Органический светоизлучающий диод со слоем модификации поверхности
Иллюстрации
Показать всеИзобретение относится к светоизлучающим устройствам, таким как органические светоизлучающие диоды. Органический светоизлучающий диод (10) содержит подложку (12), имеющую первую поверхность (14) и вторую поверхность (16), первый электрод (32) и второй электрод (38). Излучающий слой (36) расположен между первым электродом (32) и вторым электродом (38). Органический светоизлучающий диод (10) содержит слой (18) модификации поверхности. Слой (18) модификации поверхности имеет непланарную поверхность (30, 52), расположен между первым электродом (32) и подложкой (12) и включает в себя многослойную структуру, содержащую первую пленку (20) по меньшей мере над частью подложки (12) и вторую пленку (26) по меньшей мере над частью первой пленки (20). Вторая пленка (26) сформирована методом магнетронного вакуумного напыления в атмосфере кислорода. 3 н. и 16 з.п. ф-лы, 4 ил.
Реферат
Перекрестная ссылка на родственную заявку
Настоящая заявка испрашивает приоритет по предварительной заявке США №61/983528, поданной 24 апреля 2014 года, полное описание которой введено в это описание как ссылка.
Уведомление о государственной поддержке
Это изобретение выполнено при государственной поддержке по контракту № DE-ЕЕ-0003209, заключенному Министерством энергетики. Правительство США может иметь определенные права на это изобретение.
Область техники, к которой относится изобретение
Настоящее изобретение в общем относится к светоизлучающим устройствам, таким как органические светоизлучающие диоды и, более конкретно, к светоизлучающему устройству, имеющему светорассеивающую поверхность, и к способам изготовления светоизлучающего устройства.
Уровень техники
Органический светоизлучающий диод (ОСИД) представляет собой пример светоизлучающего устройства. ОСИД имеет многослойную структуру, включающую активный пакет, имеющий тонкую органическую пленку, например, электролюминесцентный излучающий слой органического полупроводникового материала. Активный пакет располагается между двумя электродами (анодом и катод). Когда электрический ток проходит между анодом и катодом, излучающий слой испускает свет, обычно видимый свет, в ответ на подачу электрического тока. Органические светоизлучающие диоды используются в многочисленных областях применения, таких как телевизионные экраны, компьютерные мониторы, мобильные телефоны, персональные информационные устройства, часы, освещение и различные другие электронные устройства.
ОСИД обеспечивают многочисленные преимущества по сравнению с традиционными неорганическими светоизлучающими устройствами, такими как жидкие кристаллы и нить накаливания или компактные флуоресцентные лампы (CLF). Например, ОСИД работает без необходимости в задней подсветке. В слабом рассеянном свете, таком как в темном помещении, для экрана ОСИД может быть достигнута более высокая степень контрастности, чем для традиционных жидкокристаллических устройств отображения. Кроме того, ОСИД тоньше, легче и более гибок, чем жидкокристаллические устройства отображения. Для работы ОСИД требуется меньше энергии, и они обеспечивают экономию затрат по сравнению с лампами накаливания или компактными флуоресцентными лампами.
Однако ОСИД имеют один недостаток, заключающийся в том, что значительное количество света, генерируемого активным пакетом, теряется из-за оптического волноводного эффекта, создаваемого из-за разности показателей преломления между различными слоями ОСИД. Часть света, испускаемого излучающим слоем, отражается обратно на границе различных слоев и «запирается» внутри этих слоев. В традиционном устройстве освещения ОСИД почти 80% видимого света, испускаемого органическим излучающим слоем, захватывается внутрь ОСИД из-за указанного оптического волноводного эффекта.
Следовательно, было бы выгодно разработать устройство и/или способ для большего извлечения электромагнитного излучения, например, видимого света, из ОСИД, чем это возможно из традиционного ОСИД.
В настоящее время способы повышенного извлечения света включают комбинацию сложных способов покрытия и методов формирования рисунка на поверхности. Например, наружная поверхность подложки ОСИД может быть вытравлена химически (например, кислотным травлением) или вытравлена физически (например, с помощью инструментов), чтобы увеличить шероховатость поверхности подложки. Увеличение поверхностной шероховатости увеличивает мутность, которая обычно увеличивает количество света, извлеченного из ОСИД. Однако эти проводящие покрытия и методы формирования рисунка увеличивают время изготовления и затраты, необходимые для получения ОСИД, и могут привести к проблемам для окружающей среды при хранении и удалении материалов для травления и/или покрытия. Кроме того, эти способы не влияют на волноводный эффект между различными внутренними слоями ОСИД.
