Дифференциальный расходомер

Иллюстрации

Показать все

Изобретение относится к расходомерам и, в частности, к инструменту для определения оптимальных рабочих параметров для системы дифференциального расходомера. Способ включает в себя этапы, на которых осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру подачи, в вычислительное устройство и осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру возврата, в вычислительное устройство. Дополнительно способ включает в себя этап, на котором осуществляют ввод параметров системы в вычислительное устройство. Точность системы вычисляется с помощью системной логики, при этом системная логика принимает входные данные, основанные на спецификациях аппаратного обеспечения, относящихся к расходомеру подачи, спецификациях аппаратного обеспечения, относящихся к расходомеру возврата, и параметрах системы. Вычисленная точность системы сохраняется на машиночитаемом носителе данных, и осуществляется вывод вычисленной точности системы. Технический результат - создание способа и системы для определения точности системы измерения топлива с несколькими вибрационными расходомерами. 2 н. и 22 з.п. ф-лы, 7 ил., 1 табл.

Реферат

Область техники

Изобретение относится к расходомерам и, в частности, к инструменту для определения оптимальных рабочих параметров для системы дифференциального расходомера.

Уровень техники

Вибрационные датчики, такие как, например, вибрационные плотномеры и расходомеры Кориолиса, являются общеизвестными и используются для измерения массового расхода и другой информации для материалов, текущих через трубку в расходомере. Иллюстративные расходомеры Кориолиса раскрываются в патенте США 4,109,524, патенте США 4,491,025 и источнике Re. 31,450 все за авторством J.E. Smith и др. Эти расходомеры имеют одну или более трубок прямой или изогнутой конфигурации. Каждая конфигурация трубок в расходомере Кориолиса имеет, например, набор режимов собственных колебаний, которые могут быть просто изгибного, крутильного или связанного типа. Каждая трубка может возбуждаться и колебаться в предпочтительном режиме.

Некоторые типы расходомеров, в частности расходомеры Кориолиса, могут эксплуатироваться таким образом, что выполняется прямое измерение плотности для обеспечения информации об объеме через отношение массы к плотности. См., например, патент США № 4,872,351 за авторством Ruesch, относящийся к вычислителю нетто-объема добычи нефти, который использует расходомер Кориолиса для измерения плотности неизвестной многофазной жидкости. Патент США № 5,687,100 за авторством Buttler и др. раскрывает плотномер на эффекте Кориолиса, который корректирует показания плотности на эффекты массового расхода в весовом расходомере, функционирующем как вибрационный трубчатый плотномер.

Материал, текущий в расходомер из присоединенного трубопровода на стороне впуска расходомера, направляется через трубку(ки) и выходит из расходомера через сторону выпуска расходомера. Режимы собственных колебаний колебательной системы частично определяются суммарной массой трубок и материала, текущего в трубках.

Когда через расходомер ничего не течет, движущая сила, прилагаемая к трубке(кам), заставляет осциллировать все точки вдоль трубки(ок) с одинаковой фазой или небольшим «нулевым смещением», которое является временной задержкой, измеренной при нулевом расходе. Когда материал начинает течь через расходомер, силы Кориолиса заставляют каждую точку вдоль трубки(ок) иметь различную фазу. Например, фаза на впускном конце расходомера отстает от фазы в центрированном местоположении возбудителя, в то время как фаза на выпуске опережает фазу в центрированном местоположении возбудителя. Датчики перемещений на трубке(ках) производят синусоидальные сигналы, представляющие собой движение трубки(ок). Cигналы, выводимые из датчиков перемещений, обрабатываются для определения временной задержки между датчиками перемещений. Временная задержка между двумя или более датчиками перемещений пропорциональна массовому расходу материала, текущего через трубку(ки).

Блоки электроники измерителя, соединенные с возбудителем, генерирует возбуждающий сигнал для эксплуатации возбудителя и определения массового расхода и других свойств материала по сигналам, принятым от датчиков перемещений. Возбудитель может иметь одну из многих известных конструкций; однако, магнит и противоположная возбуждающая катушка имели большой успех в расходомерной отрасли. Переменный ток подается на возбуждающую катушку для возбуждения вибраций трубки(ок) с желаемой амплитудой и частотой для трубки. В области техники также известно решение, обеспечивающее датчики перемещений в виде конструкции из магнита и катушки, очень похожей на конструкцию возбудителя. Однако, в то время как возбудитель получает ток, который вызывает движение, датчики перемещений могут использовать движение, обеспеченное возбудителем, для индукции напряжения. Величина временной задержки, измеренная датчиками перемещений, является очень маленькой; часто измеряемой в наносекундах. Поэтому необходимо, чтобы выходные данные преобразователя были очень точными.

