Способ получения высокочистого нейротоксического компонента ботулотоксина и его применения

Иллюстрации

Показать все

Группа изобретений относится к области биохимии. Предложен высокочистый нейротоксический компонент токсина Clostridium botulinum с содержанием одноцепочечной формы менее 2,00% по весу для лечения, связанного с гиперактивной холинергической иннервацией мышц или экзокринных желез заболевания или состояния, способ получения вышеуказанного высокочистого нейротоксического компонента ботулотоксина и фармацевтическая композиция для лечения, связанного с гиперактивной холинергической иннервацией мышц или экзокринных желез заболевания или состояния. Способ включает культивирование Clostridium botulinum в обеспечивающих выработку ботулотоксина условиях и выделение нейротоксического компонента из ботулотоксина, причем этап культивирования и этап выделения проводят в устройстве с градиентом давления. Фармацевтическая композиция содержит вышеуказанный высокочистый нейротоксический компонент токсина Clostridium botulinum и один или несколько фармацевтически приемлемых носителей. Изобретения обеспечивают получение высокочистого нейротоксического компонента ботулотоксина безопасным образом и максимально высокую чистоту лекарственных средств. 4 н. и 9 з.п. ф-лы, 9 табл., 6 пр.

Реферат

Область техники, к которой относится изобретение

Изобретение относится к способу получения высокочистого нейротоксического компонента ботулотоксина путем культивирования Clostridium botulinum в условиях, обеспечивающих продуцирование ботулотоксина, и путем выделения нейротоксического компонента из ботулотоксина. Кроме того, настоящее изобретение относится к высокочистому нейротоксическому компоненту ботулотоксина, получаемому способом по настоящему изобретению, и его применению.

Уровень техники

Ботулотоксины являются самыми высокоактивными белковыми токсинами для человека. Их действие заключается в блокировании высвобождения ацетилхолина в нервно-мышечном соединении, что приводит к денервации мышц. Ботулотоксины также активны в других периферийных холинергических нервных окончаниях и приводят, например, к снижению слюноотделения или потоотделения и к уменьшению складок и морщин на лице. Из-за специфики механизма действия диапазон клинических применений ботулотоксинов постоянно увеличивается, и ботулотоксины сегодня широко используются в качестве фармако-косметических средств.

Ботулотоксины синтезируются и выделяются определенным Clostridium spp. в виде крупных комплексов, включающих молекулу ботулотоксина (далее - «нейротоксический компонент») и ассоциированные нетоксичные бактериальные белки (также называемые «комплексообразующие белки»). Комплексообразующие белки включают различные нетоксичные белки гемагглютинина (НА) и нетоксичные белки негемагглютинина (NTNH). Молекулярная масса токсинового комплекса среди семи различных серотипов ботулотоксина (А, В, С, D, Е, F и G) варьируется от приблизительно 300 кДа до приблизительно 900 кДа. Комплексообразующие белки обеспечивают устойчивость нейротоксического компонента. В отличие от токсинового комплекса нейротоксический компонент в выделенном и чистом виде, то есть лишенном каких-либо комплексообразующих клостридиальных белков, является кислотолабильным и не устойчивым к агрессивной среде желудочно-кишечного тракта.

Нейротоксический компонент синтезируется в виде неактивного одноцепочечного прекурсора (нерасщепленного полипептида), имеющего молекулярную массу для всех семи известных серотипов ботулотоксина приблизительно 150 кДа. Этот одноцепочечный прекурсор активируется посредством протеолитического расщепления с образованием двухцепочечного белка с дисульфидной связью. Легкая цепь 50 кДа содержит каталитический домен, в то время как тяжелая цепь 100 кДа содержит внутренний домен транс локации и рецептор-связывающий домен. Тяжелая цепь 100 кДа опосредует связывание с пресинаптическими холинергическими нервными окончаниями и интернализацию токсина в клетку. Легкая цепь 50 кДа отвечает за токсические эффекты, действуя как цинк-эндопептидаза и расщепляя специфические белки, ответственные за слияние мембран (белки SNARE комплекса). Посредством нарушения процесса слияния мембран в нервных клетках ботулотоксины препятствуют высвобождению ацетилхолина в синаптическую щель.

Комплекс ботулотоксина серотипа А (BoNT/A-комплекс) был впервые одобрен для использования у человека в Соединенных Штатах Америки в 1989 году для лечения косоглазия, блефароспазма и других расстройств. В настоящее время форма А комплекса ботулотоксина коммерчески доступна в нескольких источниках, например, в Allergan под торговым наименованием Botox®, в Ipsen под торговым наименованием Dysport® и в Galderma под торговым наименованием Azzalure®.

