Ламинат для светоиспускающего устройства и способ его изготовления

Иллюстрации

Показать все

Изобретение относится к ламинату для светоиспускающего устройства. Ламинат содержит стеклянную подложку, неупорядоченную сетку рельефов, сформированную на стеклянной подложке, выравнивающий слой, сформированный на сетке. Сетка рельефов сформирована из стеклянной фритты и обеспечивает рассеяние света. Изобретение позволяет повысить эффективность вывода наружу потерь света на границе раздела между стеклянной подложкой и внутренним световыводящим слоем. 3 н. и 25 з.п. ф-лы, 8 ил., 1 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к ламинату для светоиспускающего устройства и к способу его изготовления, для повышения внешней световой отдачи посредством сведения к минимуму потерь света на границе раздела между стеклянной подложкой и внутренним световыводящим слоем. Ламинат для светоиспускающего устройства по настоящему изобретению является особенно пригодным для использования в промышленных областях оптических устройств, таких как органические светоиспускающие диоды (OLED), задние фонари, осветительные приборы, и тому подобное.

Уровень техники

Оптические устройства, например, OLED, могут быть в зависимости от светоиспускающей структуры распределены по категориям на направленную вниз светоиспускающую структуру, в которой свет испускается в направлении стеклянной подложки, и направленную вверх светоиспускающую структуру, в которой свет испускается в направлении, противоположном стеклянной подложке. В направленной вниз светоиспускающей структуре, катод действует в качестве отражателя с использованием металлической тонкой пленки из алюминия или чего-либо подобного, а анод действует в качестве пути, через который испускается свет, с использованием прозрачной проводящей оксидной пленки из оксида индия-олова (ITO) или чего-либо подобного. В направленной вверх светоиспускающей структуре, катод формируется в виде многослойной тонкой пленки, содержащей очень тонкую пленку серебра, и свет испускается через катод. В области осветительных панелей, за исключением прозрачных панелей, в которых свет испускается через обе поверхности, как правило, используют направленную вниз светоиспускающую структуру, при этом направленная вверх светоиспускающая структура используется редко.

В ламинате, используемом для оптического устройства, такого как OLED, только примерно 20% испускаемого света испускается наружу, а примерно 80% испускаемого света теряется. Имеются две причины для потерь света: (1) волноводный эффект, вызываемый разницей коэффициентов преломления между стеклянной подложкой, прозрачным электродом и органическим слоем; и (2) эффектом полного отражения из-за разницы коэффициентов преломления между стеклянной подложкой и воздухом.

Это связано с тем, что в OLED естественным образом формируется плоский волновод из-за условий, когда коэффициент преломления внутреннего органического слоя составляет примерно от 1,7 до 1,8, коэффициент преломления ITO, как правило, используемого в качестве прозрачного электрода, составляет примерно 1,9, толщина двух слоев составляет примерно от 200 нм до 400 нм (очень тонкие), и коэффициент преломления стекла, используемого в качестве подложки, составляет примерно 1,5. Вычисление показывает, что количество света, теряющегося из-за волноводного эффекта, составляет примерно 45% от испускаемого света.

Световыводящие технологии привлекают все больше внимания в качестве основной технологии, которая повышает эффективность, яркость и срок службы оптических устройств. Технология выведения света, изолированного между органическим слоем и электродом, называется внутренней световыводящей технологией.

В соответствии с известными исследованиями, внутренний светорассеивающий слой, деформация поверхности подложки, слой согласования коэффициентов преломления, фотонные кристаллы, способ формирования наноструктуры, и тому подобное, как известно, являются эффективными при выведении внутреннего света. Главной целью внутренней световыводящей технологии является рассеяние, дифракция или лучепреломление света, изолированного из-за волноводного эффекта, для формирования угла падения, равного или меньшего, чем критический угол, выводя тем самым свет наружу из оптического волновода.

Патентный документ 1 описывает внутренний световыводящий слой, имеющий такую структуру, в которой рассеивающие свет наночастицы наносятся на подложку с низким коэффициентом преломления, при этом на ней формируются одномерные или двумерные периодические структуры, а затем на нее наносится выравнивающий слой с высоким коэффициентом преломления.