В определенных ситуациях желательно включать несколько расходомеров в одну систему. В одном таком примере нескольких расходомеров два расходомера могут использоваться в топливных системах больших двигателей. Такие системы обычно встречаются в больших мореходных судах. Для таких судов надлежащее управление топливом является критически важным для эффективной работы системы двигателя. Для точного измерения потребления топлива один расходомер размещается перед двигателем, а другой расходомер размещается после двигателя. Показание разности между этими двумя расходомерами используется для вычисления массы использованного топлива.

Расходомер данного размера требует некоторого диапазона расхода жидкости для поддержания точности. С другой стороны, данная система может иметь диапазон требований к расходу жидкости, таким образом, требуя расходомера, который не ограничивает чрезмерно работу системы. Поэтому лучшим расходомером для конкретной системы является тот расходомер, который измеряет расход и соответствующие параметры точно, но при этом не ограничивает расход и не вносит обременительные перепады давления. Когда два расходомера находятся в одной системе, проблемы ограничения расхода и точности усугубляются. Например, погрешность для пары расходомеров, имеющих систематическую погрешность 0.1%, при размещении последовательно может не просто суммироваться, давая погрешность 0.2%, а может давать значительно большую погрешность. Разности температур и разности устойчивости нуля между двумя или более расходомерами также вносят свой вклад в более низкую точность системы.

Поэтому в этой области техники существует потребность в способе и соответствующей системе для вычисления наиболее подходящих размеров и типов расходомеров в системах с несколькими расходомерами на основании набора данных эксплуатационных ограничений. Существует потребность в способе и соответствующей системе для определения точности системы с несколькими расходомерами. Существует потребность в способе и соответствующей системе для определения конкретных моделей расходомеров из библиотеки потенциальных расходомеров в свете проектных требований. Настоящее изобретение преодолевает эти и другие проблемы и обеспечивает прогресс в этой области техники.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В соответствии с вариантом осуществления обеспечивается способ для определения точности системы. Вариант осуществления содержит этапы, на которых осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру подачи, в вычислительное устройство и осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру возврата, в вычислительное устройство. Осуществляется ввод параметров системы в вычислительное устройство. Точность системы вычисляется с помощью системной логики, при этом системная логика принимает входные данные, основанные на спецификациях аппаратного обеспечения, относящихся к расходомеру подачи, спецификациях аппаратного обеспечения, относящихся к расходомеру возврата, и параметрах системы. Вычисленная точность системы сохраняется на машиночитаемом носителе данных, и осуществляется вывод вычисленной точности системы.

В соответствии с вариантом осуществления обеспечивается система для конфигурирования измерительной системы. В соответствии с вариантом осуществления система содержит по меньшей мере два расходомера и вычислительное устройство, выполненное с возможностью приема по меньшей мере одного набора входных данных и генерации по меньшей мере одного набора выходных данных, при этом по меньшей мере один набор входных данных содержит по меньшей мере один набор спецификаций аппаратного обеспечения расходомера и по меньшей мере один параметр системы. Система также содержит системную логику с вычислительным устройством, выполненным с возможностью вычисления по меньшей мере одного набора выходных данных, при этом по меньшей мере один набор выходных данных выход содержит по меньшей мере одно из: точность системы или скорректированную на температуру точность системы.

Аспекты

В соответствии с одним аспектом способ для определения точности системы содержит этапы, на которых: осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру подачи, в вычислительное устройство; осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру возврата, в вычислительное устройство; осуществляют ввод параметров системы в вычислительное устройство; вычисляют точность системы с помощью системной логики, при этом системная логика принимает входные данные, основанные на спецификациях аппаратного обеспечения, относящихся к расходомеру подачи, спецификациях аппаратного обеспечения, относящихся к расходомеру возврата, и параметрах системы; сохраняют вычисленную точность системы на машиночитаемый носитель данных; и осуществляют вывод вычисленной точности системы.

Предпочтительно, спецификации аппаратного обеспечения, относящиеся и к расходомеру подачи, и к расходомеру возврата, содержат значение базовой точности.