Следовательно, было бы выгодно разработать светоизлучающее устройство, такое как ОСИД, и/или способ изготовления светоизлучающего устройства, имеющие одно или несколько из следующих преимуществ по сравнению с современными устройствами или способами: ослабленный волноводный эффект; повышенное излучение света; более простой способ производства; пониженная стоимость производства; уменьшение количества технологических стадий; и/или снижение сложности производственных стадий.
Раскрытие сущности изобретения
Краткое изложение изобретения представлено в следующих пронумерованных пунктах.
Пункт 1. Органический светоизлучающий диод содержит подложку, имеющую первую поверхность и вторую поверхность; первый электрод; и второй электрод. Излучающий слой располагается между первым электродом и вторым электродом. Органический светоизлучающий диод дополнительно включает слой модификации поверхности, содержащий неплоскостную поверхность.
Пункт 2. Органический светоизлучающий диод по пункту 1, в котором слой модификации поверхности располагается между первым электродом и подложкой.
Пункт 3. Органический светоизлучающий диод по пунктам 1 или 2, в котором слой модификации поверхности обеспечивает по меньшей мере один другой слой органического светоизлучающего диода с неплоскостной поверхностью, в частности с неплоскостной внутренней поверхностью.
Пункт 4. Органический светоизлучающий диод по любому из пунктов 1-3, в котором слой модификации поверхности содержит многослойную структуру.
Пункт 5. Органический светоизлучающий диод по любому из пунктов 1-4, в котором слой модификации поверхности содержит первую пленку, расположенную по меньшей мере над частью подложки, и вторую пленку, расположенную по меньшей мере над частью первой пленки. Предпочтительно вторая пленка находится в непосредственном контакте с первой пленкой.
Пункт 6. Органический светоизлучающий диод по пункту 5, в котором первая пленка имеет первый коэффициент расширения, и вторая пленка имеет второй коэффициент расширения. Предпочтительно первый коэффициент расширения больше чем второй коэффициент расширения.
Пункт 7. Органический светоизлучающий диод по пункту 6, в котором первый коэффициент расширения (при 20°С, 10-6 м/мК) составляет по меньшей мере 25, в частности, по меньшей мере 40.
Пункт 8. Органический светоизлучающий диод по пунктам 6 или 7, в котором первый коэффициент расширения составляет не больше чем 220, в частности, не больше чем 200. Например, не больше чем 80.
Пункт 9. Органический светоизлучающий диод по любому из пунктов 6-8, в котором первый коэффициент расширения (при 20°С, 10-6 м/мК) находится в диапазоне от 25 до 220, в частности, в диапазоне от 40 до 200.
Пункт 10. Органический светоизлучающий диод по любому из пунктов 6-9, в котором второй коэффициент расширения (при 20°С, 10-6 м/мК) составляет по меньшей мере 1, в частности, по меньшей мере 4.
Пункт 11. Органический светоизлучающий диод по любому из пунктов 6-10, в котором второй коэффициент расширения составляет не больше чем 100, в частности, не больше чем 80.
Пункт 12. Органический светоизлучающий диод по любому из пунктов 6-11, в котором второй коэффициент расширения (при 20°С, 10-6 м/мК) находится в диапазоне от 1 до 100, в частности, от 4 до 80.
Пункт 13. Органический светоизлучающий диод по любому из пунктов 6-12, в котором первый коэффициент расширения является больше второго коэффициента расширения.
Пункт 14. Органический светоизлучающий диод по любому из пунктов 5-13, в котором первая пленка содержит материал, выбранный из группы, состоящей из эластомерных материалов, полимерных материалов, полимерных органических материалов, и их смесей. Например, первая пленка может содержать полиалкилсилоксан, конкретно полидиметилсилоксан.
Пункт 15. Органический светоизлучающий диод по любому из пунктов 5-14, в котором первая пленка имеет толщину по меньшей мере 1 нм, в частности, по меньшей мере 10 нм.
Пункт 16. Органический светоизлучающий диод по любому из пунктов 5-15, в котором первая пленка имеет толщину не больше чем 500 нм, например, не больше чем 100 нм.
Пункт 17. Органический светоизлучающий диод по любому из пунктов 5-16, в котором первая пленка имеет толщину в диапазоне от 1 нм до 500 нм, в частности, от 10 нм до 100 нм.
Пункт 18. Органический светоизлучающий диод по любому из пунктов 5-17, в котором вторая пленка имеет более высокую твердость, чем первая пленка.
Пункт 19. Органический светоизлучающий диод по любому из пунктов 5-18, в котором вторая пленка содержит оксид, оксид металла, нитрид, и/или оксинитридную пленку, конкретно оксид, нитрид и/или оксинитрид одного или нескольких из Zn, Fe, Mn, Al, Се, Sn, Sb, Hf, Zr, Ni, Zn, Bi, Ti, Co, Cr, S и In. Например, вторая пленка может содержать неорганический материал.
