Контактное устройство для измерения конфигурации и размеров объемного тела, система измерения конфигурации и размеров объемного тела, способ измерения конфигурации и размеров объемного тела

Иллюстрации

Показать все

Изобретение относится к вычислению параметров измеряемой поверхности. Контактным устройством для измерения конфигурации и размеров объемного тела измеряют расстояние между оптико-электронными датчиками в установленном блоке измерения и поверхностью эластичной оболочки, на которой нанесена разметка. Полученную информацию обрабатывают. Строят виртуальную модель, повторяющую конфигурацию, размеры и форму исследованной поверхности. Обеспечивается повышение точности измерений поверхности исследуемого объекта. 3 н. и 13 з.п. ф-лы, 15 ил., 3 пр.

Реферат

Контактное устройство для измерения конфигурации и размеров объемного тела, блок измерения конфигурации и размеров объемного тела, способ измерения конфигурации и размеров объемного тела с использованием заявляемого контактного устройства

Заявляются три самостоятельные технические решения, неразрывно связанные между собой и предназначенные для решения единой общей задачи:

- контактное устройство для измерения конфигурации и размеров объемного тела,

- блок измерения конфигурации и размеров объемного тела, которая используется в контактном устройстве для измерения конфигурации и размеров объемного тела,

- способ измерения конфигурации и размеров объемного тела, в котором используется контактное устройство для измерения конфигурации и размеров объемного тела.

Предлагаемые технические решения предназначены преимущественно для вычисления параметров измеряемой поверхности при создании высокоточных ортезов, а также изготовления или подбора персонализированной одежды, обуви, головных уборов, очков, стелек, поверхностей кресел, кроватей и т.д., в интересах обеспечения высокой комфортности при соприкосновении с телом человека.

Неразрывность указанных самостоятельных технических решений в рамках достижения единой цели заключается в том, что первое техническое решение представляет собой решение, в большей степени, механическую систему для измерения конфигурации и размеров объемного тела, причем данная система создает оптимальные условия для высокоточного измерения поверхности объекта, а также служит для размещения оптико-электронных элементов второго технического решения, а именно для блока измерения конфигурации и размеров объемного тела, который в свою очередь обеспечивает измерение объема, конфигурации и формы объемного тела, над которым выполнены технические манипуляции устройством, реализующим первое заявленное техническое решение; представленное же третье техническое решение описывает способ измерения конфигурации и размеров объемного тела, которые реализует на электронно-вычислительном уровне второе техническое решение, а на механическом уровне - первое техническое решение. Таким образом, именно совокупность рассмотренных трех технических решений обеспечивает достижение цели изобретения.

Первое заявляемое техническое решение - контактное устройство для измерения конфигурации и размеров объемного тела решает задачу создания конструкции, при помощи которой удобно выполнять высокоточные измерения и на их основе создавать реконструкции 3-х мерной (объемной) поверхности тела или отдельных его частей, или подбирать из готовых изделий наиболее подходящие для индивидуума изделия.

Создание цифрового образа всего тела или любой отдельной его части осуществляется путем съемки очертания его поверхности и компьютерного моделирования, выполненного по результатам этой съемки.

Из уровня техники известны устройства, при помощи которых выполняются измерения и создаются компьютерные модели.

Из описания к свидетельству (19) RU, (11) 40849, (13) U1, (51) МПК7 А41Н 1/02, известно техническое решение «СИСТЕМА ДЛЯ ПРОИЗВОДСТВА ТОВАРОВ НАРОДНОГО ПОТРЕБЛЕНИЯ», (21), (22) 2004119256/22, 29.06.2004, которая представляет собой специально оборудованные пункты, в которых каждый человек может при желании создать цифровой образ поверхности собственного тела или части его тела и записать образ на пластиковую карточку. В этой системе имеется устройство формирования плоских двумерных изображений поверхности тела человека и/или отдельных его частей в цифровом коде, связанных с первым компьютером, который запрограммирован с возможностью формирования данных, характеризующих размеры тела человека и/или отдельных его частей в виде трехмерной цифровой модели поверхности тела человека и/или отдельных его частей, удаленный компьютер снабжен средством формирования матрицы соответствия размеров тела человека и/или его частей размерам моделей товаров.