Предпочтительно, спецификации аппаратного обеспечения, относящиеся и к расходомеру подачи, и к расходомеру возврата, содержат значение смещения нуля.

Предпочтительно, спецификации аппаратного обеспечения, относящиеся и к расходомеру подачи, и к расходомеру возврата, содержат значение температурного дрейфа.

Предпочтительно, спецификации аппаратного обеспечения, относящиеся и к расходомеру подачи, и к расходомеру возврата, содержат максимальное значение расхода.

Предпочтительно, параметры системы содержат значение температуры калибровки нуля.

Предпочтительно, параметры системы содержат плотность жидкости.

Предпочтительно, параметры системы содержат температуру впуска и температуру выпуска.

Предпочтительно, этап, на котором вычисляют точность системы с помощью системной логики, содержит этапы, на которых:

вычисляют погрешность US расходомера подачи, при этом

где является температурным дрейфом расходомера подачи;

является максимальным расходом расходомера подачи;

является температурой впуска;

является температурой калибровки нуля;

является смещением нуля расходомера подачи;

является базовой точностью расходомера подачи; и

является переводным коэффициентом расхода подачи,

вычисляют погрешность UR расходомера возврата, при этом ,

где является температурным дрейфом расходомера возврата;

является максимальным расходом расходомера возврата;

является температурой выпуска;

является температурой калибровки нуля;

является смещением нуля расходомера возврата;

является базовой точностью расходомера возврата; и

является переводным коэффициентом расхода возврата.

Предпочтительно, этап, на котором вычисляют точность системы с помощью системной логики, содержит этап, на котором вычисляют полную точность дифференциального измерения, при этом .

Предпочтительно, этап, на котором вычисляют точность системы с помощью системной логики, содержит этап, на котором вычисляют скорректированную на температуру процесса точность системы, при этом , где является переводным коэффициентом потребления топлива.

Предпочтительно, способ для определения точности системы содержит этап обеспечения уведомления, если по меньшей мере одно из: параметр системы или спецификации аппаратного обеспечения несовместимы по меньшей мере с одним заранее заданным правилом.

Предпочтительно, способ для определения точности системы содержит этапы, на которых: генерируют предлагаемые спецификации аппаратного обеспечения, относящиеся к расходомеру подачи, по введенным параметрам системы; и генерируют предлагаемые спецификации аппаратного обеспечения, относящиеся к расходомеру возврата, по введенным параметрам системы.

В соответствии с одним аспектом обеспечена система для конфигурирования измерительной системы. Система для конфигурирования измерительной системы содержит по меньшей мере два расходомера. Система также содержит вычислительное устройство, выполненное с возможностью приема по меньшей мере одного набора входных данных и генерации по меньшей мере одного набора выходных данных, при этом по меньшей мере один набор входных данных содержит по меньшей мере один набор спецификаций аппаратного обеспечения расходомера и по меньшей мере один параметр системы. Системная логика с вычислительным устройством выполнена с возможностью вычисления по меньшей мере одного набора выходных данных, при этом этот по меньшей мере один набор выходных данных содержит по меньшей мере одно из: точность системы или скорректированную на температуру точность системы.

Предпочтительно, по меньшей мере один набор спецификаций аппаратного обеспечения содержит значение базовой точности.

Предпочтительно, по меньшей мере один набор спецификаций аппаратного обеспечения содержит значение смещения нуля.

Предпочтительно, по меньшей мере один набор спецификаций аппаратного обеспечения содержит значение температурного дрейфа.

Предпочтительно, по меньшей мере один набор спецификаций аппаратного обеспечения содержит максимальное значение расхода.

Предпочтительно, по меньшей мере один параметр системы содержит значение температуры калибровки нуля.

Предпочтительно, по меньшей мере один параметр системы содержит плотность жидкости.

Предпочтительно, по меньшей мере один параметр системы содержит температуру впуска и температуру выпуска.

Предпочтительно, по меньшей мере один показатель точности топливной системы содержит точность системы.

Предпочтительно, точность системы содержит , при этом ,

где ;

является температурным дрейфом расходомера подачи;

является максимальным расходом расходомера подачи;

является температурой впуска;

является температурой калибровки нуля;

является смещением нуля расходомера подачи;

является базовой точностью расходомера подачи;

является переводным коэффициентом расхода подачи;

;

является температурным дрейфом расходомера возврата;

является максимальным расходом расходомера возврата;

является температурой выпуска;

является температурой калибровки нуля;

является смещением нуля расходомера возврата;

является базовой точность расходомера возврата; и

является переводным коэффициентом расхода возврата.