Пункт 20. Органический светоизлучающий диод по любому из пунктов 5-19, в котором вторая пленка имеет толщину по меньшей мере 1 нм, в частности, по меньшей мере 4 нм.
Пункт 21. Органический светоизлучающий диод по любому из пунктов 5-20, в котором вторая пленка имеет толщину не больше чем 300 нм, в частности, не больше чем 50 нм.
Пункт 22. Органический светоизлучающий диод по любому из пунктов 5-21, в котором вторая пленка имеет толщину в диапазоне от 1 нм до 300 нм, в частности, от 1 нм до 50 нм.
Пункт 23. Органический светоизлучающий диод по любому из пунктов 5-22, в котором первая пленка формируется методом мокрого осаждения, конкретно способом мокрого осаждения, выбранным из группы, состоящей из нанесения путем центрифугирования, нанесения путем распыления, нанесения путем полива, нанесения через щелевую матрицу и лаконаливное нанесение.
Пункт 24. Органический светоизлучающий диод по любому из пунктов 5-23, в котором вторая пленка формируется методом магнетронного вакуумного напыления (MSVD).
Пункт 25. Органический светоизлучающий диод по любому из пунктов 5-24, в котором вторую пленку выбирают из группы, состоящей из оксида алюминия, диоксида кремния, оксида цинка, диоксида циркония и их комбинаций, в частности, смеси оксида алюминия и диоксида кремния.
Пункт 26. Органический светоизлучающий диод по пункту 1, в котором слой модификации поверхности содержит единственный слой.
Пункт 27. Органический светоизлучающий диод по пункту 26, в котором слой модификации поверхности содержит оксид алюминия или смесь оксида алюминия и диоксида кремния.
Пункт 28. Органический светоизлучающий диод по пунктам 26 или 27, в котором слой модификации поверхности имеет толщину по меньшей мере 1 нм, в частности, по меньшей мере 10 нм.
Пункт 29. Органический светоизлучающий диод по любому из пунктов 26-28, в котором слой модификации поверхности имеет толщину не больше чем 500 нм, в частности, не больше чем 100 нм. Например, слой модификации поверхности может иметь толщину в диапазоне от 1 нм до 500 нм, в частности, от 10 нм до 500 нм.
Пункт 30. Органический светоизлучающий диод по любому из пунктов 1-29, в котором слой модификации поверхности включает в себя внедренные наночастицы.
Пункт 31. Органический светоизлучающий диод по пункту 30, в котором наночастицы содержат металлооксидные наночастицы, в частности наночастицы, выбранные из группы, состоящей из оксида алюминия, диоксида титана, оксида церия, оксида цинка, оксида олова, диоксида кремния, дымящего диоксида кремния и диоксида циркония.
Пункт 32. Органический светоизлучающий диод по пунктам 30 или 31, в котором наночастицы внедрены в слой модификации поверхности, в количестве от 0,1 мас. % до 50 мас. %, в частности, от 0,1 мас. % до 10 мас. %.
Пункт 33. Органический светоизлучающий диод по любому из пунктов 1-28, в котором слой модификации поверхности имеет показатель преломления между показателем преломления излучающего слоя и показателем преломления подложки.
Пункт 34. Органический светоизлучающий диод по любому из пунктов 1-33, в котором слой модификации поверхности имеет внутреннюю поверхность со средней поверхностной шероховатостью (Ra) в диапазоне от 5 нм до 5000 нм, в частности, от 5 нм до 500 нм.
Пункт 35. Органический светоизлучающий диод по любому из пунктов 1-34, включающий по меньшей мере один нижележащий слой, расположенный между слоем модификации поверхности и подложкой.
Пункт 36. Органический светоизлучающий диод по пункту 35, в котором нижележащий слой содержит единственный слой или многослойную структуру.
Пункт 37. Органический светоизлучающий диод по пунктам 35 или 36, в котором нижележащий слой включает один или несколько металлооксидных материалов, в частности металлооксидных материалов, выбранных из группы, состоящей из оксидов кремния, титана, алюминия, циркония, фосфора, гафния, ниобия, цинка, висмута, свинца, индия, олова и их сплавов и смесей.
Пункт 38. Органический светоизлучающий диод по любому из пунктов 35-37, в котором нижележащий слой выбирают из группы, состоящей из однородного слоя, градиентного слоя и множества слоев.
Пункт 39. Органический светоизлучающий диод по любому из пунктов 35-38, в котором нижележащий слой содержит смесь по меньшей мере диоксида кремния и диоксида титана, в частности, смесь диоксида кремния, диоксида титана и оксида фосфора.
