Система и способ выполнения операции интенсификации скважины

Иллюстрации

Показать все

Группа изобретений относится к способам выполнения стадий операции интенсификации для места расположения скважины, имеющего продуктивный пласт, расположенный в толще пород. Технический результат заключается в повышении интенсификации добычи из скважины. Способ включает создание множества показателей качества из множества каротажных диаграмм и объединение множества показателей качества для формирования сводного показателя качества. Затем может сливаться множество блоков напряжений, используя критерий отведения. Сводный показатель качества может быть объединен с подвергнутыми слиянию блоками напряжений для формирования объединенного показателя напряжения и сводного показателя качества, включающих множество блоков с границами между ними. Способ может, кроме того, включать определение ступеней в соответствии с объединенным показателем напряжения и сводным показателем качества на основе классификации ступени с помощью отводящего средства и выборочное расположение перфорированных отверстий в выбранных ступенях на основе классификации ступени с помощью отводящего средства. 2 н. и 16 з.п. ф-лы, 23 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к способам выполнения нефтепромысловых операций. Более конкретно, настоящее изобретение относится к способам выполнения операций интенсификации, таким как перфорация, закачка и/или образование трещин, подземной толщи пород, содержащей по меньшей мере один продуктивный пласт. Формулировки в данном разделе представляют лишь базовую информацию, связанную с настоящим изобретением, и не могут рассматриваться как предшествующий уровень техники.

[0002] Нефтепромысловые операции могут выполняться для обнаружения и сбора внутрискважинных текучих сред, таких как углеводороды. Нефтепромысловые операции могут включать, например, разведку, бурение, оценку скважины, заканчивание, добычу, интенсификацию и анализ месторождения нефти. Разведка может включать сейсмическую разведку, используя, например, передвижную сейсмическую станцию для передачи и приема сигналов скважины. Бурение может включать подачу скважинного инструмента в землю для образования скважины. Оценка скважины может включать развертывание скважинного инструмента в скважине для выполнения скважинных измерений и/или отбора скважинных проб. Заканчивание может включать цементирование и установку обсадной колонны скважины при подготовке к добыче. Добыча может включать развертывание насосно-компрессорной колонны в скважине для транспортирования текучих сред из продуктивного пласта к поверхности. Интенсификация может включать, например, перфорацию, образование трещины, закачку и/или другие операции интенсификации, для облегчения добычи текучих сред из продуктивного пласта.

[0003] Анализ месторождения нефти может включать, например, оценку данных о скважине и различных операциях, и/или выполнение операций проектирования скважины. Такие данные могут быть, например, петрофизическими данными, собранными и проанализированными специалистами в области петрофизики; геологическими данными, собранными и/или проанализированными геологами; или геофизическими данными, собранными и/или проанализированными геофизиками. Петрофизические, геологические и геофизические данные могут анализироваться отдельно с прерыванием потока данных между ними. Человек-оператор может вручную перемещать и анализировать данные, используя множество программных приложений и инструментов. Для планирования нефтепромысловых операций, основываясь на данных, полученных о скважине, может использоваться проектирование скважины.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0004] Данный раздел описания приведен для представления выбора принципов, которые дополнительно раскрыты в представленном ниже подробном описании. Данный раздел описания не предназначен для определения ключевых или существенных признаков заявленного изобретения, а также не предназначен для использования в качестве ограничения объема заявленного изобретения.

[0005] Способы, раскрытые в настоящем документе, связаны с операциями интенсификации, включающими проектирование стадий. В примере осуществления настоящего изобретения способ может включать создание множества показателей качества из множества каротажных диаграмм и объединение множества показателей качества для формирования сводного показателя качества. Сводный показатель качества может быть объединен с каротажной диаграммой напряжений для формирования объединенного показателя напряжений и сводного показателя качества, включающих множество блоков с границами между ними. Способ может, кроме того, включать идентифицирующую классификацию для множества блоков; определение ступеней в соответствии с объединенным показателем напряжений и сводным показателем качества, основанным на классификации; и выборочное расположение перфорированных отверстий в выбранных ступенях на основании их классификации.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0006] Варианты осуществления способа и системы для выполнения скважинной операции интенсификации описаны со ссылкой на следующие чертежи. Одинаковые ссылочные номера указывают на подобные элементы. Для ясности не каждый компонент может быть обозначен на каждом чертеже.