Патентный документ 2 описывает внутренний световыводящий слой, имеющий структуру, в которой слой, содержащий периодические наноструктуры, формируется на подложке с низким коэффициентом преломления посредством использования способа печати, такого как импринтинг (может включаться дополнительный рассеивающий элемент), и затем на нее наносится выравнивающий слой с высоким коэффициентом преломления.

Патентный документ 3 описывает внутренний световыводящий слой, где на подложке формируются вогнуто-выпуклые структуры, и она не содержит выравнивающего слоя.

Способы, описанные в ссылках, приведенных выше, не являются пригодными для использования при изготовлении оптических устройств, таких как OLED, в большом масштабе.

Патентный документ 4 описывает внутренний световыводящий слой, имеющий структуру, в которой поверхность подложки выполняется шероховатой или на поверхность подложки, имеющей низкий коэффициент преломления, наносится пленка, имеющая микроструктуру, а затем на нее наносится выравнивающий слой, имеющий высокий коэффициент преломления. Микроструктурированная пленка формируется посредством налива фотополимера на пленку из PET, которая затем заполняется полимером. Наконец, на нее ламинируются двойные слои 3M Laminating Adhesive 8141.

В Патентном документе 4 материал, используемый для формирования наноструктур с помощью способа получения узора, в основном, представляет собой полимер или органическое связующее. Однако использование способа получения узора по-прежнему является проблематичным потому, что полимер или органическое связующее может разлагаться, вызывая явление газовыделения, и не может поддерживаться стабилизация формы наноструктур в течение последующих высокотемпературных процессов.

Патентный документ 5 описывает формирование структурированного слоя, который имеет размеры регулярных элементов в пределах от нескольких микрометров до долей мкм, с использованием способа импринтинга, в котором используют штамп или валик. Промежуточный слой может наносится с использованием жидкого раствора на массу носителя на следующей далее стадии планаризации для уменьшения средней шероховатости поверхности массы носителя.

Однако Патентный документ 5 не ограничивает толщину промежуточного слоя и не описывает шероховатость промежуточного слоя для устранения проблемы короткого замыкания между электродами. Кроме того, для создания структурированного слоя необходим дополнительный способ получения узоров, такой как импринтинг.

Патентный документ 6 описывает формирование выпуклой структуры с использованием пасты со стеклянной фриттой, где ширина выпуклой структуры ограничена 200 мкм.

В Патентном документе 6 расстояние между соседними выпуклыми структурами, которые могут стабильно формироваться, составляет, по меньшей мере, примерно 200 мкм, поскольку нельзя сформировать узор, имеющий большой угол наклона, учитывая верхний предел толщины выравнивающего слоя. Кроме того, высота выпуклой структуры ограничивается диапазоном от 5 мкм до 200 мкм, для получения заданного световыводящего эффекта.

Если выпуклая структура имеет высоту меньше чем 8,75 мкм, низкий угол наклона (примерно 5 градусов), как показано, является неэффективным при выведении света (то есть, 26,5%). По этой причине, для формирования выпуклой структуры, имеющей высокий угол наклона (примерно 15 градусов), высота выпуклых структур должна быть больше чем 26,79 мкм. Однако по-прежнему остается та проблема, что формирование стабильных выпуклых структур, имеющих высокий угол наклона, требует, чтобы толщина выравнивающего слоя составляла, по меньшей мере, удвоенную высоту выпуклых структур, чтобы полностью покрывать выпуклые структуры.

Кроме того, когда в качестве исходных материалов для выравнивающего слоя используют стеклянную фритту, обнаруживается проблема, что концентрация захваченных пузырьков воздуха, генерируемых во время спекания стеклянной фритты, увеличивается при увеличении толщины. Это означает, что выравнивающий слой должен иметь толщину, которая полностью покрывает выпуклые структуры. В связи с этим по-прежнему остается риск захвата пузырьков воздуха во внутреннем световыводящем слое во время спекания, что приводит к потере оптических свойств светоиспускающего устройства из-за увеличения оптических путей.