Предпочтительно, скорректированная на температуру точность системы содержит , при этом

,

где является смещением нуля расходомера подачи;

является базовой точностью расходомера подачи;

является переводным коэффициентом расхода подачи;

является смещением нуля расходомера возврата;

является базовой точностью расходомера возврата;

является переводным коэффициентом расхода возврата; и

является переводным коэффициентом потребления топлива.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 показывает узел вибрационного датчика уровня техники;

фиг. 2 показывает топливную систему уровня техники;

фиг. 3 показывает вычислительное устройство в соответствии с вариантом осуществления изобретения;

фиг. 4 показывает систему для конфигурирования системы потребления жидкости в соответствии с вариантом осуществления изобретения;

фиг. 5 показывает спецификации аппаратного обеспечения в соответствии с вариантом осуществления изобретения;

фиг. 6 показывает параметры системы в соответствии с вариантом осуществления изобретения; и

фиг. 7 является блок-схемой последовательности операций, описывающей способ для конфигурирования системы потребления жидкости в соответствии с вариантом осуществления изобретения.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Фиг. 1-7 и следующее ниже описание изображают конкретные примеры для обучения специалистов в области техники тому, как сделать и использовать наилучший вариант осуществления изобретения. С целью обучения принципам изобретения некоторые традиционные аспекты были упрощены или опущены. Специалистам в области техники будут очевидны вариации этих примеров, которые попадают в объем этого изобретения. Специалистам в области техники будет очевидно, что признаки, описанные ниже, могут комбинироваться различным образом для формирования многочисленных вариантов изобретения. В результате изобретение не ограничивается конкретными примерами, описанными ниже, а ограничивается только формулой изобретения и ее эквивалентами.

Фиг. 1 изображает пример расходомера 5 уровня техники в форме расходомера Кориолиса, содержащего узел 10 датчика и один или более блоков 20 электроники измерителя. Один или более блоков 20 электроники измерителя соединяются с узлом 10 датчика для измерения характеристик протекающего материала, таких как, например, плотность, массовый расход, объемный расход, суммарный массовый расход, температура и другой информации.

Узел 10 датчика включает в себя пару фланцев 101 и 101', патрубки 102 и 102' и трубки 103 и 103'. Патрубки 102, 102' прикреплены к противоположным концам трубок 103, 103'. Фланцы 101 и 101' настоящего примера прикреплены к патрубкам 102 и 102'. Патрубки 102 и 102' настоящего примера прикреплены к противоположным концам распорной втулки 106. Распорная втулка 106 поддерживает расстояние между патрубками 102 и 102' в настоящем примере для предотвращения нежелательных вибраций в трубках 103 и 103'. Трубки 103 и 103' простираются наружу от патрубков практически параллельно. Когда узел 10 датчика вставляется в трубопроводную систему (не показана), которая переносит текучий материал, материал поступает в узел 10 датчика через фланец 101, проходит через впускной патрубок 102, где весь материал направляется на вход трубок 103 и 103', протекает через трубки 103 и 103' и выходит в выпускной патрубок 102', где он выходит из узла 10 датчика через фланец 101'.

Узел 10 датчика включает в себя возбудитель 104. Возбудитель 104 прикреплен к трубкам 103 и 103' в месте, где возбудитель 104 может вызывать вибрации трубок 103, 103' в режиме возбуждения. В частности, возбудитель 104 включает в себя первый компонент возбудителя (не показан), прикрепленный к трубке 103, и второй компонент возбудителя (не показан), прикрепленный к трубке 103'. Возбудитель 104 может иметь одну из многих известных конструкций, таких как магнит, установленный на трубке 103, и противоположная катушка, установленная на трубке 103'.

В настоящем примере режим возбуждения является первым находящимся не в фазе режимом изгибных колебаний, и трубки 103 и 103' предпочтительно выбираются и должным образом устанавливаются на впускном патрубке 102 и выпускном патрубке 102' так, чтобы обеспечить сбалансированную систему, имеющую по существу одинаковое распределение масс, моменты инерции и модули упругости относительно осей изгиба W-W и W'-W' соответственно. В настоящем примере, в котором режим возбуждения является первым находящимся не в фазе режимом изгибных колебаний, трубки 103 и 103' возбуждаются возбудителем 104 в противоположных направлениях относительно их соответствующих осей изгиба W-W и W'-W'. Возбуждающий сигнал в форме переменного тока может обеспечиваться одним или более блоками 20 электроники измерителя, например, через канал 110, и при прохождении через катушку вызывать колебания обеих трубок 103, 103'. Специалистам в области техники будет очевидно, что в рамках настоящего изобретения могут использоваться и другие режимы возбуждения.