На фиг. 1.1-1.4 показаны схематические виды, изображающие различные нефтепромысловые операции в месте расположения скважины;

На фиг. 2.1-2.4 приведены схематические виды данных, полученных при операциях по фиг. 1.1-1.4.

На фиг. 3.1 показан схематический вид места расположения скважины, изображающий различные скважинные операции интенсификации.

На фиг. 3.2-3.4 показаны схематические виды различных трещин места расположения скважины фиг. 3.1;

На фиг. 4.1 показана блок-схема операции, изображающая операцию интенсификации скважины.

На фиг. 4.2 и 4.3 приведены блок-схемы, изображающие части операций интенсификации скважины.

На фиг. 5.1 приведена схема, а на фиг. 5.2 - блок-схема, иллюстрирующая способ выполнения операции интенсификации ступеней в толще породы газосодержащего плотного песчаникового коллектора.

На фиг. 6 приведена схема, изображающая набор каротажных диаграмм, объединенных для формирования взвешенных каротажных диаграмм состава.

На фиг. 7 приведена схема, изображающая показатель качества продуктивного пласта, сформированный из первой и второй каротажной диаграммы.

На фиг. 8 приведена схема, изображающая сводный показатель качества, сформированный из показателя качества заканчивания и продуктивного пласта.

На фиг. 9 приведена схема, изображающая проект ступени, основанный на профиле напряжений и сводном показателе качества.

На фиг. 10 приведена схема, изображающая корректировку границ ступени для увеличения однородности сводного показателя качества.

На фиг. 11 приведена схема, изображающая разделение ступени на основании сводного показателя качества.

На фиг. 12 приведена схема, изображающая расположение перфорированных отверстий на основании показателя качества.

На фиг. 13 показана блок-схема, иллюстрирующая способ выполнения операции интенсификации стадий для сланцевого продуктивного пласта.

На фиг. 14 показана блок-схема, иллюстрирующая способ выполнения операции интенсификации скважины.

На фиг. 15.1 приведена схема, а на фиг. 15.2 - блок-схема, иллюстрирующая способ выполнения операции интенсификации стадий в толще породы газосодержащего плотного песчаникового коллектора с помощью отводящего средства.

На фиг. 16-19 приведены схемы, иллюстрирующие способ выполнения операции интенсификации стадии для сланцевого продуктивного пласта в вертикальной скважине.

На фиг. 20 приведена схема, отображающая совокупность напряжений вдоль бокового каротажа (характеризуемая как начальное давление Pini разрыва), используемая для определения предпочтительных местоположений механических изолирующих устройств на основании начальной разности давлений, которая может быть преодолена с помощью отводящего средства.

На фиг. 21 приведена скважина и соответствующая ей каротажная диаграмма напряжений, где перфорированные отверстия расположены в локальных минимумах и локальных максимумах каротажной диаграммы напряжений.

На фиг. 22 приведена интенсифицированная скважина и соответствующая ей каротажная диаграмма напряжений, где искусственно образованные трещины распространялись в зонах пониженных напряжений, и где изменения в напряжении скальной породы создавали разгрузочные трещины.

На фиг. 23 приведена интенсифицированная скважина и соответствующая ей каротажная диаграмма напряжений, где искусственно образованные трещины были отклонены, и перфорированные отверстия в областях высоких напряжений интенсифицировались для формирования сложных трещин.

ПОДРОБНОЕ ОПИСАНИЕ

[0007] Представленное ниже описание содержит пример систем, устройств, способов и последовательности команд, которые воплощают способы настоящего изобретения. Однако подразумевается, что описанные варианты осуществления могут быть выполнены без таких конкретных деталей.