По этой причине, все еще существует необходимость в простом и экономичном способе получения внутреннего световыводящего слоя, изготовленного из эмали (расплавленной стеклянной фритты), содержащего рельефы. Также необходим внутренний световыводящий слой, изготовленный из эмали, который может эффективно высвобождать свет наружу. Кроме того, по-прежнему имеется необходимость в предпочтительном способе формирования вогнуто-выпуклой структуры без применения дополнительного способа получения узора, поскольку применение способа получения узора на стеклянной подложке не представляет собой наиболее пригодного для использования средства изготовления оптических устройств, таких как OLED, в большом масштабе.

[Патентные документы]

(Патентный документ 1) Публикация PCT № WO 2012/125321 A2

(Патентный документ 2) Публикация PCT № WO 2010/077521 A2

(Патентный документ 3) Публикация PCT № WO 2012/086396 A1

(Патентный документ 4) Публикация PCT № WO 2002/37568 A1

(Патентный документ 5) Публикация PCT № WO 2013/102530 A1

(Патентный документ 6) Выложенная публикация патента Японии № 2003-25900

Сущность изобретения

Целью настоящего изобретения является создание ламината для светоиспускающего устройства, которое не демонстрирует упоминаемых выше проблем, в котором формируется неупорядоченная сетка рельефов простым и экономичным образом и без таких проблем, как короткое замыкание между электродами и многократное рассеяние света.

Другой целью настоящего изобретения создание ламината для светоиспускающего устройства, в котором свет, падающий под углом равным или меньшим чем критический угол, эффективно рассеивается посредством сетки рельефов, сформированных на подложке, так что свет эффективно концентрируется перпендикулярно поверхности ламината абсолютно без необходимости добавления каких-либо дополнительных рассеивающих элементов.

Соответственно, настоящее изобретение предлагает высокоэффективный и дешевый способ изготовления ламината для светоиспускающего устройства на подложке, имеющей большую площадь.

Настоящее изобретение также предлагает ламинат для светоиспускающего устройства с прозрачным электродом, сформированным на нем, и устройство OLED.

В одном из вариантов осуществления, настоящее изобретение предлагает ламинат для светоиспускающего устройства, содержащий: - стеклянную подложку, имеющую коэффициент преломления n1 от 1,45 до 1,65; - неупорядоченную сетку рельефов, изготовленную из эмали, сформированную на стеклянной подложке, указанная сетка имеет коэффициент преломления n2, находящийся в пределах от 1,45 до 1,65; и - выравнивающий слой, изготовленный из эмали, сформированный на указанной сетке и на указанной стеклянной подложке, указанный выравнивающий слой имеет коэффициент преломления n3, находящийся в пределах от 1,8 до 2,1, причем, по меньшей мере, 50% (предпочтительно, по меньшей мере, 75%, а более предпочтительно, по меньшей мере, 85%) указанных рельефов имеют поперечное сечение, имеющее: - высоту (b), в пределах от 1 до 10 мкм, предпочтительно, максимальная высота указанных рельефов меньше чем 15 мкм, и - ширину, в пределах от 2 до 40 мкм, предпочтительно, самое большее 10 мкм, и, по меньшей мере, 50%, предпочтительно, по меньшей мере, 75%, а более предпочтительно, по меньшей мере, 85% расстояний между рельефами (c) указанной сетки находятся в пределах от 2 мкм до 15 мкм.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, в котором сетка демонстрирует профиль шероховатости с Ra (средним арифметическим отклонением профиля шероховатости), в пределах от 0,3 мкм до 3 мкм, предпочтительно, от 0,3 мкм до 1 мкм, Ry (максимальную высоту профиля шероховатости), в пределах от 1 мкм до 10 мкм, и S (среднее расстояние между локальными пиками), в пределах от 2 мкм до 40 мкм, предпочтительно, от 2 до 20 мкм.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, в котором отношение (r) средней высоты (b') рельефов к среднему расстоянию между рельефами (c’) составляет от 0,1 до 0,5.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, где пропорция площади, где указанная сетка покрывает указанную стеклянную подложку, составляет от 60 до 90%.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, в котором рельефы содержат бугорки (или, по меньшей мере, имеют искривленную поверхность) и/или кластеры бугорков (объединенные бугорки).

