного и комбинации перечисленного, каждая циклопентадиенильная группа химически связана с М, а n равно нулю или целому числу от 1 до 4.
Таким образом, катализаторы и каталитические системы, подходящие для предпочтительных вариантов настоящего изобретения, включают катализаторы на основе хрома, восстановленные катализаторы на основе хрома, катализаторы на основе оксида хрома и восстановленные катализаторы на основе оксида хрома. Желательно, чтобы любые такие каталитические системы хорошо работали в ходе эксплуатации при высоком пространственно-временном выходе (т.е. при такой эксплуатации, при которой до максимума доведена производительность по полимеру в расчете на единицу времени пребывания в реакторе и пространства реактора), когда реактор производит наибольшее возможное количество полиэтилена, при высокой каталитической активности и наименьшем времени пребывания в реакторе. Катализаторы на основе оксида хрома обладают адекватной производительностью и активностью, хотя полиэтилены, полученные с их применением, хуже оптимальных для многих применений, в которых желательны высокая молекулярная масса, широкое распределение молекулярных масс и необязательно присутствие некоторой степени бимодальности распределения молекулярной массы. Катализаторы на основе оксида хрома, восстановленные с помощью восстановителя, будут обладать определенными свойствами, в соответствии с отношением количеств восстановителя к хрому. Установленные эквивалентные соотношения, указанные в настоящем описании, всегда представляют собой отношение реагента к хрому. В особенно предпочтительном варианте катализатор на основе оксида хрома, применяемый для полиолефиновых, например, полиэтиленовых применений, включает оксид хрома, нанесенный на оксид кремния, восстановленный далее с помощью этоксида диэтилалюминия (ЭДЭАЛ). Этот тип катализаторов обеспечивает получение полиэтилена с широким распределением молекулярных масс.
В общем, катализаторы на основе оксида хрома, восстановленные ЭДЭАЛ, применяют для получения полиэтилена с широким распределением молекулярных масс. Таким образом, отношение ЭДЭАЛ/Cr в катализаторе, в сочетании с условиями полимеризации, влияют на характеристики продукта и производительность.
Информация относительно этих и других типов катализаторов, а также характеристик полученных полимерных продуктов, содержится в патенте US 6989344. Несколько способов получения катализаторов на основе оксида хрома описаны в патентах US 6989344 и 8101691, включенных в настоящее описание в качестве ссылки.
Соединения хрома могут также включать описанные в публикации патентной заявки US 2004/0087745 и в патентах US 6518376, 6642324, 6617403, 6627780, 6326443 и 6649069, а также в других.
Полимеры этилена, имеющие широкое распределение молекулярных масс, можно получить, например, при использовании катализатора на основе хрома, полученного путем прокаливания соединения хрома, нанесенного на неорганический оксидный носитель в не восстановительной атмосфере с целью его активации таким образом, чтобы, например, по меньшей мере часть нанесенных атомов хрома превращалась в шестивалентные атомы хрома (Cr+6). Этот тип катализатора обычно называют в данной области техники катализатором Филлипс. Соединение хрома наносят пропиткой на носитель, например, оксид кремния, сушат до состояния свободно текучего твердого порошка, и нагревают в присутствии кислорода до примерно 400-860°С, при этом большая часть или весь хром переходит из окислительного состояния +3 в состояние +6.
Другой катализатор на основе хрома, подходящий для применения при получении полиэтиленов высокой плотности, включает силилхромат (например, бис-трифенилсилилхромат), хемисорбированный на дегидратированный носитель, например, оксид кремния, и далее восстановленный этоксидом диэтилалюминия (ЭДЭАЛ).
Полученные на каждом из этих катализаторов полиэтилены отличаются по некоторым важным свойствам. Катализаторы, которые представляют собой оксид хрома, нанесенный на оксид кремния, обладают хорошей производительностью (в г ПЭ/г катализатора), также измеренной на основе активности (г ПЭ/г катализатора в час), и часто их применяют для получения полиэтиленов с относительно более узкими распределениями молекулярных масс. Восстановленные катализаторы на основе силилхромата и восстановленные катализаторы на основе оксида хрома можно применять для получения полиэтиленов с более широкими распределениями молекулярных масс, включая те, которые содержат плечо с большими молекулярными массами на кривой распределения молекулярных масс, но часто они могут не обладать высокой производительностью или активностью, какими обладают катализаторы, включающие оксид хрома, нанесенный на оксид кремния.