[0008] Настоящее изобретение относится к созданию, реализации и отклику операций интенсификации, выполняемых в месте расположения скважины. Операции интенсификации могут быть выполнены с использованием комплексного подхода, применяющего центральный продуктивный пласт. Такие операции интенсификации могут содержать объединенный план интенсификации на основании мультидисциплинарной информации (например, используемой специалистом в области физики пласта, геологом, специалистом в области механики горных пород, геофизиком и промысловым инженером), применений кустовых месторождений и/или многоступенчатых нефтепромысловых операций (например, заканчивание, интенсификация и добыча). Некоторые применения могут быть специально приспособлены к нетрадиционным областям применения места расположения скважины (например, газ в плотных породах, сланцевая глина, карбонатная горная порода, каменный уголь и т.д.), комплексным применениям места расположения скважины (например, куст скважин), и различным моделям разрыва (например, обычные плоские двукрылые модели разрыва для песчаных продуктивных пластов или комплексные сеточные модели разрыва для продуктивных пластов низкой проницаемости с разрывами, сформированными естественным образом) и т.п. В контексте настоящего изобретения нетрадиционные продуктивные пласты относятся к продуктивным пластам, таким как газ в плотных породах, песчаниковый, сланцевый пласт-коллектор, карбонатная горная порода, каменный уголь и т.п., в которых толща пород не распределена равномерно или пересечена естественными трещинами (все другие продуктивные пласты считаются обычными).

[0009] Операции интенсификации могут быть также выполнены с использованием оптимизации, приспосабливания к определенным типам продуктивных пластов (например, газ в плотных породах, сланцевая глина, карбонатная горная порода, каменный уголь и т.п.), интегрирования оценочных критериев (например, критериев продуктивного пласта и заканчивания) и объединения данных от множества источников. Операции интенсификации могут быть выполнены вручную с использованием обычных способов для выполнения отдельного анализа потока данных, при этом отдельный анализ прерывается и/или вовлекает человека-оператора для перемещения вручную данных и объединения данных с использованием множества программных приложений и инструментов. Кроме того, такие операции интенсификации могут быть объединены, например, упорядочены путем автоматического или полуавтоматического максимального увеличения мультидисциплинарных данных.

НЕФТЕПРОМЫСЛОВЫЕ ОПЕРАЦИИ

[0010] На фиг. 1.1-1.4 изображены различные нефтепромысловые операции, которые могут быть выполнены в месте расположения скважины, и на фиг. 2.1-2.4 изображена различная информация, которая может быть собрана в месте расположения скважины. На фиг. 1.1-1.4 изображены упрощенные схематические виды типового месторождения нефти или места 100 расположения скважины, имеющего толщу пород 102, содержащую, например, продуктивный пласт 104 и показывающего различные нефтепромысловые операции, выполняемые на месте 100 расположения скважины. На фиг. 1.1 показаны геофизические исследования в скважинах, выполняемые прибором для измерения искривления скважины, таким как передвижная сейсмическая станция 106.1, для измерения свойств толщи пород. Геофизические исследования в скважинах могут представлять собой операцию сейсморазведки для создания звуковых колебаний. На фиг. 1.1 одно такое звуковое колебание 112, созданное источником 110, отражается от множества горизонтов 114 в толще пород 116. Звуковое колебание (колебания) 112 может быть принято датчиками, такими как сейсмоприемники 118, расположенными на поверхности земли, а сейсмографы 118 создают электрические выходные сигналы, называемые принятыми данными. 120 на фиг. 1.1.

[0011] В ответ на принятое звуковое колебание (колебания) 112, представляющее различные параметры (такие как амплитуда и/или частота) звукового колебания (колебаний) 112, сейсмографы 118 могут создать электрические выходные сигналы, содержащие данные относительно толщи пород. Принятые данные 120 могут быть представлены в виде входных данных компьютеру 122.1 передвижной сейсмической станции 106.1, и в ответ на входные данные компьютер 122.1 может создать сейсмические и микросейсмические выходные данные 124. Сейсмические выходные данные 124 при необходимости могут быть сохранены, переданы или дополнительно обработаны, например, путем преобразования данных.

[0012] На фиг. 1.2 изображена операция бурения, выполняемая бурильным инструментом 10 6.2, подвешенным на буровой установке 128 и перемещаемым в толщу пород 102 для формирования ствола скважины 136 или другого канала. Бак 130 для бурового раствора может быть использован для втягивания бурового раствора в бурильные инструменты через напорный трубопровод 132 для циркуляции бурового раствора через бурильные инструменты, в ствол скважины 136 и назад на поверхность. Буровой раствор может быть профильтрован и возвращен в бак для бурового раствора. Циркуляционная система может быть использована для хранения, управления или фильтрации проходящих буровых растворов. На данном изображении бурильные инструменты продвинуты в толщи пород для достижения продуктивного пласта 104. Каждая скважина может быть нацелена на один или больше продуктивных пластов. Бурильные инструменты могут быть выполнены с возможностью измерения свойств в скважинных условиях с применением каротажа в процессе бурения. Инструмент проведения каротажа в процессе бурения также может быть выполнен с возможностью выборки изображенного керна 133, или удален так, чтобы керн мог быть взят с использованием другого инструмента.