Кроме того, настоящее изобретение предлагает описанный выше ламинат, в котором средняя общая толщина (a') сетки и выравнивающего слоя находится в пределах от 6 до 20 мкм.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, в котором толщина выравнивающего слоя (d) меньше чем 20 мкм.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, в котором шероховатость Ra измеренная на поверхности выравнивающего слоя составляет не больше чем 1 нм.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, в котором указанная сетка формируется из первой стеклянной фритты, и первая стеклянная фритта содержит 10% - 40% масс SiO2, 1% - 7% масс Al2O3, 0% - 10% масс P2O5, 20% - 50% масс B2O3, 3% - 35% масс ZnO и 5% - 20% масс, по меньшей мере, одного оксида щелочного металла, выбранного из группы, состоящей из Na2O, Li2O и K2O, по отношению к общей массе первой стеклянной фритты после формирования указанной сетки.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, в котором выравнивающий слой формируется из второй стеклянной фритты, и вторая стеклянная фритта содержит 55% - 84% масс Bi2O3, 0% - 20% масс BaO, 5% - 20% масс ZnO, 1% - 7% масс Al2O3, 5% - 15% масс SiO2, 5% - 20% масс B2O3, 0-0,1% масс CeO2, 0,05-5% масс Na2O и меньше чем 5% масс одного или нескольких соединений, выбранных из группы, состоящей из TiO2, ZrO2, La2O3, Nb2O3 и MgO, по отношению к общей массе второй стеклянной фритты после формирования указанного выравнивающего слоя.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, в котором стеклянная подложка представляет собой стеклянную подложку из силикатного стекла.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, причем ламинат показывает коэффициент матовости, по меньшей мере, 70% и интегральный коэффициент пропускания света, по меньшей мере, 65%.

Кроме того, настоящее изобретение предлагает описанный выше ламинат, дополнительно содержащий прозрачный электрод на выравнивающем слое.

В одном из вариантов осуществления, настоящее изобретение предлагает светоиспускающее устройство, содержащее ламинат в соответствии с любым из описанных выше ламинатов.

В другом варианте осуществления, настоящее изобретение предлагает способ изготовления ламината для светоиспускающего устройства, включающий стадии: (a) получения стеклянной положки, имеющей коэффициент преломления n1 от 1,45 до 1,65; (b-1) формирования слоя пасты первой стеклянной фритты посредством нанесения пасты первой стеклянной фритты, содержащей органический растворитель и порошок первой стеклянной фритты, на указанную стеклянную подложку, причем порошок первой стеклянной фритты содержится в количестве 50% масс или меньше по отношению к общей массе пасты первой стеклянной фритты, и указанный первый слой пасты покрывает (сплошным образом) заданную площадь указанной стеклянной подложки; (b-2) удаления органического растворителя посредством сушки нанесенного слоя пасты первой стеклянной фритты; (b-3) формирования неупорядоченной сетки рельефов посредством спекания высушенного слоя первой стеклянной фритты при температуре спекания T1 с получением частичной агломерации или уплотнения порошка первой стеклянной фритты; (c-1) формирования слоя пасты второй стеклянной фритты посредством нанесения пасты второй стеклянной фритты, содержащей органический растворитель и порошок второй стеклянной фритты, на указанную сетку; (c-2) удаления органического растворителя посредством сушки нанесенного слоя второй стеклянной фритты; и (c-3) формирования выравнивающего слоя посредством спекания высушенного слоя второй стеклянной фритты при температуре спекания T2, причем, по меньшей мере, 50%, предпочтительно, по меньшей мере, 75%, а более предпочтительно, по меньшей мере, 85% указанных рельефов имеет поперечное сечение, имеющее: высоту (b), находящуюся в пределах от 1 до 10 мкм, предпочтительно, максимальная высота указанных рельефов не выше чем 15 мкм, и ширину, находящуюся в пределах от 2 до 40 мкм, предпочтительно, самое большее 10 мкм, причем, по меньшей мере, 50%, предпочтительно, по меньшей мере, 75%, более предпочтительно, по меньшей мере, 85% расстояний между рельефами (c) указанной сетки находятся в пределах от 2 мкм до 15 мкм.

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором порошок первой стеклянной фритты содержится в количестве от 10% до 50% масс по отношению к общей массе пасты первой стеклянной фритты.

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором температура спекания T1 на стадии (b-3) на 60-110°C выше, чем температура стеклования первой стеклянной фритты.