Недостатком данной системы является низкая точность, вызванная следующими причинами: используется сенсор, реализующий вычисление глубины (расстояния) до объекта с ограниченной и относительно невысокой точностью. Предложенный метод обеспечивает измерение поверхности одежды, но не тела человека; весьма сложен вопрос объединения данных с множества позиций вследствие наличия погрешностей и неизвестных взаимных позиций местоположений сенсоров (или неизвестных позиций одного сенсора).

Из описания к патенту на изобретение (19) RU(11) 2391042 (13) С2 (51) МПК А61В 5/00(2006.01), (54) «СПОСОБ ИССЛЕДОВАНИЯ СОСТОЯНИЯ ОТДЕЛОВ СТОПЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ» известно устройство, позволяющее получать отпечатки поверхности стопы. Изобретение относится к области медицины и медицинской техники, а именно к ортопедической диагностике, и может быть использовано в качестве объективного метода для диагностики различных деформаций стопы, в частности плоскостопия, повреждений "диабетической стопы" при обследовании пациентов в военкоматах, лечебных и образовательных учреждениях. Отпечатки трех проекций стопы получают при помощи устройства для исследования состояния отделов стопы, содержащего укрепленный горизонтально расположенный планшетный сканер, способный выдерживать вес человека. Дополнительно устройство включает расположенный в вертикальной плоскости планшетный сканер и светоизолирующий кожух.

Недостатком данного устройства является то, что данное устройство предназначено для фиксаций только проекций стопы, а не трехмерного изображения, при этом процесс сканирования выполняется медленно, а устройство имеет низкую надежность.

Известно устройство, позволяющее получать отпечатки поверхности сегментов объемного тела для выбора матраса (см. описание к патенту CN 106061382 (А) - 2016-10-26). Данное устройство содержит: основание, платформу, прикрепленную к основанию таким образом, что она поддерживается под небольшим наклоном, смещенным от вертикали; имеется интерфейс для передачи сигналов, между человеком, опирающимся на платформу и платформой, для создания модели для выбора матраса или дизайна. Устройство может измерять форму предмета, находящегося в лежачем положении, или измерить распределение давления между человеком и платформой. Характеристики формы тела могут быть измерены с помощью оттиска тела и оценены в результате стереоскопического фотографирования вмятин, отмеченных или проецируемых на листовом материале.

Недостатком данного технического решения является низкая точность полученной модели тела, обусловленная следующими причинами: отсутствием проработанного технического решения, обеспечивающим получение стереоскопического изображения, лишенного искажений оптической системы и пространственных геометрических искажений; отсутствием возможности получения модели тела со всех сторон; использованием вторичных данных (формы продавленного матраса), вместо первичных данных (непосредственного измерения поверхности тела человека).

В описании к патенту на полезную модель (19) RU, (11) 149647, (13) U1 (51), МПК А41Н 1/00 (2006.01), (54)« ЭЛАСТИЧНЫЙ ЭТАЛОН ДЛЯ БЕСКОНТАКТНОГО СНЯТИЯ МЕРОК» используются признаки - «эластичная основа, и нерастяжимые графические элементы определенной формы и размера, закрепленные на поверхности эластичной основы, обладающие формоустойчивостыо и нерастяжимостью во всех направлениях и служащие размерным эталоном», используются признаки, имеющиеся в заявляемом контактном устройстве для измерения конфигурации и размеров объемного тела.

Недостаток данного технического решения в том, что для каждого человека нужен свой комбинезон - эталон, при этом создается дискомфорт при надевании-снимании комбинезона, увеличивается время выполнения измерения, к тому же костюм обтягивает объект по выпуклостям, а в вогнутые части тела не прилегает, что не обеспечивает очень высокой точности измерения.

Техническим результатом от использования заявляемого контактного устройства для измерения конфигурации и размеров объемного тела (далее по тексту - устройство) является повышение точности измерений поверхности исследуемого объекта, по сравнению с аналогами, за счет того, что в данном устройстве системой измерения выполняются измерения 3-х мерных поверхностей герметичной и эластичной оболочки (далее по тексту - оболочка) в области, прижатой ко всей исследуемой поверхности тела, где на поверхности оболочек нанесена разметка в виде либо цветных линий, либо цветных участков поверхности, либо маркеров, либо точек.

Для измерения используется устройство, выполненное либо из одного, либо из нескольких соединяющихся между собой модулей, которые могут иметь между собой соединения, например подвижные шарнирные и/или замковые.