Тем не менее, в значительном числе случаев у пациентов вырабатываются нейтрализующие антитела в ответ на повторные инъекции BoNT/A-комплекса. Считается, что этот эффект связан с комплексообразующими белками BoNT/A-комплекса. Пациенты с такой реакцией становятся так называемыми «пациентами с вторичным отсутствием клинического ответа», и терапия BoNT/A -комплексом больше не является эффективной. Как было установлено, риск такой неудачи антитело-индуцированной терапии наблюдается не менее чем у 10%-20% пациентов, получавших лечение. Еще одним недостатком, связанным с использованием комплекса ботулотоксина, является его регионарное или системное распространение после инъекций в целевые мышцы. Например, исследования с использованием одноволоконной электромиографии (SF-EMG) показали усиленное дрожание в мышцах, удаленных от места инъекции.

Эти недостатки не наблюдаются при введении чистого нейротоксического компонента. В частности, введение чистого нейротоксического компонента снижает риск отсутствия ответа или сниженного ответа, что особенно важно для пациентов, проходящих долгосрочную терапию. Другие преимущества, связанные с чистым нейротоксическим компонентом, включают в себя быстрое наступление действия и превосходную температуроустойчивость, вследствие чего даже отсутствует необходимость использования холодовой цепи и хранения в холодильнике. Лекарственная форма, содержащая только нейротоксический компонент типа А без каких-либо комплексообразующих белков, коммерчески доступна в Merz под товарными знаками Xeomin® и Boconture®.

Нейротоксический компонент можно получить культивированием штаммов клостридий, продуцирующих ботулотоксин, и выделением нейротоксического компонента из выработанного комплекса ботулотоксина посредством серий этапов осаждения и хроматографических исследований. При использовании природных штаммов клостридий ботулотоксин вырабатывается и выделяется бактериями клостридий в его активной, остро токсичной форме. Таким образом, необходимо принять определенные меры для предотвращения неблагоприятных последствий для здоровья персонала, связанного с производством ботулотоксина и/или очисткой нейротоксического компонента из токсинового комплекса. Для уменьшения риска воздействия токсичных аэрозолей в WO 2006/133818 А1, 21.12.2006 предлагается, например, осуществлять получение ботулотоксинов в изоляторе, работающем при давлении ниже, чем давление в окружающем производственном помещении, во избежание контакта оператора с какими-либо токсичными материалами.

Хотя производственный процесс, описанный в WO 2006/133818 А1, обеспечивает необходимую безопасность работы, по-прежнему существует возможность повышения чистоты получаемого нейротоксического компонента. В фармацевтической отрасли критически важна высокая химическая и микробная чистота. Таким образом, конечная цель разработчиков лекарственных средств состоит в обеспечении максимально высокой чистоты лекарственных средств для обеспечения требуемой безопасности и эффективности.

Соответственно, целью настоящего изобретения является создание усовершенствованного способа получения высокочистого нейротоксического компонента ботулотоксина безопасным образом.

Раскрытие изобретения

В первом аспекте в настоящем изобретении предложен способ получения высокочистого нейротоксического компонента ботулотоксина, включающий следующие этапы:

(a) культивирование Clostridium botulinum в условиях, обеспечивающих выработку ботулотоксина, и

(b) выделение нейротоксического компонента из ботулотоксина, в котором этап культивирования (а) и этап выделения (b) проводят в устройстве с градиентом давления, которое включает первый изоляторный модуль, содержащий ферментер для культивирования Clostridium botulinum, и необязательно второй или дополнительный изоляторный модуль, а также безопасный рабочий стол, которое представляет собой бокс биологической безопасности BSC класса II, снабженное системой перемещения/перегрузки, которая обеспечивает асептический перенос материала в BSC и из BSC.

Первый и второй или дополнительный изоляторные модули расположены в производственном помещении, соединенном с окружающей средой с помощью воздушного шлюза, при этом давление в первом и втором или дополнительном изоляторном модулях ниже, чем в производственном помещении, давление в производственном помещении ниже, чем давление окружающей среды, и давление в воздушном шлюзее выше, чем давление окружающей среды. Безопасный рабочий стол также находится в производственном помещении.

В еще одном аспекте в настоящем изобретении представлен высокочистый нейротоксический компонент токсина Clostridium botulinum, в котором содержание одноцепочечной формы составляет менее 2,00% в пересчете по весу.