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором температура спекания T1 на стадии (b-3) находится в пределах от 550 до 590°C, а предпочтительно, температура спекания T2 на стадии (c-3) такая же или ниже, чем T1.

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором дополнительный метод получения узора, такой как литография или импринтинг, не включается в стадии (b-1) - (b-3).

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором отношение (r) средней высоты (b') рельефов к среднему расстоянию между рельефами (c’) составляет от 0,1 до 0,5,

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором средняя общая толщина (a') сетки и выравнивающего слоя находится в пределах от 6 до 20 мкм.

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором толщина выравнивающего слоя меньше чем 20 мкм.

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором порошок первой стеклянной фритты содержит 10% - 40% масс SiO2, 1% - 7% масс Al2O3, 0% - 10% масс P2O5, 20% - 50% масс B2O3, 3% - 35% масс ZnO и 5% - 20% масс, по меньшей мере, одного оксида щелочного металла, выбранного из группы, состоящей из Na2O, Li2O и K2O, по отношению к общей массе первой стеклянной фритты после формирования указанной сетки.

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором порошок второй стеклянной фритты содержит 55%-84% масс Bi2O3, 0%-20% масс BaO, 5%-20% масс ZnO, 1%-7% масс of Al2O3, 5%-15% масс SiO2, 5%-20% масс B2O3, 0-0,1% масс CeO2, 0,05-5% масс Na2O и меньше чем 5% масс одного или нескольких соединений, выбранных из группы, состоящей из TiO2, ZrO2, La2O3, Nb2O3 и MgO, по отношению к общей массе второй стеклянной фритты после формирования указанного выравнивающего слоя.

Кроме того, настоящее изобретение предлагает описанный выше способ изготовления ламината, в котором стеклянная подложка представляет собой стеклянную подложку из силикатного стекла.

Теоретически, чем ближе расстояние (c) между рельефами к удвоенной высоте (b) рельефов, тем более лучшие характеристики выведения света можно ожидать. Угол между рельефами и подложкой предпочтительно используется для демонстрации оптимальной эффективности выведения света. Если расстояние между рельефами становится равным удвоенной высоте рельефов, можно достичь оптимальной эффективности выведения света. Если расстояние между рельефами больше чем удвоенная высота рельефов, может произойти агломерация соседних рельефов. Если расстояние между рельефами меньше чем удвоенная высота рельефов, эффективность выведения света может уменьшиться из-за обратного рассеяния. Обеспечение условий способа, когда достигаются наилучшие рабочие характеристики, является одним из предметов настоящего изобретения.

Настоящее изобретение предлагает способ получения неупорядоченной сетки рельефов, имеющей низкий коэффициент преломления и малую ширину линии, без необходимости в дополнительном способе получения узора. Это достигается посредством использования способа нанесения стеклянной пасты, который обеспечивает высокую производительность при низких затратах в качестве основной технологии для получения внутреннего световыводящего слоя.

Посредством способа по настоящему изобретению, в области слоя пасты первой стеклянной фритты, подложка полностью покрывается (с помощью этого слоя пасты первой стеклянной фритты). Некоторые части подложки могут не покрываться слоем первой фритты. Если слой пасты первой стеклянной фритты является сплошным, неупорядоченная сетка соответствующих рельефов формируется только лишь с помощью спекания слоя пасты.

Авторы настоящего изобретения сделали свойства слоя пасты первой стеклянной фритты недостаточными для формирования сплошного слоя расплавленной стеклянной фритты (эмали) на подложке после нагрева, посредством регулировки содержания частиц стеклянной фритты в пасте стеклянной фритты и толщины покрытия. Если количество частиц стеклянной фритты или толщина слоя пасты стеклянной фритты является недостаточной, частицы стеклянной фритты имеют тенденцию к образованию агломератов из соседних частиц на поверхности стеклянной подложки во время процесса нагрева. После сушки и удаления органических материалов в слое покрытия, такие агломераты или рельефы неупорядоченным образом распределяются на поверхности стеклянной подложки с формированием, после спекания, рельефов, имеющих искривленную (полусферическую) поверхность и неупорядоченное распределение.

Плотность рельефов контролируется в основном концентрацией и, до некоторой степени, толщиной покрытия пасты стеклянной фриттой. Средний размер рельефов может контролироваться посредством концентрации частиц стеклянной фритты в пасте первой стеклянной фритты.