Каждый из модулей состоит из герметичного корпуса с жесткими стенками, на внутренних сторонах которых закреплен блок измерения конфигурации и размеров объемного тела (далее по тексту - блок измерения). К этим стенкам герметично крепятся одна или несколько эластичных оболочек, которые раздуваются перед началом измерений до необходимого объема, и сдуваются после окончания измерений. На внутренних поверхностях оболочек в области предполагаемого контакта с поверхностью измеряемого тела нанесена разметка в виде либо цветных линий, либо цветных участков поверхности, либо маркеров, либо точек.

Количество модулей и форма оболочек выбирается в зависимости от размера и сложности конфигурации измеряемой поверхности.

Если устройство предназначено для измерений небольших однотипных поверхностей, то чаще всего форма эластичной оболочки повторяет форму исследуемого объекта.

Если устройство предназначено для измерений больших и/или разнотипных поверхностей, модуль может иметь несколько одинаковых по форме и размеру эластичных оболочек.

В случае, если корпус выполнен разборным, или складным, то такое устройство в разобранном или сложенном состоянии уплощается и занимает мало места.

Внедрение технического решения заявляемого устройства позволит повысить точность измерения трехмерных криволинейных сложных поверхностей для различных индивидуальных высокоточных различных высокоточных изделий - шлемов, очков, париков, обуви, одежды, ортезов.

Описание первого технического решения - контактного устройства для измерения конфигурации и размеров объемного тела

Контактное устройство для измерения конфигурации и размеров объемного тела выполнено из одного или нескольких модулей, соединенных с одним или несколькими компрессорами. Модули имеют в своем составе блок измерения, герметичную эластичную оболочку с нанесенной на ней разметкой, герметично соединенную с одной или несколькими стенками. Модули могут иметь между собой шарнирные и/или замковые соединения.

Устройство имеет два состояния: исходное и состояние в режиме измерения.

В исходном состоянии оболочка не прилегает к измеряемой поверхности, оболочка/оболочки не раздуты, блок измерения конфигурации и размеров объемного тела выключен.

В режиме измерения оболочка раздута, наложена на исследуемую поверхность в зонах контакта и повторяет конфигурацию этой поверхности. При этом разметка нанесена на оболочку в зонах контакта со стороны установки блока измерения конфигурации и размеров объемного тела, который в этом режиме включен.

Контактирующая часть оболочки может как повторять, так и не повторять по форме и размеру измеряемую поверхность. В первом случае конфигурация и размеры поверхности оболочек приближены к конфигурации и размерам измеряемого объемного тела, во втором - оболочки модуля/модулей выполнены не повторяющими форму измеряемого объекта, и преимущественно, выполнены одинаковыми между собой.

Оболочка устройства выполнена из эластичной ткани, которая может быть покрыта, например, силиконом, резиной или латексом.

Разметка может быть выполнена в виде либо цветных линий, либо цветных участков поверхности, либо маркеров, либо точек.

В качестве материала для корпуса может быть выбрана пластмасса.

Описание чертежей:

На Фиг. 1 - Фиг. 8 изображены примеры выполнения устройства, используемого по различным назначениям, где

100 - объект измерения;

101 - модуль;

102 - корпус;

103 - стенка;

104 - система измерения конфигурации и размеров объемного тела;

105 - оболочка;

106 - разметка;

107 - вход - выход воздуха (подключение к компрессору);

108 - шлем;

109 - внутренняя поверхность шлема;

110 - подвижное соединение модулей.

Фиг. 1 - пример устройства для измерения поверхности головы человека, где устройство состоит из одного модуля 101, выполненного из герметичного корпуса 102, имеющего жесткие стенки 103, где на их внутренних сторонах закреплен блок измерения конфигурации и размеров объемного тела 104, состоящего из одной эластичной оболочки 105, герметично соединенной с корпусом 102, с разметкой 106 в виде маркеров на стороне оболочки, не прилегающей к поверхности головы, 107 - подключение компрессора.

Фиг. 2 - пример устройства для измерения поверхности головы человека, где устройство состоит из одного модуля 101, выполненного из герметичного корпуса 102, имеющего жесткие стенки 103, где на их внутренних сторонах закреплен блок измерения конфигурации и размеров объемного тела 104, состоящего из трех эластичных оболочек 105, герметично соединенных с корпусом 102, с разметкой 106 в виде линий и точек на стороне оболочки, не прилегающей к поверхности головы, 107 - подключение компрессора.

