Уменьшение экспрессии генов у насекомых-вредителей

Иллюстрации

Показать все

Изобретение относится к области биохимии, в частности к двухцепочечной РНК (дцРНК) для подавления экспрессии гена-мишени у Leptinotarsa или Lygus. Также раскрыты ДНК-конструкция, кодирующая указанную дцРНК, прокариотическая клетка-хозяин, дрожжевая или растительная клетка-хозяин, содержащие указанную ДНК-конструкцию, композиция, содержащая дцРНК, трансгенное растение, модифицированное указанной дцРНК, и семя, полученное из указанного трансгенного растения. Также раскрыты применение указанной композиции для борьбы с заражением, способ подавления экспрессии гена-мишени с помощью указанной дцРНК, способ увеличения урожая культуры растения, способ создания трансгенного растения с помощью указанной ДНК-конструкции, применение указанной дцРНК для предотвращения или борьбы с заражением. Изобретение позволяет бороться или предотвращать заражение вредителями Leptinotarsa или Lygus. 12 н. и 16 з.п. ф-лы, 10 ил., 15 табл., 5 пр.

Реферат

Область техники

Настоящее изобретение относится в целом к генетическому контролю заражения видами насекомых-вредителей, в частности, к предотвращению и/или контролированию заражения растений вредителями. Конкретнее, настоящее изобретение относится к уменьшению экспрессии генов-мишеней у видов насекомых-вредителей с помощью молекул интерферирующих рибонуклеиновых кислот (РНК). Также обеспечиваются трансгенные растения, которые (i) экспрессируют или способны экспрессировать интерферирующие РНК настоящего изобретения и (ii) являются устойчивыми к заражению видами насекомых-вредителей. Также описываются композиции, содержащие молекулы интерферирующих РНК настоящего изобретения, для локального нанесения на растения или применения в среде, окружающей растения.

Предпосылки создания изобретения

Существует большое количество видов насекомых-вредителей, которые могут инфицировать или заражать широкое множество окружающих сред и организмов хозяев. Насекомые-вредители включают множество видов из отрядов насекомых Hemiptera (клопы), Coleoptera (жуки), Siphonaptera (блохи), Dichyoptera (тараканы и богомолы), Lepidoptera (мотыльки и бабочки), Orthoptera (например, кузнечики, саранча) и Diptera (настоящие мухи). Заражение вредителями может приводить к значительному ущербу. Насекомые-вредители, которые заражают виды растений, являются особенно проблематичными в сельском хозяйстве, поскольку они могут являться причиной серьезной порчи культур и значительно уменьшают размеры урожаев растений. Широкое множество различных типов растений, включая коммерческие культуры, такие как рис, хлопчатник, сою, картофель и кукуруза, являются подверженными заражению вредителями.

Традиционно заражение насекомыми-вредителями предотвращали или контролировали посредством использования химических пестицидов. Однако эти химические вещества не являются всегда подходящими для применения для обработки культур, поскольку они могут быть токсичными по отношению к другим видам и могут являться причиной значительного ущерба, наносимого окружающей среде. За последние десятилетия ученые разработали более учитывающие последствия для окружающей среды способы контролирования заражения вредителями. Например, использовались такие микроорганизмы, как бактерии Bacillus thuringiensis, которые по природе экспрессируют белки, токсичные для насекомых-вредителей. Ученые также выделили гены, кодирующие эти инсектицидные белки, и использовали их для создания трансгенных культур, устойчивых к насекомым-вредителям, например, генетически создаваемых растений кукурузы и хлопчатника, которые продуцируют белки семейства Cry.

Хотя бактериальные токсины были высоко результативными в контролировании некоторых типов вредителей, они не являются эффективными против всех видов вредителей. Поэтому ученые искали другие более направленные подходы к контролированию вредителей и, в частности, к РНК-интерференции или «выключению (сайленсингу) генов» в качестве способа контролирования вредителей на генетическом уровне.