В еще одном аспекте в настоящем изобретении предложен фармацевтическая композиция, содержащая высокочистый нейротоксический компонент токсина Clostridium botulinum, описанный в настоящем документе, и один или несколько фармацевтически приемлемых носителей.

В еще одном дополнительном аспекте в настоящем изобретении предложен высокочистый нейротоксический компонент токсина Clostridium botulinum, описанный в настоящем документе, для применения в качестве лекарственного средства.

В еще одном аспекте в настоящем изобретении предложен высокочистый нейротоксический компонент токсина Clostridium botulinum, описанный в настоящем документе, для применения в лечении заболевания, связанного с гиперактивной холинергической иннервацией мышц или экзокринных желез.

Предпочтительные варианты осуществления настоящего изобретения представлены в прилагаемых зависимых пунктах формулы изобретения.

Осуществление изобретения

Неожиданно было обнаружено, что существуют ключевые производственные параметры, которые до сих пор не были рассмотрены, но которые могут оказывать значительное влияние на качество, в частности на чистоту, нейротоксического компонента ботулотоксина. Кроме того, способ получения по настоящему изобретению удовлетворяет законодательным требованиям, касающимся безопасности, гигиены труда и охраны окружающей среды, а также обеспечивает безопасные и безвредные условия работы. Иными словами, настоящее изобретение основано на неожиданно установленном факте, что существуют дополнительные режимы производственного процесса, которые не только безопасны в плане проблем окружающей среды и здоровья человека, но и позволяют получить нейротоксический компонент ботулотоксина высшего качества, в частности, наивысшего качества.

В первом аспекте настоящее изобретение относится к способу получения высокочистого нейротоксического компонента ботулотоксина, включающему следующие этапы:

(a) культивирование Clostridium botulinum в условиях, обеспечивающих выработку ботулотоксина, и

(b) выделение нейротоксического компонента из ботулотоксина.

При использовании в настоящем документе термины «ботулотоксин» или «комплекс ботулотоксина» являются взаимозаменяемыми и относятся к высокомолекулярному комплексу, включающему в себя нейротоксический компонент приблизительно 150 кДа и, кроме того, нетоксичные белки Clostridium spp., включая белки гемагглютинина и негемагглютинина. Также подразумевается, что термины «ботулотоксин» или «комплекс ботулотоксина» охватывают все семь серотипов токсина (т.е. серотипы А, В, С, D, Е, F и G), а также их подтипы (например, A1, А2, C1, С2 и т.д.).

Термин «нейротоксический компонент» при использовании в настоящем документе означает молекулу белка ботулотоксина, включенную в комплекс ботулотоксина (также называемый «чистый токсин» или «чистый нейротоксин»). Иными словами, «нейротоксический компонент» в контексте настоящего изобретения не связан с какими-либо нетоксическими белками Clostridium botulinum и лишен каких-либо связанных нетоксических белков Clostridium botulinum, включая белки гемагглютинина и негемагглютинина. Предпочтительно, чтобы он также не содержал РНК (RNA), потенциально связанную с нейротоксическим компонентом.

Дополнительно отмечено, что «нейротоксический компонент» в контексте настоящего изобретения включает одноцепочечный белок-прекурсор приблизительно 150 кДа и протеолитически обработанную двухцепочечную форму нейротоксического компонента, включающего в себя легкую цепь (ЛЦ) приблизительно 50 кДа и тяжелую цепь (ТЦ) приблизительно 100 кДа, которые обычно связаны одной или несколькими дисульфидными связями. Специалистам в данной области техники будет понятно, что полная биологическая активность достигается только после протеолитической активации, даже при том, что, предположительно, необработанный прекурсор может обнаруживать некоторые биологические функции. «Биологическая функция» может означать: (а) связывание с рецептором, (b) интернализацию, (с) транслокацию через эндосомную мембрану в цитозоль, и/или (d) эндопротеолитическое расщепление белков, участвующих в слиянии мембран синаптических везикул.

Предпочтительно, чтобы нейротоксический компонент был получен из комплекса ботулотоксина серотипа А, В, С, D, Е, F или G природного происхождения. Особенно предпочтительный нейротоксический компонент в контексте настоящего изобретения получают из токсина Clostridium botulinum серотипа А, в частности из токсина Clostridium botulinum типа А, продуцируемого штаммом Hall (АТСС 3502). Тем не менее, в контексте настоящего изобретения нейротоксическим компонентом также может быть полученный рекомбинацией нейротоксический компонент, в том числе химерный (составной) нейротоксический компонент. Также включены генетически модифицированные нейротоксические компоненты, содержащие 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или до 20 аминокислотных мутаций. Мутацией может быть замещение, вставка или делеция. Кроме того, нейротоксические компоненты, содержащие химически модифицированные аминокислоты, например, одну или несколько гликозилированных, ацетилированных, липидированных или иным образом модифицированных аминокислот, также включены в термин «нейротоксический компонент».