Катализатор Циглера-Натты
Катализаторы Циглера-Натты или типа Циглера-Натты, подходящие для предпочтительных вариантов, описанных в настоящем описании, включают соединения переходных металлов или их смеси, которые подходят в качестве катализаторов полимеризации мономеров, способных к полимеризации по реакции присоединения, обычно в комбинации с одним или более соединений - сокатализаторов или активаторов, как, например, катализаторы Циглера-Натты, описанные в патенте US 2010/0292418, который полностью включен в настоящее описание в качестве ссылки. Катализаторы Циглера-Натты или типа Циглера-Натты представляют собой смеси или комплексы не металлоценовых соединений переходных металлов и соединений магния, например, соединений, включающих хлорид магния.
Более конкретно, катализаторы Циглера-Натты могут включать дихлорид магния или соединение магния, которое можно подвергнуть галогенированию с образованием дихлорида магния, и на которое нанесен металл 4 группы или смесь металлов 4 группы Периодической системы, например, один или более из титана, гафния и циркония. Титан, гафний и цирконий могут поступать из хлоридов титана, хлоридов циркония и хлоридов гафния, комбинаций перечисленного, и/или соединений титана, циркония и гафния, которые можно подвергать галогенированию до соответствующего хлорида.
Хотя можно осуществлять нанесение пропиткой на инертный носитель, катализаторы Циглера-Натты, используемые в настоящем описании, можно готовить распылительной сушкой раствора, включающего соединение магния и соединения металла 4 группы, или смесь соединений металлов 4 группы, в первичном разбавителе, например, в разбавителе, включающем один или более С2-6спиртов, с последующим галогенированием полученных твердых частиц. Галогениды переходного металла могут включать, например, трихлорид титана (который при желании может присутствовать в виде комплекса с AlCl3), тетрахлорид циркония и тетрахлорид гафния. Катализатор Циглера-Натты (подвергнутый распылительной сушке или нанесенный) должен быть сухим и свободно текучим, чтобы он подходил для последующей эксплуатации.
Примеры соединений, которые можно подвергать галогенированию до соответствующего хлорида, могут включать:
A. Магний в виде этилкарбоната магния (Mg(C2H5CO2)2
Б. Гафний в виде Hf(OR)4-xClx, в этой формуле х составляет от 0 до 2, a R представляет собой метил, этил, изопропил, изобутил или бутил
B. Титан в виде Ti(OR)4-xR1x, в этой формуле х составляет от 0 до 2, a R представляет собой метил, этил, изопропил, изобутил или бутил, R1 представляет собой хелатирующий лиганд, например, 2,4-пентандион или Cl
Г. Цирконий в виде Zr(OR)4-xClx, в этой формуле х составляет от 0 до 2, а R представляет собой метил, этил, изопропил, изобутил или бутил.
Галогенирующие агенты могут включать галогениды алюминийорганических соединений, например, полуторные хлориды алкилалюминия, например, полуторный хлорид этилалюминия (Al2(С2Н5)3Cl3). Относительные количества применяемых дихлорида магния, галогенидов переходных металлов и галогенирующих агентов, как и природа галогенирующего агента, могут воздействовать на относительную производительность конечной каталитической композиции.
В некоторых предпочтительных вариантах катализаторы Циглера-Натты готовят растворением соединения магния, соединения титана и необязательно соединения гафния и/или соединения циркония в спиртовом растворителе в присутствии наполнителя, если композицию подвергают распылительной сушке, или носителя, например, высокопористого силикагеля, если катализатор физически нанесен внутри пор указанного носителя. Соединения переходных металлов могут представлять собой галогениды, алкоксиды, смешанные алкоксиды/2,4-пентандионаты, и смеси перечисленного. Единственным требованием к ним является растворимость в спиртовом растворителе. Соединения титана могут включать TiCl3 (восстановленный водородом или алюминием) и Ti(2,4 пентандионат)2(OR)2, в этой формуле R представляет собой этил, изопропил, н-пропил или н-бутил. Соединения циркония и гафния могут включать хлориды или алкоксиды (например, этоксид, пропоксид, бутоксид). Соединения магния могут включать MgCl2 и этилкарбонат магния.