РНК-интерференция является процессом, в результате которого экспрессия генов в рамках клетки или всего организма уменьшается специфическим для последовательностей образом. В настоящее время РНК-интерференция является твердо установившимся в данной области техники методом ингибирования или уменьшения экспрессии генов в широком множестве организмов, включая организмы вредителей, такие как грибы, нематоды и насекомые. Кроме того, предшествующие исследования показали, что уменьшение экспрессии генов-мишеней у видов насекомых-вредителей может использоваться в качестве способа контролирования заражения вредителями.

В WO2007/074405 описываются способы ингибирования экспрессии генов-мишеней у беспозвоночных вредителей, в том числе колорадского жука. В WO2005/110068 описываются способы ингибирования экспрессии генов-мишеней у беспозвоночных вредителей, включающих, в частности, западного кукурузного жука, в качестве способа контролирования заражения насекомыми. Кроме того, в WO2009/091864 описываются композиции и способы для супрессии генов-мишеней видов насекомых-вредителей, включающих вредителей рода Lygus.

Хотя использование РНК-интерференции для уменьшения экспрессии генов у видов насекомых известно в данной области техники, успешность этого метода в случае применения в качестве меры для контролирования вредителей зависит от выбора наиболее подходящих генов-мишеней, а именно тех, утрата функционирования которых приводит к значительному нарушению важнейшего биологического процесса и/или смерти организма. Таким образом, настоящее изобретение направлено на уменьшение экспрессии конкретных генов-мишеней у насекомых-вредителей в качестве способа достижения более эффективного предотвращения и/или контролирования заражения насекомыми-вредителями, особенно растений.

Краткое изложение сущности изобретения

Авторы настоящего изобретения предприняли попытки к установлению улучшенных способов предотвращения и/или контролирования заражения насекомыми-вредителями, используя генетические подходы. В частности, они исследовали применение РНК-интерференции для уменьшения экспрессии генов так, чтобы ослабить способность насекомого-вредителя к выживанию, росту, колонизации специфических окружающих сред и/или заражению организмов хозяев и, таким образом, ограничить ущерб, причиной которого является вредитель.

В настоящее время авторы настоящего изобретения установили, что уменьшение экспрессии с использованием РНК-интерференции конкретных генов-мишеней отдельно или в комбинации в видах насекомых-вредителей может использоваться в качестве эффективного способа контролирования заражения вредителями.

В одном варианте осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует рибосомный белок насекомого, такой как рибосомный белок L19 (например, ортолог у насекомого белка CG2746 Dm (Drosophila melanogaster)), рибосомный белок L40 (например, ортолог у насекомого белка CG2960 Dm) или рибосомный белок S27A (например, ортолог у насекомого белка CG5271 Dm).

В соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует субъединицу протеасомы насекомого, такую как белок Rpn6 (например, ортолог у насекомого белка CG10149 Dm), белок Pros 25 (например, ортолог у насекомого белка CG5266 Dm), белок Rpn2 (например, ортолог у насекомого белка CG11888 Dm), белок в виде β1-субъединицы протеасомы (например, ортолог у насекомого белка CG8392 Dm) или белок Pros бета 2 (например, ортолог у насекомого белка CG3329 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует β-коатомер пузырька COPI (комплекса Гольджи) насекомого (например, ортолог у насекомого белка CG6223 Dm), γ-коатомер пузырька COPI (например, ортолог у насекомого белка 1528 Dm), белок в виде β’-коатомера (например, ортолог у насекомого белка CG6699 Dm) или ζ-коатомер пузырька COPI (например, ортолог у насекомого белка CG3948 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует белок Тетраспанин 2 A насекомого, который является предполагаемым белком, содержащим трансмембранные домены, (например, ортолог у насекомого белка CG11415 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует белок насекомого, относящийся к семейству актинов (например, ортолог у насекомого белка CG5409 Dm), такой как Актин 5C (например, ортолог у насекомого белка CG4027 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует белок убиквитин-5E насекомого (например, ортолог у насекомого белка CG32744 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует белок Sec23 насекомого, который является активатором ГТФазы, вовлеченным во внутриклеточный транспорт белков (например, ортолог у насекомого белка CG1250 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует закрученный белок насекомого, который представляет собой необычный миозин, который вовлечен в двигательную активность (например, ортолог у насекомого белка CG7595 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует белок с кривым поперечным сужением насекомого, который вовлечен в регуляцию альтернативного сплайсинга мРНК в ядре (например, ортолог у насекомого белка CG3193 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует белок в виде G-субъединицы вакуолярной H+-АТФазы (например, ортолог у насекомого белка CG6213 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к интерферирующей рибонуклеиновой кислоте (РНК или двухцепочечной РНК), которая ингибирует или уменьшает экспрессию гена-мишени, который кодирует Tbp-1 насекомого; Tat-связывающий белок (например, ортолог у насекомого белка CG10370 Dm).