Термин «высокочистый нейротоксический компонент» в контексте настоящего изобретения означает очищенный нейротоксический компонент, или композицию, его препарат или лекарственную форму, которые, по существу, не содержат других твердых ингредиентов и которые могут быть получены способом, подробно описанным в настоящем документе. Кроме того, термин «высокочистый», используемый в настоящем документе, относится к нейротоксическому компоненту ботулотоксина или его лекарственной форме, препарату или композиции, которые не содержат комплексообразующих белков (примесей, связанных с продуктом), других клостридиальных белков (примесей, не связанных с продуктом) и неклостридиальных белков. Предпочтительно термин «высокочистый» относилтся к общей чистоте не менее 99,90% в пересчете по весу, более предпочтительно - не менее 99,95%) в пересчете по весу и наиболее предпочтительно - не менее 99,99% в пересчете по весу. «Общая чистота» означает массовую долю одноцепочечных и двухцепочечных форм нейротоксического компонента на основании общего веса образца высокочистого нейротоксического компонента по настоящему изобретению. В соответствии с настоящим изобретением чистоту оценивают методом электрофореза в полиакриламидном геле с додецилсульфатом натрия (SDS-PAGE).

На этапе (a) Clostridium botulinum культивируют (или ферментируют) в подходящей ферментационной среде, например, среде, содержащей 2% протеозопептона, 1% дрожжевого экстракта, 1% глюкозы и 0,05% тиогликолята натрия, для выработки ботулотоксина. В настоящем документе термин «культивирование» используется взаимозаменяемо с термином «ферментация». Предполагается, что термин «Clostridium botulinum» включает в себя Clostridium botulinum типа А, В, С, D, Е, F или G. В контексте настоящего изобретения предпочтительно используют штамм Clostridium botulinum, продуцирующий ботулотоксин типа А, т.е. Clostridium botulinum типа А. Особенно предпочтительным для использования в настоящем изобретении является штамм Hall типа A Clostridium botulinum (АТСС 3502) (в дальнейшем именуемый «штамм Hall»). Способы культивирования Clostridium botulinum для получения токсинового комплекса известны в данной области (см., например, Schantz Е. and Kautter D., J. Assoc. Off. Anal. Chem. 61:96-99, 1978).

Температура ферментации (культивирования) на этапе (а) способа по настоящему изобретению зависит от конкретного штамма Clostridium botulinum и используемых условий ферментации. Предпочтительно, чтобы температура постоянно поддерживалась в заранее заданном узком диапазоне температур. Например, для получения токсина Clostridium botulinum типа А, в частности штамма Hall, температуру ферментации предпочтительно устанавливают и поддерживают на уровне 33,5°С±1,0°С, более предпочтительно 33,5°С±0,5°С и наиболее предпочтительно 33,5°С±0,2°С.

Авторами настоящего изобретения было установлено, что постоянная температура около 33,5°С является оптимальной температурой для выработки ботулотоксина. Слишком высокие, слишком низкие и/или слишком часто меняющиеся температуры приводят к тому, что Clostridium botulinum вырабатывает нежелательные соединения. Неожиданно было обнаружено, что, если не контролировать поддержание температуры ферментации в пределах температурных диапазонов, указанных выше, содержание нежелательной неактивной одноцепочечной формы нейротоксического компонента значительно увеличивается. Подчеркивается, что в контексте настоящего изобретения одноцепочечная форма нейротоксического компонента считается нежелательной «примесью», поскольку она протеолитически не обработана и, по существу, неактивна.

По настоящему изобретению предпочтительно температуру ферментации устанавливать и поддерживать на уровне указанного диапазона температур, используя нагревательную рубашку. При использовании в настоящем документе «нагревательная рубашка» представляет собой материальную часть, которая окружает большие площади поверхности, обычно все боковые стенки, ферментера и может быть нагрета. Например, нагревательная рубашка может включать различные слои для обеспечения стабильности температуры, необходимой для ферментации, например, термоэлектрический нижний слой для нагревания, изоляционный слой для предотвращения потерь тепла и водонепроницаемый внешний слой для защиты нагревательной рубашки от опасностей внешней среды ферментации. В отличие от повышения и поддержания температуры с помощью нагревательного стержня, использование нагревательной рубашки позволяет в основном избежать перепадов температуры между различными участками в питательной среде, даже если питательную среду не перемешивают, как это обычно происходит в способе по настоящему изобретению, таким образом обеспечивается равномерное распределение температуры.