Фиг. 3 - пример устройства для измерения поверхности головы человека, где устройство состоит из двух модулей 101, скрепленных между собой при помощи подвижного соединения ПО, выполненных в виде герметичных корпусов 102, имеющих жесткие стенки 103, где на их сторонах закреплен блок измерения конфигурации и размеров объемного тела 104, состоящего из двух эластичных оболочек 105, герметично соединенных с корпусом 102, с разметкой 106 в виде маркеров оболочки, не прилегающей к поверхности головы, 107 - подключение компрессора.

Фиг. 4 - пример устройства для измерения пространства внутри шлема 108, где устройство состоит из одного модуля 101, имеющего жесткую стенку 103, где на ее внутренней стороне закреплен блок измерения конфигурации и размеров 104, одной эластичной оболочки 105, герметично соединенной с корпусом 102, с разметкой 106 в виде маркеров на стороне оболочки, не прилегающей к внутренней поверхности шлема 109, 107 - подключение компрессора.

Фиг. 5 - пример устройства для измерения части лица вокруг глаз человека, где устройство состоит из одного модуля 101, выполненного из герметичного корпуса 102, имеющего жесткие стенки 103, где на их внутренних сторонах закреплен блок измерения конфигурации и размеров объемного тела 104, состоящего из одной эластичной оболочки 105, герметично соединенной с корпусом 102, с разметкой 106 в виде маркеров на стороне оболочки, не прилегающей к поверхности лица, 107 - подключение компрессора.

Фиг. 6 - пример устройства для измерения ноги человека (голени и стопы), где устройство состоит из двух модулей 101, скрепленных между собой при помощи подвижного соединения 110, выполненных из двух герметичных корпусов 102, имеющих жесткие стенки 103, где на их сторонах закреплен блок измерения конфигурации и размеров объемного тела 104, состоящего из двух эластичных оболочек 105, герметично соединенных с корпусом 102, с разметкой 106 в виде линий и точек на сторонах оболочек, не прилегающих к поверхности ноги, 107 - подключение компрессора.

Фиг. 7 - пример устройства для измерения локтевого сустава руки человека, где устройство состоит из одного модуля 101, выполненного из герметичного корпуса 102, имеющего жесткие стенки 103, где на их внутренних сторонах закреплен блок измерения конфигурации и размеров объемного тела 104, состоящего из одной эластичной оболочки 105, герметично соединенной с корпусом 102, с разметкой 106 в виде маркеров на стороне оболочки, не прилегающей к поверхности локтевого сустава, 107 - подключение компрессора.

Фиг. 8 - пример устройства для измерения поверхности кресла для человека, где устройство состоит из одного модуля 101, выполненного из герметичного корпуса 102, имеющего жесткие стенки 103, где на их внутренних сторонах закреплен блок измерения конфигурации и размеров объемного тела 104, состоящего из шести эластичных оболочек 105, герметично соединенных с корпусом 102, с разметкой 106 в виде маркеров на сторонах оболочек, не прилегающих к поверхности тела человека, 107 - подключение компрессора.

На фигурах приведено ограниченное количество воплощений изделия. В реальности их может быть множество, в зависимости от цели применения.

Размеры устройства подбираются в зависимости от размеров измеряемых объектов. Материалы для корпуса - преимущественно пластмасса, оболочка - эластичные ткани, для герметизации покрытые силиконом, резиной или латексом. Величина давления внутри оболочек варьируется в пределах - 0,5÷0,2 Атм., что относится к категории низкого вакуума и низкого давления, что безопасно для человека.

Используемые в устройстве покупные изделия: безмаслянный компрессор мощностью 1,1 КВт, производительностью 180 литров/мин; ресивер объемом 6 литров, Мах давление 8 бар; вакуум создается при помощи эжектора Camozzi Мах значение вакуума для растягивания оболочки не более -0,08 бар, Мах давление в устройстве для сжатия оболочки 0,05 бар (установлено экспериментально).

Второе самостоятельное техническое решение, используемое в первом - блок измерения конфигурации и размеров объемного тела

Данный блок является частным случаем блока измерения конфигурации и размеров объемного тела, который работает в составе контактного устройства для измерения конфигурации и размеров объемного тела.

Посредством его производится измерение размеров и формы поверхности и передача полученной информации в результате обработки информации.