Следовательно, в соответствии с первым аспектом настоящего изобретения обеспечивается интерферирующая рибонуклеиновая кислота (РНК или двухцепочечная РНК), которая функционирует с момента поглощения видом насекомого-вредителя с уменьшением экспрессии гена-мишени у указанного насекомого-вредителя, причем ген-мишень

(i) выбирают из группы генов, имеющих нуклеотидную последовательность, включающую любую из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или ее комплемент, или имеющих нуклеотидную последовательность, которая после оптимального совмещения и сравнения двух последовательностей идентична на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98% или 99% любой из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или ее комплементу, или

(ii) выбирают из группы генов, имеющих нуклеотидную последовательность, состоящую из любой из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или ее комплемента, или

(iii) выбирают из группы генов, имеющих нуклеотидную последовательность, включающую фрагмент из по крайней мере 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов любой из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или его комплемент, или имеющих нуклеотидную последовательность, которая после оптимального совмещения и сравнения указанного гена, включающего указанный фрагмент, с любой из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40 идентична на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98% или 99% любой из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или ее комплементу, или

(iv) выбирают из группы генов, имеющих нуклеотидную последовательность, включающую фрагмент из по крайней мере 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов любой из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или его комплемент, и причем после оптимального совмещения и сравнения указанного фрагмента с соответствующим фрагментом в любой из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40 указанная нуклеотидная последовательность указанного фрагмента идентична на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98% или 99% указанному соответствующему фрагменту любой из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или ее комплементу, или

(v) является ортологом у насекомого-вредителя гена, имеющего нуклеотидную последовательность, включающую любую из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или ее комплемент, причем последовательности двух ортологичных генов схожи настолько, что после оптимального совмещения и сравнения двух генов ортолог имеет последовательность, которая идентична на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98% или 99% любой из последовательностей, представленной SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или

(vi) выбирают из группы генов, имеющих нуклеотидную последовательность, кодирующую аминокислотную последовательность, которая после оптимального совмещения и сравнения двух аминокислотных последовательностей идентична на по крайней мере 70%, предпочтительно по крайней мере 75%, 80%, 85%, 90%, 95%, 98% или 99% аминокислотной последовательности, кодируемой нуклеотидной последовательностью, представленной в любой из SEQ ID NO: 277, 138, 253, 152, 121, 122, 141, 273, 123, 142, 274, 124, 143, 125-129, 144, 130, 145, 275, 131, 146, 132, 133, 147, 134, 148, 135, 149, 136, 150, 276, 137, 151, 139, 140, 153, 278, 251, 254, 279, 252, 255, 256, 280, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26, 7, 27, 8, 28, 9, 29, 10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35, 16, 36, 17, 37, 18, 38, 19, 39, 20 или 40, или

(vii) выбирают из группы генов, имеющих нуклеотидную последовательность, кодирующую аминокислотную последовательность, которая после оптимального совмещения и сравнения двух аминокислотных последовательностей идентична на по крайней мере 70%, предпочтительно по крайней мере 75%, 80%, 85%, 90%, 95%, 98% или 99% аминокислотной последовательности, представленной в любой из SEQ ID NO: 285, 242, 271, 226, 227, 281, 228, 282, 229, 230-233, 234, 283, 235, 236, 237, 238, 239, 240, 284, 241, 243, 244, 286, 269, 270, 287, 288, 206-225.