[0013] Наземный блок 134 может быть использован для взаимодействия с действиями бурильного инструмента и/или внеплощадочных объектов. Наземный блок может взаимодействовать с бурильным инструментом для отсылки команд бурильному инструменту и принятия от него данных. Наземный блок может быть образован вычислительными средствами для приема, хранения, обработки и/или анализа данных в результате эксплуатации скважины. Наземный блок может собирать данные, созданные в течение процесса бурения, и создавать выходные данные 135, которые могут быть сохранены или переданы. Вычислительные средства, такие, которые расположены в наземном блоке, могут быть размещены в различных местах около места расположения скважины и/или в отдаленных местах.

[0014] Датчики (S), такие как измерительные приборы, могут быть размещены вокруг месторождения нефти для сбора данных, касающиеся различных операций, упомянутых в приведенном выше описании. Согласно изображениям на чертежах датчик (S) может быть размещен в одном или большем количестве положений в бурильном инструменте и/или на буровой вышке для измерения параметров бурения, таких как нагрузка на буровом долоте, вращающий момент на буровом долоте, давления, температуры, расходы, составы, частота вращения и/или другие параметры рабочего процесса. Датчики (S) могут также быть размещены в одном или большем количестве мест в циркуляционной системе.

[0015] Данные, полученные датчиками, могут быть собраны наземным блоком и/или другими источниками сбора данных для анализа или другой обработки. Данные, собранные датчиками, могут быть использованы отдельно или в комбинации с другими данными. Данные могут быть собраны в одну или больше баз данных и/или переданы объектам в пределах промысловой площадки или за ее пределами. Все или выбранные части данных могут быть выборочно использованы для анализа и/или прогнозирования операций действующего и/или других стволов скважины. Данные могут представлять собой предысторию, данные в реальном времени или их комбинацию. Данные в реальном времени могут быть использованы в реальном времени или храниться для более позднего использования. Кроме того, данные могут быть объединены с предысторией или другими входными данными для дополнительного анализа. Данные могут быть сохранены в отдельных базах данных или объединены в одну базу данных.

[0016] Собранные данные могут быть использованы для выполнения анализа, такого как моделирование операций. Например, сейсмические выходные данные могут быть использованы для выполнения геологического, геофизического анализа и/или анализа технологии разработки пласта. Данные о продуктивном пласте, стволе скважины, наземные и/или обработанные данные могут быть использованы для моделирования продуктивного пласта, ствола скважины, геологических и геофизических или других условий разработки месторождения. Выходные данные, образуемые в результате рабочего процесса, могут быть созданы непосредственно от датчиков или после некоторой предварительной обработки или моделирования. Эти выходные данные могут выступать в качестве входных данных для дополнительного анализа.

[0017] Данные могут быть собраны и храниться в наземном блоке 134. В месте расположения скважины может быть расположен один или больше наземных блоков, или он может быть соединен отдаленно от места расположения скважины. Наземный блок может представлять собой один блок или объединенную сеть блоков, используемую для выполнения необходимых функций управления данными по всему месторождению нефти. Наземный блок может представлять собой автоматическую систему или систему ручного управления. Пользователь может управлять наземным блоком 134 и/или настраивать его.

[0018] Наземный блок может быть образован приемопередатчиком 137 для обеспечения возможности связи между наземным блоком и различными частями действующего месторождения нефти или других местоположений. Наземный блок 134 также может быть образован или функционально соединен с одним или большим количеством контроллеров для приведения в действие механизмов в месте 100 расположения скважины. Таким образом, наземный блок 134 может послать командные сигналы в месторождение нефти в ответ на принятые данные. Наземный блок 134 может принимать команды через приемопередатчик или может самостоятельно исполнять команды для контроллера. Для анализа данных (локально или удаленно), принятия решения и/или приведения в действие контроллера может быть обеспечен процессор. Таким образом, можно выборочно корректировать рабочий процесс на основании собранных данных. Части рабочего процесса, такие как управление бурением, нагрузка на буровом долоте, скорости нагнетания или другие параметры, могут быть оптимизированы на основании информации. Такие корректировки могут быть внесены автоматически на основании протокола вычислительного устройства и/или вручную оператором. В некоторых случаях, проекты скважин могут быть скорректированы для выбора оптимальных эксплуатационных условий или во избежание проблем.