Пункт 40. Органический светоизлучающий диод по любому из пунктов 35-39, в котором нижележащий слой имеет толщину в диапазоне от 10 нм до 120 нм, в частности, от 30 нм до 70 нм.
Пункт 41. Органический светоизлучающий диод по любому из пунктов 1-40, в котором первый электрод представляет собой анод.
Пункт 42. Органический светоизлучающий диод по любому из пунктов 1-41, в котором второй электрод выбирают из группы, состоящей из бария, кальция и магния.
Пункт 43. Органический светоизлучающий диод по любому из пунктов 1-42, в котором второй электрод является светонепроницаемым.
Пункт 44. Органический светоизлучающий диод по любому из пунктов 1-42, в котором второй электрод является прозрачным.
Пункт 45. Органический светоизлучающий диод по любому из пунктов 1-44, в котором первый электрод содержит многослойную структуру.
Пункт 46. Органический светоизлучающий диод по любому из пунктов 1-45, в котором первый электрод находится ближе к подложке, чем второй электрод.
Пункт 47. Органический светоизлучающий диод по любому из пунктов 1-6, в котором слой модификации поверхности содержит беспорядочно ориентированные выступы.
Пункт 48. Способ получения органического светоизлучающего диода включает в себя: получение слоя модификации поверхности по меньшей мере над частью подложки; и инициирование расширения и/или сжатия слоя модификации поверхности, чтобы получить слой модификации поверхности с неплоскостной поверхностью.
Пункт 49. Способ по пункту 48, который включает предоставление дополнительных слоев сверху слоя модификации поверхности, таким образом, чтобы по меньшей мере один из дополнительных слоев имел неплоскостную поверхность, предпочтительно неплоскостную внутреннюю поверхность.
Пункт 50. Способ по пунктам 48 или 49, в котором инициирующая стадия осуществляется путем нагревания и/или охлаждения слоя модификации поверхности.
Пункт 51. Способ по любому из пунктов 48-50, в котором слой модификации поверхности содержит первую пленку по меньшей мере над частью подложки и вторую пленку по меньшей мере над частью первой пленки.
Пункт 52. Способ по любому из пунктов 48-51, который включает в себя получение первой пленки слоя модификации поверхности по меньшей мере над частью подложки, с образованием покрытой подложки, в которой первая пленка имеет первую площадь поверхности; нагревание покрытой подложки до повышенной температуры, достаточной для инициирования расширения первой пленки до второй площади поверхности; получение второй пленки слоя модификации поверхности над первой пленкой, причем площадь поверхности первой пленки больше первой площади поверхности; и охлаждение покрытой подложки с первой пленкой и второй пленкой, чтобы вызвать сжатие по меньшей мере одной из первой пленки и второй пленки, так чтобы поверхность второй пленки имела неплоскостную поверхность.
Пункт 53. Способ по пунктам 51 или 52, в котором первая пленка имеет первый коэффициент расширения и вторая пленка имеет второй коэффициент расширения.
Пункт 54. Способ по пункту 53, в котором первый коэффициент расширения больше чем второй коэффициент расширения.
Пункт 55. Способ по любому из пунктов 51-54, в котором первая пленка содержит материал, выбранный из группы, состоящей из эластомерных материалов, полимерных материалов, полимерных органических материалов, и их смесей, например, полиалкилсилоксана, в частности, полидиметилсилоксана.
Пункт 56. Способ по любому из пунктов 51-55, в котором первая пленка имеет толщину в диапазоне от 1 нм до 500 нм, в частности, от 1 нм до 300 нм.
Пункт 57. Способ по любому из пунктов 51-56, в котором вторая пленка имеет более высокую твердость, чем первая пленка.
Пункт 58. Способ по любому из пунктов 51-57, в котором вторая пленка содержит оксид, оксид металла, нитрид и/или оксинитридную пленку, конкретно оксид, нитрид и/или оксинитрид одного или нескольких из Zn, Fe, Mn, Al, Се, Sn, Sb, Hf, Zr, Ni, Zn, Bi, Ti, Co, Cr, Si и In.
Пункт 59. Способ по любому из пунктов 51-58, в котором вторая пленка имеет толщину в диапазоне от 1 нм до 300 нм, в частности, от 1 нм до 50 нм.
Пункт 60. Способ по любому из пунктов 51-59, в котором первая пленка формируется методом мокрого осаждения, в частности, методом мокрого осаждения, выбранным из группы, состоящей из метода центрифугирования, нанесения путем распыления, нанесения путем полива, нанесения через щелевую матрицу и лаконаливного нанесения.
Пункт 61. Способ по любому из пунктов 51-60, в котором вторая пленка образована MSVD.
Пункт 62. Способ по любому из пунктов 51-61, в котором вторую пленку выбирают из группы, состоящей из оксида алюминия, диоксида кремния, оксида цинка, диоксида циркония и их комбинаций.