Рост культур клостридий в процессе ферментации (т.е. плотность клеток) предпочтительно оценивать по мутности культуры, которую можно соответствующим образом контролировать on-line при помощи оптического датчика. Термин «мутность» при использовании в настоящем документе относится к оптическому свойству, вследствие которого свет рассеивается и поглощается, а не передается прямолинейно через образец. Мутность можно измерять с помощью коммерчески доступных турбидиметров. Эти турбидиметры обычно измеряют количество света, рассеянного под прямыми углами к падающему световому лучу частицами, присутствующими в образце жидкости. В настоящем случае турбидиметр используют для измерения рассеивания света бактериальными клетками, присутствующими в питательной среде, под углом 90° относительно падающего светового луча. Для измерения плотности клеток, которая определяется в настоящем документе как количество клеток Clostridium botulinum на единицу объема культуры, турбидиметр откалиброван посредством коммерчески доступных сертифицированных стандартов мутности по формазину (т.е. определенных суспензий частиц). Измеренные значения мутности выражены в настоящем документе через единицы мутности по формазину (FTU).

В контексте настоящего изобретения ферментацию обычно продолжают до тех пор, пока плотность клеток культуры не уменьшится вследствие лизиса клеток после того, как она увеличилась вследствие роста бактерий. Для Clostridium botulinum типа А, в частности для штамма Hall, плотность клеток после 24 часов культивирования предпочтительно составляет приблизительно 1,3±0,3 FTU. Через 24 часа значение рН предпочтительно составляет приблизительно 5,7±0,2. В конце ферментации с Clostridium botulinum типом А, в частности со штаммом Hall, плотность клеток предпочтительно составляет 0,8 FTU. В конце ферментации значение рН обычно составляет приблизительно 5,5±0,3.

Продолжительность ферментации, опять для Clostridium botulinum типа А и, в частности для штамма Hall, как правило, составляет от 65 до 80 часов и предпочтительно приблизительно 72 часа, например, 72 часа ± 4 часа, 72 часа ± 2 часа, 72 часа ± 1 час или 72 часа ± 0,5 часа. Объем культуры, в частности, не ограничен, но обычно составляет приблизительно от 10 до 40 литров, предпочтительно около 20 литров. Выход комплекса ботулотоксина после ферментации с использованием штамма Clostridium botulinum типа А, в частности штамма Hall, обычно составляет приблизительно 3,5±2,0 мкг, в частности 3,5±1,0 мкг, в расчете на 1 мл ферментационной среды в конце ферментации.

Измерения мутности, в отличие от измерений проходящего света, которые обычно используют в данной области для определения плотности клеток в ферментационных бульонах, не зависят от конкретного устройства и показывают более точные и, в частности гораздо лучше воспроизводимые и сопоставимые, результаты измерений. Неожиданно было обнаружено, что оценка плотности клеток путем измерений мутности является не только высокоточной и воспроизводимой, но и позволяет контролировать процесс таким образом, чтобы ограничить образование одноцепочечной формы нейротоксического компонента. Таким образом, использование измерений мутности для контроля роста клеток и, в частности для определения конечной точки ферментации, позволяет уменьшить содержание нежелательной одноцепочечной формы в конечном продукте. Это значительное улучшение способа, так как с помощью современных способов очистки невозможно отделить неактивную (нерасщепленную) одноцепочечную форму от активной (расщепленной) двухцепочечной формы.

По настоящему изобретению культуру Clostridium botulinum на этапе (а) предпочтительно получают (i) созданием исходной культуры Clostridium botulinum с плотностью клеток от 530 до 850 FTU, в частности от 600 до 800 FTU, конкретнее от 650 до 750 FTU, и (ii) добавлением заранее заданного количества исходной культуры в питательную среду. Предпочтительно исходную культуру добавляют в ферментационную среду в количестве от 5,0% до 10,0% по объему, предпочтительно в количестве от 7,7% до 8,2% по объему. Кроме того, предпочтительно исходная культура имеет количество анаэробных жизнеспособных микроорганизмов не менее 5,0×105 КОЕ/мл (колониеобразующих единиц/мл), в частности не менее 2,0×106 КОЕ/мл, конкретнее - более, чем 1,0×107 КОЕ/мл и наиболее конкретно - от 1,0×107 КОЕ/мл до 1,0×108 КОЕ/мл. В настоящем изобретении количество аэробных или анаэробных жизнеспособных микроорганизмов определяют серией разведений посевов исходного образца на чашках с кровяным агаром, инкубацией чашек при заданной температуре (например, 37°С) и в течение заданного времени (например, от 40 часов до 72 часов) в аэробных или анаэробных условиях и подсчетом выросших колоний, в частности, в соответствии с Европейской фармакопеей 2.6.12 и USP<61>.