Дополнительные необязательно присутствующие компоненты, используемые для получения предшественников катализаторов, получаемых распылительной сушкой, могут включать следующие:
A. Один или более наполнителей;
Б. Один или более внутренних доноров электронов; и/или
B. Один или более вторичных растворяющих соединений, выбранных из группы, включающей силоксаны, полиалкиленгликоли, С1-4алкильные или фенильные эфирные или диэфирные производные полиалкиленгликолей, и краун-эфиры.
Как указано выше, внутренние доноры электронов можно необязательно применять в качестве промежуточных соединений в ходе получения катализатора Циглера-Натты. Однако для применения в предпочтительных вариантах, описанных в настоящем описании, конечные катализаторы Циглера-Натты должны не содержать или по существу не содержать внутренних доноров электронов, что сводит до минимума или исключает любое возможное отравление хромовых катализаторов внутренним донором электронов. Таким образом, в предпочтительных вариантах, описанных в настоящем описании, каталитическая система, применяемая в реакции полимеризации, не содержит или по существу не содержит внутренних доноров электронов. Под выражением «по существу не содержит» понимают, что эти соединения не добавляют преднамеренно в реактор или любые компоненты реактора, и если оно присутствует, его содержание в реакторе составляет менее чем 5 част./млн, менее чем 3 част./млн, менее чем 1 част./млн, или 0 част./млн.
Любой твердый тонко диспергированный материал, который инертен по отношению к другим компонентам каталитической системы и компонентам последующей полимеризации, можно применять в качестве наполнителя для композиций по настоящему изобретению. Желательно, чтобы наполнитель обеспечивал объем и прочность конечных твердых, полученных распылительной сушкой частиц, позволяющие предотвратить разрушение частиц в ходе их формования и сушки. Подходящие наполнители могут быть органическими или неорганическими. Примеры включают оксид кремния (конкретно пирогенный оксид кремния), нитрид бора, диоксид титана, оксид цинка, полистирол и карбонат кальция. Пирогенный гидрофобный оксид кремния с модифицированной поверхностью можно применять в некоторых предпочтительных вариантах; он придает высокую вязкость суспензии и хорошую прочность частицам, полученным распылительной сушкой. Наполнитель не должен содержать абсорбированной воды, и желательно он должен обладать также модифицированной поверхностью. Модификация поверхности, например, обработка силанами, позволяет удалить реакционно-способные гидроксильные или иные функциональные группы с поверхности наполнителя.
В некоторых способах реализации наполнитель не применяется для обеспечения инертного носителя для нанесения каталитической композиции. Соответственно, в этих способах реализации для материала носителя не требуется высокая удельная поверхность. В некоторых предпочтительных вариантах наполнитель может иметь площадь удельной поверхности менее чем 20 м2/г, или менее чем 10 м2/г в других предпочтительных вариантах. Подходящие наполнители могут иметь средний размер частиц (D50) не более чем 50 мкм, например, не более чем 10 мкм. Подходящий наполнитель можно применять для получения суспензии, подходящей для распылительной сушки, то есть смеси, включающей первичный разбавитель, который является жидким при нормальных атмосферных условиях, но легко испаряется при пониженном давлении или повышенной температуре. Суспензия содержит такой наполнитель в количестве от 0 до 15 мас. % в некоторых предпочтительных вариантах, например, от 2,5 до 10 мас. % в других предпочтительных вариантах. В ходе распылительной сушки полученные капельки образуют отдельные частицы катализатора после испарения первичного разбавителя. Количество наполнителя, присутствующего в частицах конечного катализатора может составлять в интервале от 0 до 50%, например, от 10 до 30%, в расчете на общую массу композиции. Частицы катализатора, полученные распылительной сушкой указанным способом, обычно имеют средний размер (D50) от 5 до 200 мкм, например, от 10 до 30 мкм.