Из уровня техники известно устройство для измерения геометрии профиля сферически изогнутых, в частности, цилиндрических тел, (см. описание изобретения патента (19) RU, (11) 2523092, (13) С2, (51) МПК G01B 11/25 (2006.01), (54) СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ГЕОМЕТРИИ ПРОФИЛЯ СФЕРИЧЕСКИ ИЗОГНУТЫХ, В ЧАСТНОСТИ, ЦИЛИНДРИЧЕСКИХ ТЕЛ), где в качестве средства измерения используют лазерные лучи. Для усиления отражения лазерных лучей в камеру и из критических краевых областей измеряемого объекта двухмерное световое сечение, при котором с использованием, по меньшей мере, одного лазера проецируется веерообразная лазерная линия в качестве линии светового сечения на поверхность тела и отраженные от поверхности тела лучи воспринимаются, по меньшей мере, одной камерой для съемки поверхностей, причем лазер и камера расположены под углом триангуляции в нормальной плоскости по линии оси цилиндра. Согласно методу для измерения геометрии профиля лазер поворачивается вокруг оси цилиндра из нормальной плоскости, причем угол к нормальной плоскости выбирается таким, чтобы оптическая ось камеры для съемки поверхностей, направленная на поверхность цилиндра, находилась в области скользящих углов отраженных лучей.

Недостатком данного устройства является: невозможность одновременного получения изображений объекта со всех сторон и, как следствие, невозможность вычисления параметров формы поверхности объекта в случае, если объект может непроизвольно смещаться относительно лазера или видеокамеры, что приведет к невозможности использования устройства для измерения формы поверхности частей тела человека. Также другим недостатком является то, что использование активной системы из лазера и видеокамеры требует обеспечения вращения объекта для получения изображений со всех его сторон, что дополнительно может внести погрешности в получаемые исходные данные, и как следствие, результат вычисления формы объекта.

Известен патент США 9418475, 16.08.2016, в котором представлены способ и система трехмерного моделирования тела человека на основе анализа его движений, жестикуляций и жестов. Указанный в патенте метод и принцип функционирования системы основаны на использовании видеосенсора с получением расстояний до объектов (глубины) и получении множества проекций тела человека в так называемых ключевых заранее заданных позах на фоне известного структурированного фона с последующим комплексированием полученных данных и построением на основе анализа формы тела человека.

Ключевым недостатком предложенного решения является низкая точность получения реальной формы тела человека, что вызвано следующими причинами: - используется сенсор, реализующий вычисление глубины (расстояния) до объекта с ограниченной и относительно невысокой точностью, предложенный метод обеспечит измерение поверхности одежды, но не тела человека; весьма не тривиален и сложен вопрос объединения данных с множества позиций вследствие наличия погрешностей и неизвестных взаимных позициях местоположений сенсоров (или неизвестных позициях одного сенсора, но в разных позициях).

Известна система для измерения трехмерной формы объектов внутри тела (Пат. США 9134420, 15.09.2015) Недостатком системы является использование ультразвукового принципа получения информации о дальности (глубине) точек анализируемого объекта и низкая точность, обусловленная высокой погрешностью ультразвукового метода, используемого в патенте и базирующегося на анализе сагиттальных плоскостей.

Известны метод и устройство трехмерного анализа и сопровождения частей тела, представленные в патенте США 8121368, 21.02.2012. Основным недостатком является использование томографов (компьютерных и магниторезонансных) для получения изображений, что является крайне дорогостоящим, технически сложным и избыточным решением, а также имеет узкую область применимости.

Известен также ряд решений, отраженных в, частности в патенте США №7794388 14.09.2010, направленных на построение трехмерной формы внутренних органов на основе различных методов. Однако, несмотря на то, что данные решения могут быть применены для решения задачи вычисления трехмерных параметров внешней поверхности тела, люди имеют ряд недостатков, которые не позволяют применять данные решения. В частности, представленные решения в указанных патентных источниках не обеспечат достаточной точности вычисления трехмерной поверхности человека, не обеспечивают требуемой скорости и требуют принципиального изменения, что в конечном итоге не позволяет их применять для решения задачи трехмерного восстановления формы анализируемой части поверхности человека.

Известны метод и устройство для реконструкции трехмерной поверхности тела (пат. США 7742557, 22.07.2010). Предложенные решение базируется на использовании двух оптико-электронных датчиков и данных, полученных рентгеноскопическим аппаратом или иным прибором на основе использования рентгеноскопического изображения.