Исходную культуру можно получить, например, посредством получения сначала прекультуры путем инокуляции в среду для посева Clostridium botulinum и выращивания бактерий при подходящей температуре роста (например, 37°С). Аликвоту полученной прекультуры затем используют для инокуляции на питательную среду, а затем выращивания бактерий при подходящей температуре роста. Потом аликвоту полученной предварительной исходной культуры используют для инокуляции на питательную среду при подходящей температуре роста до достижения желаемой плотности клеток. Затем аликвоту полученной исходной культуры используют для инокуляции на ферментационную среду, используемую на этапе (а) способа по настоящему изобретению.

Источник штамма Clostridium botulinum (например, штамм Hall), используемого в настоящем изобретении, может быть в целях удобства заготовлен в виде замороженной аликвоты рабочего банка клеток (WCB). WCB создают из маточного банка клеток (МСВ) соответствующего штамма согласно способам, известным из уровня техники. Замороженная аликвота WCB может, например, быть поставлена в виде криопробирки, содержащей 800 мкл WCB и 200 мкл стерильного глицерина в качестве криопротектора. Обычно число жизнеспособных анаэробных микроорганизмов замороженной аликвоты Clostridium botulinum, в частности штамма Hall, составляет по меньшей мере 5,0×105 КОЕ/мл, предпочтительно более, чем 1,0×107 КОЕ/мл. Замороженные аликвоты (например, криопробирки) можно хранить при температуре - 80°С в морозильной камере или предпочтительнее при температуре около - 130°С в паровой фазе жидкого азота.

На этапе (b) способа по настоящему изобретению нейротоксический компонент выделяют из полученного ботулотоксина (комплекса). Способы очистки нейротоксического компонента из токсиновых комплексов, выработанных Clostridium botulinum, известны из уровня техники (см., например, DasGupta B.R. and Sathyamoorthy, V., Toxicon. 22:415-424, 1984; и WO 00/74703, 14.12.2000). Концентрация очищенного нейротоксического компонента в конце очистки, как правило, составляет от 100 мкг/мл до 500 мкг/мл, из расчета на один мл конечного раствора очищенного нейротоксического компонента.

Подходящий способ выделения для использования в настоящем изобретении, в частности для выделения нейротоксического компонента токсина Clostridium botulinum типа А, включая штамм Hall, включает в себя этап кислотного осаждения ботулотоксина в конце ферментации (например, добавлением 3 N серной кислоты; конечное значение рН составляет приблизительно 3,5). После центрифугирования осадок экстрагируют (например, с использованием 0,2 М натрий-фосфатного буфера с рН 6,0) для выделения токсинового комплекса в раствор. Затем экстракт подвергают осаждению протамина сульфатом (например, 2% протамина сульфатом) для осаждения нуклеиновых кислот из надосадочной жидкости, и токсиновый комплекс осаждают из надосадочной жидкости, используя сульфат аммония (например, добавлением 38 г сульфата аммония на 100 г надосадочной жидкости).

После растворения с использованияем фосфатного буфера (например, 50 мМ фосфата натрия, рН 6,0), токсин дополнительно очищают в три этапа метода ионообменной хроматографии в следующем порядке: быстропроточную ионообменную колонку с ионообменником с диэтиламиноэтилом и сефарозой (DEAE Sepharose Fast Flow), быстропроточный анионообменник с Q-сефарозой (Q Sepharose Fast Flow) и быстропроточный анионообменник с сефарозой SP (SP Sepharose Fast Flow). После добавления глицерина конечный элюат фильтруют через стерильный фильтр, например, фильтр с размером пор 0,22 мкм, для получения конечного продукта. Затем этот конечный продукт после очистки может быть дополнительно обработан, например, добавлением стабилизирующих добавок (например, человеческого сывороточного альбумина (HSA) или сахарозы) и/или лиофилизирован.