Соединения, представляющие собой вторичные разбавители, желательно применять для получения распылительной сушкой продуктов, имеющих высокую степень однородности в отношении размера и сферичности. Полученные распылительной сушкой каталитические композиции Циглера-Натты обладают весьма однородным составом и превосходной каталитической активностью при пониженном образовании мелочи. Дополнительно, определенные типы вторичных разбавителей могут также действовать в качестве внутренних доноров электронов, когда такой компонент желательно включить в состав композиции. В некоторых предпочтительных вариантах соединение, представляющее собой вторичный разбавитель, выбирают из силоксанов, полиалкиленгликолей, С1-4алкильных или фенильных простых эфирных или диэфирных производных полиалкиленгликолей, и краун-эфиров.
Полиалкиленгликоли могут включать, например, полиэтиленгликоль, содержащий от 2 до 5 алкиленоксидных повторяющихся звеньев. Силоксаны и краун-эфиры особенно подходят в качестве вторичных разбавителей, поскольку они могут обеспечить улучшение морфологии частиц, а также повышенную активность по сравнению с реакциями полимеризации, проводимыми в отсутствие таких силоксанов или краун-эфиров. Силоксаны могут включать гексаметилдисилоксан, гексаэтилдисилоксан и гексафенилдисилоксан. Краун-эфиры могут включать эфир 18-краун-6 и эфир 15-краун-5. Вторичный разбавитель может присутствовать в составе катализатора Циглера-Натты в количестве в интервале от нуля до 10%, в расчете на общую массу каталитической композиции.
Материалы, которые можно применять в качестве носителей, если каталитическую композицию готовят этим способом, являются твердыми порошкообразными пористыми материалами, которые инертны по отношению к другим компонентам каталитической системы, и инертны в ходе последующей полимеризации. Подходящие материалы носителя включают неорганические материалы, например, оксиды кремния и/или алюминия. Обычно такие материалы имеют средний размер частиц от менее чем 1 мкм до примерно 250 мкм, от примерно 10 до примерно 150 мкм в других предпочтительных вариантах, и удельную площадь поверхности, составляющую по меньшей мере 3 м2/г, например, по меньшей мере 50 м2/г. Активность катализатора в полимеризации можно улучшить путем применения носителя на основе оксида кремния, имеющего средний размер пор, составляющий по меньшей мере 80 ангстрем, по меньшей мере 100 ангстрем в других предпочтительных вариантах. Материал носителя должен быть сухим, то есть не содержать абсорбированной воды. Сушку материала носителя можно осуществить путем нагревания, например, при температуре по меньшей мере 600°С, когда в качестве носителя применяют оксид кремния. Альтернативно, если применяют оксид кремния, его можно сушить при температуре, составляющей по меньшей мере 200°С, и необязательно обрабатывать одним или более из перечисленных соединений: алкилалюминий, галогенид алкилалюминия, или алкилцинк, в количестве от примерно 1 до примерно 8 мас. %. Подходящие соединения имеют формулу M(R4)zXy, в которой М представляет собой Al или Zn; у равно 0, если М представляет собой Zn, a z равно 2; если М представляет собой Al, z+y=3, a z равно 2 или 3. R4 может представлять собой метил, этил, изобутил или н-гексил.
Подходящим образом композиция предшественника катализатора, нанесенная пропиткой на носитель, содержит от примерно 3 до примерно 50 мас. %, например, от примерно 15 до примерно 40 мас. % каталитического компонента на основе Mg/Ti/Hf/Zr.