Показанный узел 10 датчика включает в себя пару датчиков 105, 105' перемещений, которые прикреплены к трубкам 103, 103'. В частности, компонент первого датчика перемещений (не показан) расположен на трубке 103, а компонент второго датчика перемещений (не показан) расположен на трубке 103'. В изображенном варианте осуществления датчики 105, 105' перемещений могут быть электромагнитными детекторами, например магнитами датчика перемещений и катушками датчика перемещений, которые создают сигналы датчиков перемещений, которые представляют собой скорость и местоположение трубок 103, 103'. Например, датчики 105, 105' перемещений могут подавать сигналы датчиков перемещений в один или более блоков 20 электроники измерителя через каналы 111, 111'. Специалистам в области техники будет очевидно, что движение трубок 103, 103' пропорционально некоторым характеристикам протекающего материала, например, массовому расходу и плотности материала, текущего через трубки 103, 103'.

Следует понимать, что, хотя узел 10 датчика, описанный выше, содержит расходомер с двумя расходомерными трубками, также в рамках настоящего изобретения находится реализация расходомера с одной трубкой. Кроме того, хотя показано, что расходомерные трубки 103, 103' имеют конфигурацию с изогнутой расходомерной трубкой, настоящее изобретение может быть реализовано как расходомер, имеющий конфигурацию с прямой расходомерной трубкой. Также следует понимать, что датчики 105, 105' перемещений могут содержать датчики деформации, оптические датчики, лазерные датчики или любой другой тип датчиков, известный в области техники. Поэтому конкретный вариант осуществления узла 10 датчика, описанный выше, является просто одним примером и никоим образом не должен ограничивать объем настоящего изобретения.

В примере, показанном на фиг. 1, один или более блоков 20 электроники измерителя принимают сигналы датчиков перемещений от датчиков 105, 105' перемещений. Канал 26 обеспечивает средство ввода и вывода, которое позволяет одному или более блокам 20 электроники измерителя взаимодействовать с оператором. Один или более блоков 20 электроники измерителя измеряют характеристики протекающего материала, такие как, например, разность фаз, частота, временная задержка, плотность, массовый расход, объемный расход, суммарный массовый расход, температура, проверка измерителя и другая информация. В частности, один или более блоков 20 электроники измерителя принимают один или более сигналов, например, от датчиков 105, 105' перемещений и одного или более датчиков 107 температуры, таких как резистивное устройство измерения температуры (RTD), и используют эту информацию для измерения характеристик протекающего материала.

Фиг. 2 изображает топливную систему уровня техники 200. Показанная топливная система 200 является типичной судовой топливной системой. Это лишь пример системы с несколькими расходомерами, и это не должно ограничивать формулу изобретения или описание. Топливо хранится в основных баках 202, 204. В одном примере варианта осуществления тяжелый мазут (HFO) хранится в первом основном баке 202, а судовое дизельное топливо (MDO) хранится во втором основном баке 204. Основные баки 202, 204 соединяются с расходным баком 206 через топливопроводы 203 и 205 соответственно. Это является лишь примером, и должно быть понятно, что может присутствовать более чем два основных бака, или может присутствовать только один основной бак. Расходный бак 206 обычно имеет такой размер, чтобы хранить ограниченное количество топлива для безопасности и предотвращения загрязнений. Расходный бак 206 предотвращает хранение слишком большого количества топлива в такой области, как машинное помещение судна, чтобы минимизировать риск возникновения пожара или взрыва. Если там возникнет пожар, ограниченный запас топлива способствует снижению серьезности связанных с пожаром инцидентов. Кроме того, расходный бак 206 принимает топливо, которое было подано в двигатель 208, но не использовано, таким образом возвратное топливо направляется обратно в расходный бак 206 через возвратный топливопровод 207. Следует понимать, что хотя топливная система 200 показывает только одно место 222 выпуска топлива и два расходомера 214, 216, в некоторых вариантах осуществления будет несколько мест выпуска топлива и более двух расходомеров.