[0019] На фиг. 1.3 изображена операция, выполняемая инструментом 10 6.3, спускаемым в скважину на канате, подвешенным на буровой вышке 128 и проходящим в ствол 136 скважины на фиг. 1.2. Инструмент 106.3, спускаемый в скважину на канате, может быть выполнен с возможностью развертывания в стволе 136 скважины для создания каротажных диаграмм, выполнения проверок на забое скважины и/или сбора образцов. Инструмент 106.3, спускаемый в скважину на канате, может быть использован для обеспечения другого способа и устройства, предназначенных для выполнения операции сейсморазведки. Инструмент 106.3, спускаемый в скважину на канате, на фиг. 1.3 может иметь, например, взрывчатый, радиоактивный, электрический или акустический источник 14 4 энергии, который посылает и/или принимает электрические сигналы к окружающим толщам пород 102 и текучим средам в них.

[0020] Инструмент 106.3, спускаемый в скважину на канате, может быть функционально соединен, например, с сейсмографами 118 и компьютером 122.1 передвижной сейсмической станции 106.1 по фиг. 1.1. Инструмент 106.3, спускаемый в скважину на канате, также может подавать данные к наземному блоку 134. Наземный блок 134 может собирать данные, созданные в течение канатных работ в скважине, и создавать выходные данные 135, которые могут быть сохранены или переданы. Инструмент 106.3, спускаемый в скважину на канате, может быть расположен на различных глубинах в стволе скважины для обеспечения данных наблюдения или другой информации, относящейся к толще пород.

[0021] Датчики (S), такие как измерительные приборы, могут быть размещены вокруг места 100 расположения скважины для сбора данных, касающихся различных операций, упомянутых в приведенном выше описании. Как показано, датчик (S) размещен в инструменте 106.3, спускаемом в скважину на канате, для измерения параметров скважины, которые касаются, например, пористости, проницаемости, состава текучей среды и/или других параметров рабочего процесса.

[0022] На фиг. 1.4 изображен производственный процесс, выполняемый производственным инструментом 106.4, развернутым от производственного блока или фонтанной арматуры 129 и в законченный ствол 136 скважины, показанной на фиг. 1.3, для извлечения текучей среды из продуктивных пластов в пределах скважины в наземные промысловые объекты 142. Текучая среда проходит из продуктивного пласта 104 через перфорационные отверстия в корпусе (не показано) и в производственный инструмент 106.4 в стволе 136 скважины и к наземным промысловым объектам 142 через собирающую сеть 14 6.

[0023] Датчики (S), такие как измерительные приборы, могут быть размещены вокруг месторождения нефти для сбора данных, касающихся различных операций, упомянутых в приведенном выше описании. Согласно изображениям на чертежах датчик (S) может быть размещен в производственном инструменте 106.4 или связанном оборудовании, таком как фонтанная арматура 129, собирающей сети, наземных промысловых объектах и/или производственном объекте, для измерения параметров текучей среды, таких как состав текучей среды, расходы, давления, температуры и/или другие параметры производственной деятельности.

[0024] Несмотря на то, что изображены только упрощенные виды места расположения скважины, предполагается, что месторождение нефти или место 100 расположения скважины может охватывать часть земли, моря и/или воды, которая размещает одно или больше мест расположения скважин. Производство может также содержать скважины закачки (не показаны) для дополнительного извлечения или, например, для хранения углеводородов, углекислого газа или воды. Одна или больше систем промыслового сбора может быть функционально соединена с одним или больше мест расположения скважины для выборочно сбора внутрискважинной текучей среды из места (мест) расположения скважины.