Пункт 63. Способ по любому из пунктов 51-62, в котором слой модификации поверхности имеет толщину в диапазоне от 10 нм до 1000 нм, конкретно от 10 нм до 500 нм.
Пункт 64. Способ по любому из пунктов 51-63, в котором слой модификации поверхности имеет показатель преломления между показателем преломления излучающего слоя и показателем преломления подложки.
Пункт 65. Способ по любому из пунктов 51-64, в котором первая пленка осаждается методом, выбранным из группы, состоящей из центрифугирования и нанесения путем распыления, в частности путем центрифугирования.
Пункт 66. Способ по любому из пунктов 51-65, в котором подложку и первую пленку нагревают или подвергают воздействию повышенной температуры в течение некоторого периода времени, чтобы вызвать растяжение первой пленка до нанесения второй пленки.
Пункт 67. Способ по пункту 66, в котором повышенная температура находится в диапазоне от 100°F до 1500°F (38°С-815°С), в частности, от 300°F до 500°F (149°С-260°С).
Пункт 68. Способ по пунктам 66 или 67, в котором период времени находится в диапазоне от 1 минуты до 10 минут, в частности, от 1 минуты до 5 минут.
Пункт 69. Способ по любому из пунктов 51-68, в котором вторая пленка образуется на первой пленке, в то время как первая пленка находится в растянутом состоянии.
Пункт 70. Способ по любому из пунктов 51-69, в котором вторая пленка образуется на первой пленке, в то время как первая пленка находится при повышенной температуре.
Пункт 71. Способ по любому из пунктов 51-70, в котором вторая пленка наносится методом MSVD.
Пункт 72. Способ по любому из пунктов 48-71, который включает позиционирование по меньшей мере, одного нижележащего слоя между слоем модификации поверхности и подложкой.
Пункт 73. Способ по пункту 72, в котором нижележащий слой включает один или несколько металлооксидных материалов, в частности, оксидов кремния, титана, алюминия, циркония, фосфора, гафния, ниобия, цинка, висмута, свинца, индия, олова и их сплавов и смесей.
Пункт 74. Способ по пункту 53, в котором первый коэффициент расширения (при 20°С, 10-6 м/мК) составляет по меньшей мере 25, в частности, по меньшей мере 40.
Пункт 75. Способ по пункту 74, в котором первый коэффициент расширения (при 20°С, 10-6 м/мК) составляет не больше чем 220, в частности, не больше чем 200.
Пункт 76. Способ по пунктам 74 или 75, в котором второй коэффициент расширения (при 20°С, 10-6 м/мК) составляет по меньшей мере 4, в частности, по меньшей мере 10.
Пункт 77. Способ по любому из пунктов 74-76, в котором второй коэффициент расширения (при 20°С, 10-6 м/мК) составляет не больше чем 100, в частности, не больше чем 80.
Пункт 78. Способ по любому из пунктов 74-77, в котором первый коэффициент расширения больше чем второй коэффициент расширения.
Пункт 79. Способ по любому из пунктов 48-50, в котором слой модификации поверхности содержит единственный слой, в частности, единственный слой, содержащий оксид алюминия или смесь оксида алюминия и диоксида кремния.
Пункт 80. Способ по любому из пунктов 48-79, в котором слой модификации поверхности имеет толщину в диапазоне от 1 нм до 1500 нм, в частности, от 1 нм до 1000 нм.
Пункт 81. Применение слоя модификации поверхности, который описан в любом из пунктов 1-81, в светоизлучающем устройстве или солнечном элементе.
Пункт 82. Применение органического светоизлучающего диода, имеющего слой модификации поверхности по любому из пунктов 1-81, в электронном устройстве, в частности, в электронном устройстве, выбранном из группы, состоящей из компьютерных мониторов, компьютерных экранов, мобильных телефонов, телевизионных экранов, персональных информационных устройств, часов и устройств освещения.
Краткое описание чертежей
На фигуре 1 приведен вид сбоку в разрезе (не в масштабе) светоизлучающего устройства в виде ОСИД, включающего характерные признаки изобретения;
На фигуре 2 приведен вид сбоку в разрезе (не в масштабе) варианта ОСИД из фигуры 1;
На фигуре 3 приведен вид сбоку в разрезе (не в масштабе) ОСИД из фигуры 1, включающего необязательные наночастицы; и
Фигура 4 представляет собой изображение, полученное в сканирующем электронном микроскопе (SEM), для подложки ОСИД, описанной в примере 1.
Описание предпочтительных вариантов осуществления изобретения
Используемые в изобретении термины пространства или направленности, такие как "левый", "правый", "верхний", "нижний", и тому подобное, относятся в изобретении, как показано на фигурах чертежей. Следует понимать, что в изобретении могут быть использованы различные альтернативные ориентации, и поэтому, указанные термины не следует рассматривать как ограничивающие.