В соответствии с настоящим изобретением этап культивирования (а) и этап выделения (b) способа проводят в устройстве с градиентом давления. Это устройство включает в себя первый изоляторный модуль и необязательно второй или дополнительный изоляторный модуль, а также безопасный рабочий стол. Безопасный рабочий стол используют для асептической загрузки в первый изоляторный модуль и/или второй или дополнительный изоляторный модуль материалов, в частности термочувствительных материалов, которые нельзя обрабатывать в автоклаве (например, рабочие банки клеток). С этой целью материал может быть перенесен из безопасного рабочего места в изолятор (изоляторы) с помощью специальной системы перемещения/перегрузки (например, системы портов альфа/бета, реализуемой Getinge Group), описанной ниже. Это важный аспект настоящего изобретения, поскольку было установлено, что он обеспечивает меньшее загрязнение (микроорганизмами и определенными примесями) и более высокую чистоту нейротоксического компонента ботулотоксина.

В настоящем изобретении безопасным рабочим столом является BSC класса II, оснащенный системой перемещения/перегрузки, которая обеспечивает асептический перенос материала в BSC и из BSC. «Бок биологической безопасности», или «бокс биобезопасности», или «BSC», в контексте настоящего изобретения представляет собой закрытое, вентилируемое лабораторное рабочее пространство для защиты работника лаборатории и окружающей среды от рисков попадания опасных веществ, например, бактерий, вирусов или любых иных токсичных или патогенных веществ, а также для обеспечения стерильности материалов внутри рабочего пространства. Иначе говоря, BSC обеспечивают защиту эксперимента от окружающей среды и защиту окружающей среды от эксперимента. В контексте настоящего изобретения это также включает перенос термочувствительного материала в изолятор 1 или изолятор 2 без этапа стерилизации, например, банков клеток.

Предпочтительно, чтобы боксом биологической безопасности, используемым для безопасного рабочего стола, был BSC класса II, более предпочтительно - BSC класса II типа А1 или типа А2, наиболее предпочтительно - BSC класса II типа А2 по классификации Центров США по контролю и профилактике заболеваний (U.S. Centers for Disease Control and Prevention (CDC)) (см. документы Министерства здравоохранения и социального обеспечения США, Службы общественного здравоохранения; Центров по контролю и профилактике заболеваний; Национальных институтов здоровья. Biosafety in Microbiological and Biomedical Laboratories. Appendix A - Primary Containment for Biohazards: Selection, Installation and Use of Biological Safety Cabinets. 5th Edition, HHS Publication No. (CDC) 21-1112, Revised December 2009) и определенные стандартом NSF/ANSI 49-2007 (см. NSF International (NSF); American National Standards Institute (ANSI). NSF/ANSI Standard 49-2007. Class II (laminar flow) biosafety cabinetry. Ann Arbor (Ml); 2004). Безопасный рабочий стол обычно работает при том же давлении, какое существует в производственном помещении.

BSC включает в себя рабочую камеру, устройство подачи воздуха для подачи воздуха из однонаправленного воздушного потока, идущего в рабочей камере из верхней части в нижнюю часть, и устройство выпуска воздуха для выпуска воздуха однонаправленного воздушного потока. Действие боксов биобезопасности заключается в создании занавеса стерильного воздуха над обрабатываемыми продуктами. Затем воздух втягивается под рабочую поверхность (например, стол), и направляется обратно в верхнюю часть. Часть воздуха отводится, в то время как другая часть снова вводится в рабочее пространство для создания занавеса стерильного воздуха. В некоторой точке в системе воздух проходит через один или несколько фильтров, как правило, НЕРА-фильтров (класс высокоэффективной очистки воздуха от твердых частиц), так что отводимый воздух и рециркуляционный воздух стерильны и не содержат твердых частиц. Отводимый воздух состоит из воздуха, втянутого в передней части бокса, а затем прошедшего под рабочей поверхностью и соединенного с рециркуляционным воздухом, втянутым из бокса под рабочей поверхностью. В случае типичного BSC класса II типа А1, приблизительно 30% воздуха проходит через выпускной HEP А- фильтр, и примерно 70% рециркулируется через подающий НЕРА -фильтр обратно в рабочую зону бокса. BSC класса II типа А2 аналогичен типу А1, но минимальная скорость притока обычно составляет приблизительно 100 фут/мин или выше.