В конкретном аспекте настоящего изобретения молекулы интерферирующих РНК настоящего изобретения включают по крайней мере один двухцепочечный район, типично элемент сайленсинга интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность нуклеотидов, комплементарную последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени.

В одном варианте осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует рибосомный белок насекомого, такой как рибосомный белок L19 (например, ортолог у насекомого белка CG2746 Dm), рибосомный белок L40 (например, ортолог у насекомого белка CG2960 Dm) или рибосомный белок S27A (например, ортолог у насекомого белка CG5271 Dm).

В соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует субъединицу протеасомы насекомого, такую как белок Rpn6 (например, ортолог у насекомого белка CG10149 Dm), белок Pros 25 (например, ортолог у насекомого белка CG5266 Dm), белок Rpn2 (например, ортолог у насекомого белка CG11888 Dm), белок в виде β1-субъединицы протеасомы (например, ортолог у насекомого белка CG8392 Dm) или белок Pros бета 2 (например, ортолог у насекомого белка CG3329 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует β-коатомер пузырька COPI (комплекса Гольджи) насекомого (например, ортолог у насекомого белка CG6223 Dm), γ-коатомер пузырька COPI (например, ортолог у насекомого белка 1528 Dm), белок в виде β’-коатомера (например, ортолог у насекомого белка CG6699 Dm) или ζ-коатомер пузырька COPI (например, ортолог у насекомого белка CG3948 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует белок Тетраспанин 2 A насекомого, который является предполагаемым белком, содержащим трансмембранные домены, (например, ортолог у насекомого белка CG11415 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует белок насекомого, относящийся к семейству актинов (например, ортолог у насекомого белка CG5409 Dm), такой как Актин 5C (например, ортолог у насекомого белка CG4027 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует белок убиквитин-5E насекомого (например, ортолог у насекомого белка CG32744 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует белок Sec23 насекомого, который является активатором ГТФазы, вовлеченным во внутриклеточный транспорт белков (например, ортолог у насекомого белка CG1250 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует закрученный белок насекомого, который представляет собой необычный миозин, который вовлечен в двигательную активность (например, ортолог у насекомого белка CG7595 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует белок с кривым поперечным сужением насекомого, который вовлечен в регуляцию альтернативного сплайсинга мРНК в ядре (например, ортолог у насекомого белка CG3193 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует белок в виде G-субъединицы вакуолярной H+-АТФазы (например, ортолог у насекомого белка CG6213 Dm).

Тем не менее, в соответствии с другим вариантом осуществления настоящее изобретение относится к молекуле интерферирующей РНК, которая включает по крайней мере один двухцепочечный район, типично элемент сайленсинга молекулы интерферирующей РНК, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность из по крайней мере 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 1000, 1100 или 1115 следующих друг за другом нуклеотидов, которая комплементарна на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98%, 99% или 100% последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени, который кодирует Tbp-1 насекомого; Tat-связывающий белок (например, ортолог у насекомого белка CG10370 Dm).

В соответствии со вторым аспектом настоящего изобретения обеспечивается выделенный полинуклеотид, выбираемый из группы, состоящей из:

(i) полинуклеотида, который включает по крайней мере 21, предпочтительно по крайней мере 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1100 или 1115 следующих друг за другом нуклеотидов нуклеотидной последовательности, представленной любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120, или ее комплементом, или

(ii) полинуклеотида, который включает по крайней мере 21, предпочтительно по крайней мере 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1100 или 1115 следующих друг за другом нуклеотидов нуклеотидной последовательности, представленной любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120, или ее комплементом, или

(iii) полинуклеотида, который включает по крайней мере 21, предпочтительно по крайней мере 22, 23 или 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1100 или 1115 следующих друг за другом нуклеотидов нуклеотидной последовательности, представленной в любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120, или ее комплементе, причем после оптимального совмещения и сравнения двух последовательностей указанный полинуклеотид идентичен на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98% или 99% любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120, или ее комплементу, или