Таким образом, агломераты или рельефы, имеющие искривленную (полусферическую) поверхность, могут быть прикреплены к подложке посредством установления температуры спекания пасты первой стеклянной фритты (T1) более низкой, чем температура, при которой может сформироваться полностью однородный единый слой пасты первой стеклянной фритты.

В соответствии с указанным способом, отношение (r=b'/c') средней высоты (b') рельефов к среднему расстоянию между рельефами (c’), которое влияет на рабочие характеристики выведения света, также может контролироваться. Чем больше отношение (r), тем выше может быть эффект выведения света. Отношение (r) предпочтительно контролируется таким образом, чтобы оно составляло 0,5 или меньше, предпочтительно, примерно от 0,1 примерно до 0,5, чтобы предотвратить слияние агломератов или рельефов.

В соответствии с настоящим изобретением, пропорция площади подложки, на которой формируется сетка рельефов, которая означает величину площади сетки рельефов по отношению к величине общей площади подложки, измеренную с помощью оптической обработки изображений, находится в пределах от 60 до 90%, и способ нанесения покрытия из пасты первой стеклянной фритты на подложку отличается тем, что величина, получаемая посредством умножения массовой пропорции стеклянной фритты на толщину жидкой фазы слоя пасты первой стеклянной фритты, который должен наноситься как покрытие, удовлетворяет значению от 3 до 5 мкм.

Настоящее изобретение также отличается тем, что среднее значение общей толщины (a') указанной сетки и указанного выравнивающего слоя находится в пределах примерно от 6 примерно до 20 мкм, предпочтительно, составляет не больше чем 15 мкм.

Оптический критический угол, при котором свет, падающий из выравнивающего слоя, полностью отражается, на границе с сеткой составляет arcsin (n2/n1), где n1 представляет собой коэффициент преломления выравнивающего слоя и n2 представляет собой коэффициент преломления сетки рельефов. Если предполагается, что свет, испускаемый из оптического устройства, такого как OLED, имеет распределение Ламберта-Бугера, то не происходит полного внутреннего отражения, при котором угол между падающим светом и нормалью к границе раздела между двумя слоями меньше чем arcsin (n2/n1) (так называемый "оптический критический угол"). Это происходит с наибольшей вероятностью, когда угол между нормалью к границе раздела между двумя слоями и нормалью к светоиспускающей поверхности (так называемый "угол наклона к границе раздела") выше, чем 90-arcsin(n2/n1). Если считать, что n1=1,9 и n2=1,5, то минимальный угол наклона на границе раздела для сведения к минимуму полного внутреннего отражения составляет 38 градусов.

Относительно средней общей толщины (a'), если получают однородный выравнивающий слой (d) по всей площади подложки, то средняя общая толщина (a') предпочтительно больше, чем удвоенная высота (b) сетки рельефов. Однако средняя общая толщина (a') предпочтительно не больше чем 20 мкм, поскольку потери света увеличиваются с увеличением оптических путей, когда увеличивается толщина выравнивающего слоя.

Когда используют стеклянную фритту, имеющую высокий коэффициент преломления, для формирования выравнивающего слоя, количество захваченных пузырьков воздуха, формирующихся между частицами стеклянной фритты, генерируемых во время спекания, повышается, если повышается толщина выравнивающего слоя. Шероховатость поверхности выравнивающего слоя повышается, если захваченные пузырьки воздуха не могут уйти и собираются на наружной поверхности выравнивающего слоя во время процесса спекания. Соответственно, толщина выравнивающего слоя (d) предпочтительно не больше чем 20 мкм, более предпочтительно, меньше чем 15 мкм или 10 мкм, и высота (b) рельефа предпочтительно не больше чем 10 мкм, более предпочтительно, меньше, чем 5 мкм или 2 мкм.

Для ламината для светоиспускающего устройства в соответствии с настоящим изобретением, можно использовать стеклянную подложку, широко используемую в данной области, такую как подложка из силикатного стекла, и внутренний световыводящий слой может быть эффективно получен с помощью простого и недорогого способа, а именно, без дополнительного способа обработки подложки или даже добавления рассеивающего элемента.