Следует понимать, что «BSC» в контексте настоящего изобретения не является «рабочим столом в чистой комнате». При использовании в настоящем документе «рабочий стол в чистой комнате» относится к «рабочему столу в чистой комнате» с горизонтальным ламинарным потоком или «рабочему столу в чистой комнате» с вертикальным ламинарным потоком, которые, как правило, создают только рабочую зону класса 100 для процедур, для которых необходима среда, не содержащая твердых частиц. Подпиточный воздух фильтруют, отводимый воздух не фильтруют. В отличие от этого, в случае BSC фильтруют как подпиточный, так и отводимый воздух, например, через НЕРА- фильтр. Таким образом, рабочий стол в чистой комнате обеспечивает только защиту продукта, но не предотвращает воздействие на работника материалов, обрабатываемых на рабочем столе в чистой комнате. Как правило, рабочие столы в чистой комнате непригодны для использования с любыми потенциально биологически опасными материалами, включая токсичные, мутагенные или канцерогенные вещества, биологические токсины, возбудители инфекции (например, бактерии, вирусы, паразиты и т.д.), и, как правило, не могут быть использованы, если необходимы асептические условия для работы.

Система перемещения/перегрузки на безопасном рабочем столе предпочтительно включает в себя первый блок перемещения/перегрузки и второй блок перемещения/перегрузки, соединяемые друг с другом с возможностью отсоединения, при этом первый блок перемещения/перегрузки представляет собой герметичный компонент, установленный на поверхности BSC, обычно прикрепленный к стенке BSC, и второй блок перемещения/перегрузки представляет собой герметичный контейнер. Герметичный контейнер может быть изготовлен из различных материалов, таких как нержавеющая сталь, полиэтилен и тому подобное. Он может быть жестким или гибким, например, в форме мешка, и может быть контейнером одноразового или многоразового использования. Предпочтительно система перемещения/перегрузки представляет собой систему перемещения/перегрузки DPTE® (Getinge), состоящая из двух отдельных блоков, то есть Альфа и Бета частей, каждая из которых оснащена дверцей, замком, имеет функцию герметизации и обеспечивает возможность последовательно переносить материалы, не нарушая герметичности стерильной или токсической среды, находящейся в Альфа или Бета компоненте.

Устройство с градиентом давления по настоящему изобретению дополнительно включает в себя первый изоляторный модуль и, необязательно, второй или дополнительный изоляторный модуль. Первый изоляторный модуль и второй или дополнительный изоляторный модуль представляют собой BSC класса II, оснащенные системой перемещения/перегрузки, которая обеспечивает асептический перенос материала в BSC и из BSC. Как правило, в передней части прикреплены перчатки для предотвращения соприкосновения с нейротоксином. Системой перемещения/перегрузки может быть, например, система DPTE, описанная выше в связи с безопасным рабочим столом. Первый изоляторный модуль содержит ферментер, в котором проводят этап культивирования Clostridium botulinum. Первый и второй или дополнительный изоляторные модули расположены в производственном помещении, соединенном с окружающей средой через воздушный шлюз, в котором создается градиент давления между изоляторным модулем (модулями), производственным помещением и воздушным шлюзом.

В частности, давление в первом и втором или дополнительном изоляторных модулях ниже, чем в производственном помещении, например, на 10-100 Па, предпочтительнее 20-80 Па, более предпочтительно 50-70 Па, наиболее предпочтительно 60 Па, ниже, чем в производственном помещении. Кроме того, хотя давление в производственном помещении выше, чем в первом и втором или дополнительном изоляторных модулях, оно, тем не менее, ниже, чем давление окружающей среды, например, на 5-50 Па, предпочтительнее 10-30 Па, более предпочтительно 12-18 Па и наиболее предпочтительно 15 Па, ниже давления окружающей среды.

Давление в воздушном шлюзе выше давления окружающей среды, например, на 10-100 Па, предпочтительнее на 20-80 Па, более предпочтительно на 25-35 Па и наиболее предпочтительно на 30 Па выше давления окружающей среды. Иначе говоря, как правило, существует разница в давлении между воздушным шлюзом и производственным помещением приблизительно на 15-150 Па, предпочтительно приблизительно на 30-110 Па, более предпочтительно приблизительно на 37-53 Па и наиболее предпочтительно приблизительно на 45 Па. Термин «давление окружающей среды» означает давление окружающей атмосферы и, как правило, составляет приблизительно 1 атмосферу, но может варьироваться в зависимости от географического положения или метеорологических условий.

Вторым или дополнительным изоляторным модулем может быть BSC, описанный выше в связи с первым изоляторным модулем. Он может работать при том же самом или ином давлении, что и первый изоляторный модуль. Кроме того, первый изоляторный модуль может быть соединен или не соединен со вторым или дополнительным изоляторными модулями, например, посредством одного или нескольких запираемых воздушных шлюзов, контейнера с двойным замком или портов. В соответствии с настоящим изобретением этап культивирования (а) и этап выделения (b) могут проводиться в первом изоляторном модуле. Однако предпочтительнее, чтобы этап культивирования и,