Распылительную сушку можно осуществлять с помощью любого способа распылительной сушки, известного в данной области техники. Один из примеров подходящего способа распылительной сушки включает распыление каталитической композиции, необязательно с нагреванием, и сушку полученных капелек. Распыление осуществляют с помощью любого подходящего распыляющего устройства, с получением отдельных капелек, которые при сушке образуют сферические или близкие по форме к сферическим частицы. Распыление можно проводить, например, путем пропускания суспензии каталитической композиции через распылительное устройство совместно с инертным осушающим газом, то есть газом, который не является реакционно-способным в условиях, применяемых в ходе распыления, и помогает удалять летучие компоненты. Для проведения распыления можно применять распыляющую форсунку или вращающийся с высокой скоростью диск, при этом образуется аэрозоль или дисперсия капелек смеси. Объемная скорость распыляющего газа, если его применяют, должна значительно превышать объемную скорость суспензии, чтобы вызвать распыление суспензии и/или испарение жидкой среды. Обычно осушающий газ нагревают до температуры 200°С, чтобы облегчить распыление и сушку суспензии; однако, если объемная скорость подачи осушающего газа поддерживается на очень высоком уровне, можно применять меньшие температуры. Подходящее давление распыления составляет от 1 до 200 фунт./кв.дюйм (отн.) (от 0,1 до 1,5 МПа). Альтернативно, можно применять сниженное давление в секции выделения аэрозоля осушительного устройства, чтобы вызвать образование твердых частиц. Некоторые примеры подходящих способов распылительной сушки для применения с каталитическими композициями по настоящему изобретению могут включать способы, описанные в патентах US 5290745, 5652314, 4376062, 4728705, 5604172, 5306350, 4638029, 5716558 и патентной публикации US 2007/0060725.
Путем регулирования скорости распыляющего диска и размера отверстий распылителя, применяемого при распылительной сушке, можно получать частицы, имеющие желаемый средний размер, например, от 0,1 до 200 мкм. Путем регулирования состава сырья, подаваемого в распылительное устройство, можно регулировать плотность частиц катализатора (то есть объем внутренних полостей), что будет также воздействовать на объемную плотность конечного полимера. Подходящее регулирование как условий распыления, так и состава сырья приводит к получению частиц предшественника катализатора, которые имеют узкое распределение по размерам, низким разбросом, и обеспечивают получение смол с высокой объемной плотностью.
Состав предшественника катализатора будет иметь формулу (на молярной основе) MgxTiHfyZrz, в которой х составляет от 1 до 20, у составляет от 0 до 10, a z составляет от 0 до 10. В некоторых предпочтительных вариантах y+z составляет 0 (в соединении имеются только Mg + Ti). В других предпочтительных вариантах y+z может быть больше 0. В некоторых предпочтительных вариантах состав предшественника катализатора включает металлы в следующих количествах: х составляет от 3 до 10, y от 0 до 2, a z от 0 до 2.
В некоторых предпочтительных вариантах катализаторы Циглера-Натты могут включать MgxTiHfyZrz, в этом соединении х составляет от примерно 4 до 6, например, примерно 5, а y и z имеют значения в интервале от примерно 0,25 до 0,75, например, примерно 0,5.
В других предпочтительных вариантах катализаторы Циглера-Натты могут включать MgxTiHfyZrz, в этом соединении х составляет от примерно 4 до 6, например, примерно 5, а y и z равны 0.
Пропитку можно осуществлять с применением методик, описанных в патенте US 5068489 и ссылках, приведенных в этом патенте; каждая из них включена в настоящее описание в качестве ссылки.
После получения предшественник катализатора (состав, содержащий Mg/Ti/Hf/Zr) подвергают галогенированию, например, с помощью хлорида алкилалюминия (AlR3-xClx, в этой формуле х составляет от 1 до 2), или хлоридами бора (т.е. RBCl2 или BCl3). Время, температура и концентрация галогенирующего агента могут воздействовать на конечные каталитические свойства и производительность катализатора. Полученный катализатор после галогенирования можно промывать с целью удаления продуктов реакции, или его можно применять без промывки. Различные методики галогенирования описаны, например, в US 2010/0292418. Полученный катализатор затем собирают в виде свободно текучего твердого катализатора, или диспергируют в минеральном масле в качестве разбавителя, для осуществления подачи в виде суспензии. Альтернативно, стадии галогенирования можно осуществлять с применением легкого углеводородного разбавителя, например, изопентана или гексана. Суспензию можно затем либо отфильтровать, либо декантировать с целью удаления легкого углеводорода. Необязательно осадок на фильтре можно промыть с целью дальнейшего удаления продуктов реакции галогенирования. Наконец, галогенированную композицию предшественника можно сушить с получением