(iv) полинуклеотида, который включает фрагмент из по крайней мере 21, предпочтительно по крайней мере 22, 23 или 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1100 или 1115 следующих друг за другом нуклеотидов нуклеотидной последовательности, представленной в любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120, или его комплемент, и причем указанный фрагмент или указанный комплемент имеет нуклеотидную последовательность, которая после оптимального совмещения и сравнения указанного фрагмента с соответствующим фрагментом в любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120 идентична на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98% или 99% указанному соответствующему фрагменту любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120 или его комплементу, или

(v) полинуклеотида, который состоит из фрагмента из по крайней мере 21, предпочтительно по крайней мере 22, 23 или 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1100 или 1115 следующих друг за другом нуклеотидов нуклеотидной последовательности, представленной в любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120, или его комплемента, и причем указанный фрагмент или указанный комплемент имеет нуклеотидную последовательность, которая после оптимального совмещения и сравнения указанного фрагмента с соответствующим фрагментом в любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120 идентична на по крайней мере 75%, предпочтительно по крайней мере 80%, 85%, 90%, 95%, 98% или 99% указанному соответствующему фрагменту любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120 или его комплементу, или

(vi) полинуклеотида, кодирующего аминокислотную последовательность, которая после оптимального совмещения и сравнения двух аминокислотных последовательностей идентична на крайней мере 70%, предпочтительно по крайней мере 75%, 80%, 85%, 90%, 95%, 98% или 99% аминокислотной последовательности, кодируемой нуклеотидной последовательностью, представленной в любой из SEQ ID NO: 277, 138, 253, 152, 198-201, 121, 122, 141, 154-157, 273, 123, 142, 158-161, 274, 124, 143, 162-165, 125-129, 144, 166-169, 130, 145, 170-173, 275, 131, 146, 174-177, 132, 133, 147, 178-181, 134, 148, 182-185, 135, 149, 186-189, 136, 150, 190-193, 276, 137, 151, 194-197, 139, 140, 153, 202-205, 278, 251, 254, 257-260, 279, 252, 255, 256, 261-268, 280, 1, 21, 41-44, 2, 22, 45-48, 3, 23, 49-52, 4, 24, 53-56, 5, 25, 57-60, 6, 26, 61-64, 7, 27, 65-68, 8, 28, 69-72, 9, 29, 73-76, 10, 30, 77-80, 11, 31, 81-84, 12, 32, 85-88, 13, 33, 89-92, 14, 34, 93-96, 15, 35, 97-100, 16, 36, 101-104, 17, 37, 105-108, 18, 38, 109-112, 19, 39, 113-116, 20, 40, 117-120, или

(vii) полинуклеотида, кодирующего аминокислотную последовательность, которая после оптимального совмещения и сравнения двух аминокислотных последовательностей идентична на крайней мере 70%, предпочтительно по крайней мере 75%, 80%, 85%, 90%, 95%, 98% или 99% аминокислотной последовательности, представленной в любой из SEQ ID NO: 285, 242, 271, 226, 227, 281, 228, 282, 229, 230-233, 234, 283, 235, 236, 237, 238, 239, 240, 284, 241, 243, 244, 286, 269, 270, 287, 288, 206-225, и

причем указанный полинуклеотид не длиннее, чем 10000, 9000, 8000, 7000, 6000, 5000, 4000, 3000, 2000 или 1500 нуклеотидов.

В конкретном аспекте настоящего изобретения выделенный полинуклеотид является частью молекулы интерферирующей РНК, типично частью элемента сайленсинга, включающей по крайней мере один двухцепочечный район, включающий смысловую цепь РНК, подвергнутую отжигу в результате спаривания комплементарных оснований с антисмысловой цепью РНК, причем смысловая цепь молекулы дцРНК включает последовательность нуклеотидов, комплементарную последовательности нуклеотидов, находящейся в РНК-транскрипте с гена-мишени. Конкретнее, выделенный полинуклеотид клонирован в ДНК-конструкцию в смысловой и антисмысловой ориентации так, что после транскрипции смыслового и антисмыслового полинуклеотида образуется молекула дцРНК, которая функционирует с момента поглощения вредителем с ингибирова