Неупорядоченная сетка рельефов, содержащаяся в ламинате для светоиспускающего устройства в соответствии с настоящим изобретением, может эффективно формироваться с помощью простой стадии спекания, а именно, без дополнительного способа получения узора. Поскольку стеклянная фритта, которая имеет более низкий коэффициент поглощения света, но высокий коэффициент пропускания, и коэффициент преломления, сходный со стеклянной подложкой, используется в качестве материала для формирования сетки рельефов, то потери света могут эффективно предотвращаться.

Поскольку ламинат для светоиспускающего устройства в соответствии с настоящим изобретением содержит выравнивающий слой, внутренний световыводящий слой может формироваться с гладкой поверхностью без неоднородностей, и проблема короткого замыкания между электродами не должна возникать.

Кроме того, в ламинате для светоиспускающего устройства в соответствии с настоящим изобретением, форма рельефов или угол между рельефами и поверхностью подложки может контролироваться произвольно, так что свет, испускаемый под углом не меньшим, чем критический угол, не теряется и может испускаться наружу эффективным образом. По этой причине, ламинат для светоиспускающего устройства с большой площадью может быть изготовлен проще и легче по сравнению с внутренним световыводящим слоем, на котором рельефы формируются посредством образования узоров или механической обработки поверхности подложки с помощью обычных процедур. Кроме того, пропускание света в перпендикулярном направлении может поддерживаться на эквивалентном или превосходящем уровне.

Поскольку рельефы формируется из стеклянной фритты, проблемы, подобные дегазированию, не возникают во время процесса нагрева для изготовления OLED. Таким образом, структуры рельефов внутреннего световыводящего слоя могут стабильно сохраняться даже во время высокотемпературного процесса, а также, он может иметь превосходную влагостойкость.

Краткое описание чертежей

Указанные выше и другие особенности и преимущества настоящего изобретения станут более очевидными посредством подробного описания их иллюстративных вариантов осуществления со ссылками на прилагаемые чертежи, в которых:

Фиг.1 представляет собой схематический вид в поперечном сечении ламината для светоиспускающего устройства, содержащего внутренний световыводящий слой в соответствии с настоящим изобретением.

Фиг.2 представляет собой фотографию, сделанную с помощью сканирующего электронного микроскопа (SEM), поперечного сечения ламината для светоиспускающего устройства, содержащего внутренний световыводящий слой, полученный в соответствии с описанием Примера 1 (a1=общая толщина выравнивающего слоя и сетки рельефов; b1=высота рельефа; c1=расстояние между рельефами (шаг), и d1=толщина выравнивающего слоя)).

Фигуры 3a-3c представляют собой схематически вид, иллюстрирующий структурные изменения слоя первой стеклянной фритты в зависимости от температуры спекания первой стеклянной фритты.

Фиг.4 представляет собой микрофотографию неупорядоченной сетки рельефов, полученной в соответствии с описанием Примера 1.

Фигуры 5a-5c показывают фотографии SEM внутренних световыводящих слоев, полученных в соответствии с описанием Примера 1, при различных температурах спекания.

Фиг.6 представляет собой профиль шероховатости для ламината для светоиспускающего устройства, изготовленного в соответствии с Примером 1.

Фиг. 7a и 7b показывают фотографии, полученные с помощью SEM, внутреннего световыводящего слоя, полученного в соответствии с Примером 1 (Фиг.7a) и Сравнительным примером 2 (Фиг.7b).

Фиг.8 представляет собой график, показывающий распределение интенсивности испускаемого наружу света в зависимости от угла зрения, измеренную для ламинатов Сравнительного примера 1, Сравнительного примера 3 и Примера 1.

Подробное описание

<Термины>

Ниже будут описываться термины, используемые в описании.

Когда термин "примерно" используется вместе с численным значением, "примерно", как предполагается, относится ко всем значениям, включая диапазон ошибок в значимом представлении соответствующего численного значения.

Термин "ламинат" обозначает структуру, в которой два или более слоев накладываются друг на друга и могут по отдельности использоваться в светоиспускающем устройстве, или использоваться в таком состоянии, когда другой слой (например, прозрачный электрод или что-либо подобное) дополнительно накладывается на ламинат.