Следует понимать, что все цифры, используемые в описании и формуле изобретения во всех случаях, модифицированы термином "приблизительно". Следует понимать, что все указанные в изобретении диапазоны включают начальное и конечное значение этого диапазона и любые и/или все поддиапазоны отнесенные к нему. Приведенные в изобретении диапазоны представляют средние значения по всему конкретному диапазону.
Термин "сверху" означает "вдали от подложки". Например, второй слой, расположенный "сверху" первого слоя, означает, что второй слой расположен дальше от подложки, чем первый слой. Второй слой может быть в непосредственном контакте с первым слоем, или один или несколько других слоев могут быть расположены между вторым слоем и первым слоем.
Термины "полимер" или "полимерный" включают олигомеры, гомополимеры, сополимеры и тройные полимеры.
Все документы, цитированные в изобретении, следует рассматривать, как полностью "включенные путем ссылки".
Любая ссылка на количество, если не указано другое, означает "процент по массе".
Термин "пленка" означает область, которая имеет желательный или подобранный состав. Термин "слой" включает в себя одну или несколько "пленок". "Покрытие" состоит из одного или нескольких "слоев". Термин "органический материал" включает полимеры, а также малые молекулы органических материалов, которые могут быть использованы для производства органических оптоэлектронных устройств.
Термин "видимый свет" означает электромагнитное излучение, имеющее длину волны в диапазоне от 380 нм до 780 нм. Термин "инфракрасное излучение" означает электромагнитное излучение, имеющее длину волны в диапазоне от больше чем 780 нм до 100000 нм. Термин "ультрафиолетовое излучение" означает электромагнитную энергию, имеющую длину волны в диапазоне от 100 нм до меньше чем 380 нм.
Термины "металл" и "оксид металла" включают в себя кремний и диоксид кремния, соответственно, а также традиционно общепризнанные металлы и оксиды металлов, хотя кремний условно нельзя считать металлом. Термин "отверждаемый" означает композицию, способную к полимеризации или образованию поперечных связей. Выражение "отвержденный" означает, что материал является по меньшей мере частично полимеризованным или сшитым, предпочтительно полностью полимеризованным или сшитым. Выражение "по меньшей мере" означает "больше чем или равный". Выражение "не больше чем" означает "меньше чем или равный".
Если не указано другое, все коэффициенты расширения, указанные в описании, приведены для материала при 20°С, 10-6 м/мК.
Все величины мутности и коэффициента пропускания в описании определены с использованием измерителя мутности Haze-Gard Plus (имеется в продаже от фирмы BYK-Gardner, USA), и в соответствии со стандартом ASTM D1003-07.
При обсуждении настоящего изобретения могут быть описаны определенные характерные признаки как "в частности" или "предпочтительно" с некоторыми ограничениями (например, "предпочтительно", "более предпочтительно", или "еще более предпочтительно", с некоторыми ограничениями). Следует понимать, что изобретение не ограничено этими конкретными или предпочтительными ограничениями, но охватывает в целом все пределы описания.
Изобретение включает в себя, состоит из или содержит существенным образом следующие аспекты изобретения в любом сочетании. Различные аспекты изобретения иллюстрируются в отдельных чертежах фигур. Однако следует понимать, что это сделано с целью облегчения иллюстрации и обсуждения. При практическом осуществлении изобретения один или несколько аспектов изобретения, показанных на фигурах чертежей, может комбинироваться с одним или несколькими аспектами изобретения, показанными на одной или нескольких других фигурах чертежей.
С целью последующего обсуждения, изобретение будет описано со ссылкой на ОСИД. Однако следует понимать, что изобретение не ограничено применением ОСИД или других светоизлучающих устройств, но может быть практически осуществлено и в других областях, например (но без ограничения), в солнечных элементах, например, фотогальванических тонкопленочных солнечных элементах.
Органический светоизлучающий диод 10, включающий характерные признаки изобретения, показан на фигуре 1. ОСИД 10 включает подложку 12, имеющую первую поверхность (наружную поверхность) 14 и вторую поверхность (внутреннюю поверхность) 16. Выражение "наружная поверхность" означает поверхность, обращенную к внешней области ОСИД 10. Термин "внутренняя поверхность" означает поверхность, обращенную к внутренней области ОСИД 10.
Органический светоизлучающий диод 10 дополнительно включает в себя слой 18 модификации поверхности. Этот слой 18 модификации поверхности может быть единственным слоем или может представлять собой множество слоев. Показанный на фигуре 1 типичный слой 18 модификации поверхности включает первую пленку 20, имеющую первую поверхность (наружную поверхность) 22 и вторую поверхность (внутреннюю поверхность) 24 и вторую пленку 26, имеющую первую поверхность (наружную поверхность) 28 и вторую поверхность (внутреннюю поверхность) 30.