Во время работы топливо обычно рециркулирует из расходного бака 206 в двигатель 208 или другое потребляющее топливо устройство, и то топливо, которое не используется, течет обратно в расходный бак 206 в замкнутом контуре 218. Если в расходном баке 206 становится мало топлива, топливо из основного бака 202, 204 пополняет расходный бак 206. Насос 210 обеспечивает воздействие, необходимое для перекачки топлива из расходного бака 206 в двигатель 208 и обратно. Встроенный подогреватель 212 нагревает топливо до температуры, которая является идеальной для топлива, используемого двигателем 208. Например, рабочая температура HFO, как правило, находится между приблизительно 120-150°C, в то время как MDO в идеале находится в области 30-50°C. Подходящая температура для конкретного топлива позволяет управлять и удерживать в идеальном диапазоне вязкость топлива. Кинематическая вязкость топлива является показателем текучести при определенной температуре. Так как вязкость топлива уменьшается с увеличением температуры, вязкость в момент, когда топливо покидает топливные форсунки двигателя (не показаны), должна быть в пределах диапазона, продиктованного изготовителем двигателя для создания оптимальной формы распыла топлива. Вязкость, которая отличается от спецификаций, приводит к нестандартному сгоранию, потере мощности и, потенциально, образованию нагара. Подогреватель 212, когда он правильно установлен для конкретного используемого топлива, позволяет получить оптимальную вязкость.

Чтобы измерить параметры расхода, такие как массовый расход или плотность, используются, например, встроенные расходомеры. Расходомер 214 на стороне подачи расположен перед двигателем 208, в то время как расходомер 216 на стороне возврата расположен после двигателя 208. Так как двигатель 208 использует не все топливо, обеспеченное для двигателя в обычной системе с направляющей-распределителем для топлива (не показана), избыточное топливо рециркулируется через расходный бак 206 и замкнутый контур 218. Поэтому один расходомер не обеспечит точное измерение расхода жидкости, особенно относящееся к потреблению моторного топлива, таким образом требуется и расходомер 214 подачи, и расходомер 216 возврата (перед и после двигателя 208 соответственно). Разность расходов, измеренных расходомерами 214, 216, по существу равна расходу топлива, потребляемого двигателем 208. Поэтому разность измеренных расходов между расходомерами 214, 216 является основным значением, представляющим интерес в большинстве применений, аналогичных конфигурации, показанной на фиг. 2. Следует отметить, что обычная система с направляющей-распределителем для топлива служит лишь примером и не ограничивает объем заявленного изобретения. Также возможны другие топливные системы, в которых топливо возвращается и/или рециркулируется.

При эксплуатации больших двигателей знание впускных и выпускных условий системы имеет решающее значение для эффективности и производительности. Большинство систем двигателя, таких как изображенная на фиг. 2, имеют систему подготовки топлива, которая используется для подготовки топлива так, чтобы оно имело конкретную вязкость, температуру и консистенцию, прежде чем оно попадет в двигатель, такую как подогреватель 212. Наличие правильной подготовки топлива может существенно влиять на производительность двигателя. Вискозиметр 213 после подогревателя 212 измеряет вязкость топлива, и, в некоторых вариантах осуществления, он может осуществлять связь с подогреватель 212 для корректировки температуры подогревателя так, чтобы топливо оставалось в пределах предварительно заданной степени вязкости.

Блоки 20 электроники измерителя могут включать в себя интерфейс, цифрователь, систему обработки, внутреннюю память, внешнюю память и систему хранения данных. Блоки 20 электроники измерителя могут генерировать возбуждающий сигнал и подавать возбуждающий сигнал возбудителю 104. Кроме того, блоки 20 электроники измерителя могут принимать сигналы датчиков от расходомеров 214, 216, таких как сигналы датчика перемещений/датчика скорости, сигналы деформации, оптические сигналы, температурные сигналы или любые другие сигналы, известные в области техники. В некоторых вариантах осуществления сигналы датчиков могут быть приняты от датчиков 105, 105' перемещений. Блоки 20 электроники измерителя могут функционировать как плотномер или могут функционировать как расходомер, в том числе функционировать как расходомер Кориолиса. Следует понимать, что блоки 20 электроники измерителя также могут функционировать как некоторый другой тип узла датчика, и конкретные обеспеченные примеры не должны ограничивать объем настоящего изобретения. Блоки 20 электроники измерителя могут обрабатывать сигналы датчиков для получения характеристик расхода материала, текущего через расходомерные трубки 103, 103'. В некоторых вариантах осуществления блоки 20 электроники измерителя могут принимать температурный сигнал от одного или более датчиков RTD или, например, других температурных датчиков 107.