Термин "стеклянная фритта" представляет собой исходные материалы для формирования внутреннего световыводящего слоя и может означать стеклянный порошок. Термин "паста стеклянной фритты" обозначает пасту, в которой стеклянная фритта смешана с растворителем, связующим, и тому подобным. В описании, термин "расплавленная стеклянная фритта (или спеченная стеклянная фритта)" иногда упоминается как "эмаль." Термин "слой пасты стеклянной фритты" означает слой, в котором паста, содержащая порошок стеклянной фритты, наносится на подложку.

Термин "низкий коэффициент преломления" означает коэффициент преломления, сходный со стеклянной подложкой, находящийся в пределах примерно от 1,45 примерно до 1,65.

Термин "высокий коэффициент преломления" означает коэффициент преломления, который выше, чем у стеклянной подложки, находящийся в пределах примерно от 1,8 примерно до 2,1.

Термин "внутренний световыводящий слой" обозначает слой, который, когда он используется для оптического устройства, такого как OLED, располагается между подложкой и прозрачным электродом, для эффективного выведения света, который теряется из-за разницы коэффициентов преломления между подложкой и слоем прозрачного электрода и/или органическим слоем. В описании, внутренний световыводящий слой должен пониматься как включающий как неупорядоченную сетку рельефов, так и выравнивающий слой, и внутренний световыводящий слой может содержать другие рассеивающие элементы или вещества в дополнение к стеклянной фритте.

Термин "рельефы" обозначает структуры, сформированные на стеклянной подложке, которые соединяются друг с другом или существуют в форме островков. Рельефы могут включать рельефы в форме полусферы, пирамиды, треугольной пирамиды, туннеля или чего-либо подобного. Однако предпочтительной является структура, имеющая скругленную поверхность. Разумеется, рельефы представляют собой выступы в направлении, противоположном стеклянной подложке. Преимущественно, в ламинате по настоящему изобретению содержится неупорядоченная сетка рельефов. Рельефы могут быть или не быть взаимно соединенными, или, когда они соединены друг с другом, нижние части указанных рельефов, могут соединяться друг с другом. Кроме того, нижняя часть рельефов плотно приклеивается к стеклянной подложке. Иногда рельеф упоминается в настоящем описании как бугорок. Иногда термин "сетка" обозначает (неупорядоченную) сетку рельефов в описании.

Термин "выравнивающий слой" обозначает слой, покрывающий сетку рельефов. Наружная часть предпочтительно удовлетворяет условию ΔRa≤1 нм.

Термин "ламинат для светоиспускающего устройства" обозначает структуру, в которой внутренний световыводящий слой накладывается на подложку.

Термин "расстояние (шаг)" между рельефами для рельефов обозначает расстояние от центра самой нижней части рельефа до центра самой нижней части другого соседнего рельефа.

<Подложка>

В качестве подложки, используемой в настоящем изобретении, можно использовать любую подложку, пригодную для использования в области светоиспускающих устройств. В качестве подложки для светоиспускающего устройства предпочтительно используется стеклянная подложка, имеющая толщину от 150 мкм до нескольких миллиметров. Толщина стеклянной подложки предпочтительно составляет от 0,3 до 2,0 мм, более предпочтительно, от 0,5 до 1 мм. Стеклянная подложка по настоящему изобретению может представлять собой силикатное стекло, боросиликатное стекло или даже представлять собой подложку стеклокерамического типа, вне зависимости от коэффициента матовости стеклянной подложки.

Предпочтительно, коэффициент пропускания видимого света стеклянной подложки составляет, по меньшей мере, 70%.

Любые подложки, изготовленные из других веществ, которые могут выдержать процесс высокотемпературного спекания, предпочтительно, прозрачные, можно использовать для настоящего изобретения.

<Стеклянная фритта>

Стеклянная фритта по настоящему изобретению классифицируется как первая стеклянная фритта и вторая стеклянная фритта. Первая стеклянная фритта представляет собой исходные материалы с низким коэффициентом преломления, пригодные для использования при формировании неупорядоченной сетки рельефов, и она представляет собой порошок. Вторая стеклянная фритта представляет собой исходные материалы с высоким коэффициентом преломления, пригодные для формирования выравнивающего слоя, и она представляет собой порошок.

Когда первая стеклянная фритта спекается с формирование