Кроме того, ОСИД 10 включает электрически проводящий первый электрод 32, расположенный сверху слоя 18 модификации поверхности, активный пакет 34, включающий электролюминесцентный излучающий слой 36 органического материала, и электрически проводящий второй электрод 38. Специалист в этой области техники легко сможет понять общую структуру и эксплуатацию традиционного ОСИД (без слоя 18 модификации поверхности изобретения), и поэтому это не будет подробно описано.
Слой модификации поверхности 18 обеспечивает неплоскостную поверхность (внутреннюю поверхность 30), на которой можно сформировать другие слои ОСИД 10 (например, первый электрод 32, активный пакет 34, и/или второй электрод 38). Выражение "неплоскостная поверхность" означает поверхность, имеющую изогнутую или сморщенную структуру. Например, неплоскостная поверхность может представлять собой или может включать области с чередующимися выступами и углублениями. Расстояние между выступами может быть равномерным или неравномерным в поперечном направлении неплоскостной поверхности. Глубина углублений может быть одинаковой или неодинаковой в поперечном направлении неплоскостной поверхности. Выступы могут быть беспорядочно ориентированны. Путем формирования других слоев ОСИД на неплоскостной поверхности 30 слоя 18 модификации поверхности по меньшей мере один из указанных других слоев, предпочтительно больше чем один из указанных других слоев, также демонстрирует одну или несколько неплоскостных поверхностей. Неплоскостные поверхности слоя (слоев) снижают оптический волноводный эффект и обеспечивают больше света, который эмитируется из ОСИД 10.
Подложка 12 предпочтительно является прозрачной подложкой. Термин "прозрачный" означает, что степень мутности меньше чем 25%, например, меньше чем 20%, например, меньше чем 15%, например, меньше чем 10%, такая как, меньше чем 5%. Предпочтительно, степень мутности меньше чем 25%. Более предпочтительно, степень мутности меньше чем 15%. Еще более предпочтительно, степень мутности меньше чем 10%.
Примеры подходящих материалов для подложки 12 включают стекло, такое как традиционное силикатное стекло с натронной известью и полированное листовое стекло, и полимерные материалы. Предпочтительно подложка 12 имеет высокий коэффициент пропускания видимого света при стандартной длине волны 550 нанометров (нм) и стандартной толщине 3,2 мм. Выражение "высокий коэффициент пропускания видимого света" означает коэффициент пропускания видимого света при 550 нм равный по меньшей мере 85%, например по меньшей мере 87%, например по меньшей мере 90%, например по меньшей мере 91%, например по меньшей мере 92%, например по меньшей мере 93%, такой как по меньшей мере 95%, при стандартной толщине 3,2 мм. Предпочтительно, подложка 12 имеет коэффициент пропускания видимого света при 550 нм и при стандартной толщине 3,2 мм по меньшей мере 85%. Более предпочтительно, подложка 12 имеет коэффициент пропускания видимого света при 550 нм и при стандартной толщине 3,2 мм по меньшей мере 90%. Еще более предпочтительно, подложка 12 имеет коэффициент пропускания видимого света при 550 нм и при стандартной толщине 3,2 мм по меньшей мере 93%. Например, коэффициент пропускания видимого света может находиться в диапазоне от 85% до 100%, например, от 87% до 100%, например, от 90% до 100%, например, от 91% до 100%, например, от 92% до 100%, например, от 93% до 100%, например, от 94% до 100%, например, от 95% до 100%, такой как 96%-100%, при стандартной толщине 3,2 мм и для длины волны 550 нм. Не ограничивающие примеры стекла, которое может быть использовано для практического осуществления изобретения включают стекла Starphire®, Solarphire®, Solarphire® PV, и CLEAR™, которые все промышленно доступны на фирме PPG Industries, Inc. of Pittsburgh, Pennsylvania. В качестве альтернативы, подложка 12 может быть полимерной подложкой, такой как акриловая подложка.
Подложка 12 может иметь любую желательную толщину. Например, подложка 12 может иметь толщину по меньшей мере 0,5 мм. Например, толщину по меньшей мере 1 мм. Например, толщину по меньшей мере 1,5 мм. Например, толщину по меньшей мере 2 мм, такую как по меньшей мере 2,5 мм, такую как по меньшей мере 3 мм, такую как по меньшей мере 3,5 мм, такую как по меньшей мере 4 мм, такую как по меньшей мере 5 мм, такую как по меньшей мере 6 мм, такую как по меньшей мере 7 мм, такую как по меньшей мере 8 мм, такую как по меньшей мере 9 мм, такую как по меньшей мере 10 мм.