[0025] Следует понимать, что на фиг. 1.2-1.4 изображены инструменты, которые могут быть использованы для измерения не только свойств месторождения нефти, но также и свойств не нефтепромысловых операций, таких как шахты, водоносные горизонты, хранилища и другие объекты, находящиеся под поверхностью. Кроме того, несмотря на то, что изображены определенные инструменты сбора данных, следует понимать, что могут быть использованы различные инструменты измерения (например, каротажный кабель, измерения в процессе бурения (MWD), каротаж в процессе бурения (LWD), керн и т.д.), выполненные с возможностью измерения параметров, таких как сейсмическое полное время пробега, плотность, удельное сопротивление, дебит скважины и т.д., толщи пород и/или ее геологических формаций. Различные датчики (S) могут быть расположены в различных положениях по стволу скважины и/или инструментам текущего контроля для сбора и/или текущего контроля необходимых данных. Кроме того, из местоположений прилегающих промысловых объектов могут быть обеспечены другие источники данных.

[0026] Контуром месторождения нефти на фиг. 1.1-1.4 изображены примеры места 100 расположения скважины и различные операции, используемые с обеспеченными в настоящем изобретении способами. Часть или все месторождение нефти может быть расположено на земле, воде и/или в море. Кроме того, несмотря на то, что изображено одно месторождение нефти, измеренное в одном положении, технология разработки продуктивного пласта может быть использована с любой комбинацией из одного или большего количества месторождений нефти, одного или большего количества технологического оборудования и одного или больше мест расположения скважины.

[0027] На фиг. 2.1-2.4 графически изображены примеры данных, собранных инструментами по фиг. 1.1-1.4, соответственно. На фиг. 2.1 изображена дорожка 202 сейсмограммы толщи пород, показанной на фиг. 1.1, выполненная передвижной сейсмической станцией 106.1. Дорожка сейсмограммы может быть использована для обеспечения данных, таких как двухсторонний отклик в течение некоторого периода времени. На фиг. 2.2 изображен керн 133, взятый бурильными инструментами 106.2. Керн может быть использован для обеспечения данных, таких как график плотности, пористости, проницаемости или другого физического свойства керна по длине керна. Испытания на плотность и вязкость могут выполняться на текучих средах в керне при различных давлениях и температурах. На фиг. 2.3 изображена кернограмма 204 толщи пород по фиг. 1.3, взятой инструментом 106.3, спускаемым в скважину на канате. Кернограмма может представлять сопротивляемость или другое измерение толщи пород на различных глубинах. На фиг. 2.4 изображена кривая падения добычи или график 206 прохождения текучей среды через толщу пород, показанную на фиг. 1.4, измеренная в наземных промысловых объектах 142. Кривая падения добычи может обеспечивать дебит Q в зависимости от времени t.

[0028] Соответствующие графики фиг. 2.1, 2.3 и 2.4 изображают примеры статических измерений, которые могут описывать или представлять информацию о физических свойствах толщи пород и продуктивных пластов, содержащихся в ней. Эти измерения могут быть проанализированы для определения свойств толщи пород (толщ пород), для определения точности измерений и/или для проверки наличия ошибок. Графики каждого из соответствующих измерений могут быть совмещены и отмасштабированы для сравнения и проверки свойств.

На фиг. 2.4 изображен пример динамического измерения свойств текучей среды, проходящей по стволу скважины. По мере прохождения текучей среды через ствол скважины, выполняются измерения свойств текучей среды, таких как расходы, давления, составы и т.д. Согласно приведенному ниже описанию статические и динамические измерения могут быть проанализированы и использованы для создания модели толщи пород для определения ее характерных особенностей. Подобные измерения могут быть также использованы для определения изменений физиономичности толщи пород в течение долгого времени.

ОПЕРАЦИИ ИНТЕНСИФИКАЦИИ

[0029] На фиг. 3.1 изображены операции интенсификации, выполненные в местах 300.1 и 300.2 расположения скважины. Место 300.1 расположения скважины содержит буровую вышку 308.1, имеющую вертикальный ствол скважины 336.1, проходящий в толщу породы 302.1. Место 300.2 расположения скважины содержит буровую вышку 308.2, имеющую ствол 336.2 скважины, и буровую вышку 308.3, имеющую ствол 336.3 скважины, проходящий в подземную толщу породы 302.2. Несмотря на то, что места 300.1 и 300.2 расположения скважины показаны имеющими конкретные конфигурации буровых вышек со стволами скважины, тем не менее, следует понимать, что в одном или большем количестве мест расположения скважины может быть размещена одна или больше буровых вышек с одним или большим количеством стволов скважины.