Блоки 20 электроники измерителя могут принимать сигналы датчиков от возбудителя 104 или датчиков 105, 105' перемещений через выводы 110, 111, 111'. Блоки 20 электроники измерителя могут выполнять любую необходимую или желаемую подготовку сигнала, такую как любой вид форматирования, усиления, буферизации и т.д. Альтернативно некоторые или все виды подготовки сигнала могут выполняться в системе обработки. Кроме того, интерфейс 220 может обеспечивать связь между блоками 20 электроники измерителя, внешними устройствами и дополнительными блоками 20 электроники измерителя. Интерфейс может быть способен осуществлять любой вид электронной, оптической или беспроводной связи.

Блоки 20 электроники измерителя в одном варианте осуществления могут включать в себя цифрователь, при этом сигнал датчика содержит аналоговый сигнал датчика. Цифрователь может дискретизировать и оцифровывать аналоговый сигнал датчика и создавать цифровой сигнал датчика. Цифрователь также может выполнять любое необходимое прореживание, в котором цифровой сигнал датчика прореживается для уменьшения количества необходимой обработки сигналов и уменьшения времени обработки.

Блоки 20 электроники измерителя могут содержать систему обработки, которая может выполнять операции блоков 20 электроники измерителя и обрабатывать измерения расхода от узла 10 датчика. Система обработки может выполнять одну или более процедур обработки, таких как, например, процедура захвата нулевого потребления, процедура определения нуля разности, общая управляющая процедура и процедура сигнала типа топлива, и, таким образом, обрабатывать измерения расхода жидкости для получения одного или более измерений расхода жидкости.

Система обработки может содержать универсальный компьютер, микропроцессорную систему, логическую схему или некоторое другое универсальное или специализированное устройство обработки. Система обработки может быть распределена между несколькими устройствами обработки. Система обработки может включать в себя любой вид интегрального или независимого электронного носителя данных. Система обработки обрабатывает сигналы датчиков для генерации, помимо прочего, возбуждающего сигнала. Возбуждающий сигнал подается возбудителю 104 для возбуждения вибраций соответствующей трубки(ок), таких как трубки 103, 103' на фиг. 1.

Следует понимать, что блоки 20 электроники измерителя могут включать в себя различные другие компоненты и функции, которые общеизвестны в данной области техники. Эти дополнительные признаки для краткости опускаются в описании и на фигурах. Поэтому настоящее изобретение не должно ограничиваться конкретными показанными и обсуждаемыми вариантами осуществления.

Поскольку система обработки генерирует различные характеристики расхода, такие как, например, массовый расход или объемный расход, ошибка может быть связана с генерируемым расходом из-за смещения нуля вибрационного расходомера и, в частности, изменения или дрейфа смещения нуля вибрационного расходомера. Смещение нуля может уходить от первоначально вычисленного значения из-за множества факторов, в том числе изменений одного или более рабочих условий, в частности, температуры вибрационного расходомера. Изменение температуры может произойти из-за изменения температуры жидкости, температуры окружающей среды или и того, и другого. В топливной системе 200 за температуру жидкости в расходомерах 214, 216 преимущественно отвечает подогреватель 212. Изменение температуры с большой вероятностью будет отличаться от опорной или температуры калибровки датчика во время определения начального смещения нуля. В соответствии с вариантом осуществления блоки 20 электроники измерителя могут корректировать такой дрейф.

Как описывается более подробно ниже, варианты осуществления систем и способов для вычисления оптимальной точности системы дифференциального расходомера в соответствии с вариантами осуществления настоящего изобретения, в частности, подходят для реализации в сочетании с вычислительным устройством 300. Фиг. 3 является упрощенной схемой вычислительного устройства 300 для обработки информации в соответствии с вариантом осуществления настоящего изобретения. Эта схема является лишь примером, который не должен ограничивать объем формулы изобретения. Специалисту в данной области техники будут очевидны многие другие вариации, модификации и альтернативы. Варианты осуществления в соответствии с настоящим изобретением могут быть реализованы в одной прикладной программе, такой как браузер, или могут быть реализованы как несколько программ в распределенной вычислительной среде, такой как рабочая станция, персональный компьютер или дистанционный