Например, подложка 12 может иметь толщину не больше чем 10 мм. Например, толщину не больше чем 9 мм, такую как не больше чем 8 мм, такую как не больше чем 7 мм, такую как не больше чем 6 мм, такую как не больше чем 5 мм, такую как не больше чем 4 мм, такую как не больше чем 3,5 мм. Например, подложка 12 может иметь толщину не больше чем 5 мм.
Например, подложка 12 может иметь толщину в диапазоне от 0,5 мм до 10 мм. Например, в диапазоне от 1 мм до 10 мм. Например, в диапазоне от 1,5 мм до 5 мм.
Как первый, так и второй электроды 32, 38 могут быть прозрачными или один электрод может быть прозрачным, а другой электрод может быть светонепроницаемым (например, отражающим). С целью обсуждения изобретения, ОСИД 10, показанный на фигурах, может быть описан как "эмитирующий из нижней части" ОСИД, имеющий прозрачный первый (нижний) электрод 32 и отражающий второй (верхний) электрод 38. Первый электрод 32 будет обозначен как анод, и второй электрод 38 будет обозначен как катод. Однако следует понимать, что это делается только с целью описания изобретения, причем изобретение не ограничивается органическими светоизлучающими диодами, эмитирующими из нижней части, или тем, что первый электрод 32 является анодом.
Первый электрод (например, анод) 32 может быть единственным проводящим слоем или представлять собой многослойную структуру, включающую проводящий слой. Первый электрод 32 может быть проводящим, прозрачным слоем, таким как проводящий металлический или металлооксидный слой, или может представлять собой многослойную структуру, включающую проводящий металл или металлооксидный слой.
Например, первый электрод 32 может содержать один или несколько проводящих оксидных материалов, таких как (но без ограничения) один или несколько оксидов одного или нескольких металлов из цинка (Zn), железа (Fe), марганца (Mn), алюминия (Al), цезия (Се), олова (Sn), сурьмы (Sb), гафния (Hf), циркония (Zr), никеля (Ni), цинка (Zn), висмута (Bi), титана (Ti), кобальта (Со), хрома (Cr), кремния (Si), индия (In), или сплав из двух или более таких материалов, например, станнат цинка. Кроме того, проводящий материал может включать один или несколько дополнительных материалов, таких как (но без ограничения) фтор (F), In, Al, фосфор (Р), Zn, и/или Sb. Конкретные примеры подходящих материалов включают оксид индия-олова (ITO), оксида цинка с добавкой алюминия (AZO), оксид олова с добавкой фтора, с добавкой цинка, оксид индия с добавкой олова, оксид индия с добавкой ванадия, и оксид цинка и олова (такой как станнат цинка или смесь оксида цинка и оксида олова). Например, проводящий оксид может включать оксид олова, в частности оксид олова с добавкой фтора.
Например, первый электрод 32 может представлять собой или может включать слой проводящего металла. Примеры слоев проводящего металла включают металлическую платину, иридий, осмий, палладий, алюминий, золото, медь, серебро, или их смеси, сплавы, или их комбинации. Например, первый электрод 32 может включать слой проводящего металла, расположенный между двумя металлооксидными слоями.
Второй электрод (катод) 38 может быть любым традиционным катодом ОСИД. Примеры подходящих катодов включают металлы, такие как (но без ограничения) барий, кальций и магний. Типичный второй электрод 38 имеет низкую работу выхода электрона. Для ОСИД, в котором свет излучается только из нижней части устройства, через подложку 12, второй электрод 38 может быть относительно толстым и/или может быть слоем, отражающим металл с высокой электрической проводимостью. Второй электрод 38 может быть светонепроницаемым. Термин "светонепроницаемый" означает, что коэффициент пропускания для стандартной длины волны 550 нм составляет меньше чем 5%, например меньше чем 1%, например 0%. Например, второй электрод 38 может быть отражающим по меньшей мере часть света, генерируемого активным пакетом 34. В качестве альтернативы, если желательно, чтобы свет излучался сверху ОСИД 10, второй электрод 38 может быть выполнен из прозрачного материала, такого как описано выше для первого электрода 32.
Активный пакет 34 может включать любой традиционный излучающий слой 36, известный из уровня техники. Примеры материалов, подходящих для излучающего слоя 36, включают (но без ограничения указанным) небольшие молекулы, такие как металлоорганические хелаты, например, трис(8-гидроксихинолинато)алюминий (Alq3), флюоресцирующие и фосфоресцирующие красители и сопряженные дендримеры. Дополнительные примеры подходящих материалов включают трифениламин, перилен, рубрен и хинакридон. В качестве альтернативы, могут