[0030] Ствол 336.1 скважины проходит от буровой установки 308.1 сквозь нетрадиционные продуктивные пласты 304.1-304.3. Стволы 336.2 и 336.3 скважины проходят от буровых установок 308.2 и 308.3, соответственно, к нетрадиционному продуктивному пласту 304.4. Как показано, нетрадиционные продуктивные пласты 304.1-304.3 представляют собой плотные песчаные коллекторы, содержащие газы, и нетрадиционный продуктивный пласт 304.4 представляет собой глинистый коллектор. В представленной толще пород может иметься по меньшей мере один или больше нетрадиционных коллекторов (например, такой как газ в плотных породах, сланцевая глина, карбонатная горная порода, каменный уголь, с наличием тяжелой нефти и т.д.) и/или обычные продуктивные пласты.

[0031] Операции интенсификации, представленные на фиг. 3.1, могут быть выполнены отдельно или совместно с другими нефтепромысловыми операциями, такими как нефтепромысловые операции на фиг. 1.1 и 1.4. Например, стволы 336.1-336.3 скважин могут быть измерены, пробурены, проверены и созданы согласно изображениям на фиг. 1.1-1.4. Операции интенсификации, выполненные в местах 300.1 и 300.2 расположения скважины, могут охватывать, например, перфорирование, гидравлический разрыв, закачивание и т.п. Операции интенсификации могут быть выполнены совместно с другими нефтепромысловыми операциями, такими как заканчивание и операции добычи (см., например, фиг. 1.4). Согласно фиг. 3.1 стволы 336.1 и 336.2 скважин были закончены и снабжены перфорационными отверстиями 338.1-338.5 для облегчения добычи.

[0032] Скважинный инструмент 306.1 размещен в вертикальном стволе 336.1 скважины рядом с плотным песчаным газовым коллектором 304.1 для выполнения скважинных измерений. Пакеры 307 размещены в стволе 336.1 скважины для изоляции его части, расположенной в непосредственной близости с перфорационными отверстиями 338.2. После формирования перфорационных отверстий вокруг ствола скважины, текучая среда может быть закачана через перфорационные отверстия и в толщу породы для создания и/или увеличения в ней трещин для интенсификации притока от продуктивных пластов.

[0033] Продуктивный пласт 304.4 толщи пород 302.2 был перфорирован, и для изоляции ствола 336.2 скважины около перфорированных отверстий 338.3-338.5 был размещен пакер 307. Согласно представленным изображениям пакеры 307 были размещены в горизонтальном стволе 336.2 скважины на ступенях St1 и St2 ствола скважины. Кроме того, согласно представленным изображениям ствол 304.3 скважины может представлять собой соседнюю (или экспериментальную) скважину, проходящую через толщу пород 302.2 для достижения продуктивного пласта 304.4. В одном или большем количестве мест расположения скважины может быть размещен один или больше стволов скважины. При необходимости может быть размещено множество стволов скважин.

[0034] Трещины могут быть расширены в различные продуктивные пласты 304.1-304.4 для облегчения притока текучей среды из таких пластов. Примеры трещин, которые могут быть сформированы, схематично показаны на фиг. 3.2 и 3.4 вокруг ствола 304 скважины. Как показано на фиг. 3.2, естественные трещины 340 проходят в слоях вокруг ствола 304 скважины. Перфорированные отверстия (или группы перфорированных отверстий) 342 могут быть сформированы вокруг ствола 304 скважины, и текучая среда 344 и/или текучие среды, смешанные с расклинивающим наполнителем 346, могут быть закачаны через перфорированные отверстия 342. Согласно фиг. 3.3 гидравлический разрыв пласта может быть выполнен путем закачки через перфорированные отверстия 342, создания трещин по плоскости σhmax максимального напряжения и открытия и расширения естественных трещин.

[0035] На фиг. 3.4 показан другой вид операции образования трещин вокруг ствола 304 скважины. На данном виде вызванные закачкой трещины 348 проходят радиально около ствола 304 скважины. Вызванные закачкой трещины могут быть использованы для достижения карманов микросейсмических явлений 351 (схематично показаны в виде точек) вокруг ствола 304 скважины. Процесс трещинообразования может быть использован в качестве части процесса интенсификации для обеспечения проходов, служащих для облегчения движения углеводородов к стволу 304 скважины для добычи.

[0036] Согласно фиг. 3.1 датчики (S), такие как измерительные приборы, могут быть размещены вокруг месторождения нефти для сбора данных, касающихся различных операций, упомянутых в представленном выше описании. Некоторые датчики, такие как сейсмографы, могут быть размещены вокруг толщи пластов в ходе гидравлического разрыва пласта для измерения микросейсмических волн и выполнения микросейсмической картографии. Данные, собранные датчиками, могут накапливаться наземным блоком 334 и/или другими источниками сбора данных для анализа или другой обработки согласно представленному выше описанию (см., например, наземный блок 134). Согласно представленным изображениям наземный блок 334 связан с сетью 352 и другими компьютерами 354.

[0037] Инструмент 350 интенсификации может быть образован в виде части наземного блока 334 или других частей места расположения скважины для выполнения операций интенсификации. Например, информация, созданная в ходе одной или большего количества операций интенсификации, может быть использована при проектировании одной или большего количества скважин, одного или большего количества мест расположения скважин и/или одного или большего количества продуктивных пластов. Инструмент 350 интенсификации может быть функционально связан с одной или большим количеством буровых вышек и/или мест расположения скважин и использован для приема данных, обработки данных, отсылки управляющих сигналов и т.д., что дополнительно будет объяснено в настоящем описании. Инструмент 350 интенсификации может содержать блок 363 определения характеристик продуктивного пласта для создания механической модели геологической среды (mechanical earth model-MEM), блок 365 проектирования интенсификации для создания проектов интенсификации, средство 367 оптимизации для оптимизации проектов интенсификации, оперативный блок 369 для оптимизации в режиме реального времени оптимизированного проекта интенсификации, блок 368 управления для выборочной корректировки операции интенсификации на основании оптимизированного в режиме реального времени проекта интенсификации, устройство 370 корректировки текущей информации для обновления модели характеристик продуктивного пласта на основании оптимизированного в режиме реального времени проекта интенсификации и данных ретроспективной оценки, и калибратор 372 для калибровки оптимизированного проекта интенсификации, что дополнительно будет описано в настоящем описании. Блок 365 планирования интенсификации может содержать средство 381 проектирования схемы стадий для выполнения проекта стадий, средство 383 проектирования интенсификации для выполнения проекта интенсификации, инструмент 385 прогнозирования добычи для прогнозирования добычи и инструмент 387 проектирования скважин для создания проектов скважин.

[0038] Данные о месте расположения скважины, используемые в операции интенсификации, могут изменяться, например, от образцов керна до петрофизической интерпретации на основании кернограмм к трехмерным сейсмическим данным (см., например, фиг. 2.1-2.4). Проект интенсификации может использоваться, например, специалистами в области петротехнических свойств месторождения нефти для проведения ручных процессов для сопоставления различных сведений. Интеграция информации может охватывать ручное манипулирование разъединенными технологическими процессами и выходными данными, такими как оконтуривание зон продуктивного пласта, идентификация необходимых зон заканчивания, оценка ожидаемого роста гидравлического разрыва для заданных конфигураций оборудования для заканчивания скважин, решение о необходимости и о месте расположения другой скважины или множества скважин для лучшей интенсификации толщи породы и т.п. Данный проект интенсификации может также содержать полуавтоматическую или автоматическую интеграцию, обратную связь и управление для облегчения операции интенсификации.

[0039] Операции интенсификации для обычных и нетрадиционных продуктивных пластов могут быть выполнены на основании сведений о продуктивном пласте. Характеристика продуктивного пласта может быть использована, например, при проектировании скважин, определении оптимальных зон удара для перфорирования отверстий и схемы расположения ступеней, проекта множества скважин (например, расстояние и ориентация), и геомеханических моделей. Проекты интенсификации могут быть оптимизированы на основании получающейся предварительной оценки добычи. Эти проекты интенсификации могут содержать совмещенный центральный поток операций продуктивного пласта, которые содержат компонент проекта, компонент режима реального времени (RT) и компонент оценки последующей обработки. Заканчивание скважины и проект интенсификации могут быть выполнены, одновременно используя мультидисциплинарные данные о стволе скважи