Недостатком данного технического решения и метода является техническая сложность реализации предложенного решения, требующая использования и нескольких оптико-электронных датчиков оптического диапазона, и датчиков рентгеновского диапазона, что требует решения сложной технической задачи комплексирования информации разных оптических диапазонов и их последующего сопоставления. Кроме того, предложенное в указанном патенте решение ориентировано на анализ и вычисление трехмерной поверхности тела пациентов, что обуславливает их относительно стационарное положение, что также имеет практическое ограничение.

Известно изобретение (пат. США 7708691, 4.05.2010), в котором предложены способ и устройство для трехмерной реконструкции тела без использования контактных элементов или контактного механического воздействия на анализируемых участок тела. Основным недостатком данного решения является использование ультразвуковых датчиков для оценки формы поверхности анализируемого объекта, что обусловливает относительно низкую точность трехмерной реконструкции вследствие сложности реализации сопоставления, идентификации и коррекции искажений изображений с каждого из оптико-электронных датчиков. Кроме того, предложенное устройство конструктивно сложно, а именно имеет ряд элементов, которые требуют их корректного позиционирования и далее обработки данных от всех датчиков, что по указанным выше причинам приводит к сложности и высоким погрешностям.

Известно устройство и метод для сканирования трехмерной формы тела человека (пат. США 6345195) базирующиеся на использовании излучения диапазона 400…2000 нм и последующем анализе полученных в этом диапазоне изображений. Недостатком решения является низкая точность получаемых данных указанного оптического и теплового диапазонов, а также отсутствие представленных решений для сопоставления изображений при их получении с нескольких позиций датчиков, что приводит крайне низкой точности получаемых трехмерных данных.

Известно устройство моделирования и вычисления трехмерной формы тела человека на основе использования серии двумерных изображений (пат. США 9058663, 2015 г). Недостатком предложенного решения является то, что в рамках данного изобретения обеспечивается измерение параметров формы людей при наличии нескольких людей в кадре, это приводит к низкой точности вследствие перекрытия людей друг другом. Также, если даже в кадре будет расположен только один человек, то разработанные метод и устройство, вследствие их основанности на использовании двумерных некалиброванных снимков, не позволят реализовать расчет трехмерной формы объектов с высокой точностью, будет возможна лишь примерная оценка, что недостаточно для решения задачи высокоточного измерения формы поверхности человека.

Известно изобретение (пат. США 9235928, 16.01.2016) в котором представлены подходы восстановления трехмерной формы человека на основе анализа серии двумерных и трехмерных снимков человека в заранее заданных позах. Основными недостатками предложенного изобретения является то, что несмотря на то, что используются трехмерные картины для каждой из поз человека, именно это и обуславливает низкую точность вычисления полной (со всех сторон) формы части человека - головы, конечности, фрагмента поверхности вследствие технической и алгоритмической сложности сопоставления трехмерных координат точек полученных облаков точек с каждой их позиций, что приводит к высоким погрешностям и низкой точности.

Технический результат от использования заявляемого блока измерения заключается в повышении точности измерения формы поверхности анализируемого объекта за счет реализации бинокулярного зрения на основе нескольких пар стереоизображений анализируемой поверхности и наличия в конструкции системы вычислительного модуля, который содержит контроллер оптико-электронных датчиков, модуль нахождения характерных точек, модуль вычисления трехмерных координат, модуль сопоставления характерных точек, модуль построения облака точек, оперативное запоминающее устройство (ОЗУ), энергонезависимый информационный накопитель (далее по тексту - информационный накопитель), управляющий контроллер, модуль ввода-вывода, системную шину, четырех оптико-электронных датчиков, системы из четырех зеркал, где первое, второе, третье, четвертое зеркала размещены перпендикулярно плоскости, содержащей главные оптические оси первого, второго и третьего ОЭД таким образом, что первое и второе зеркала перпендикулярны друг другу, и размещены, соответственно, между первым и вторым ОЭД и между вторым ОЭД и третьим ОЭД.

Вычислительный модуль обеспечивает: обнаружение и сопоставление характерных точек на поверхности анализируемого объекта, выбор точек для решения задачи вычисления их трехмерных координат на основе бинокулярного принципа технического зрения, вычисление трехмерных координат каждой точки поверхности анализируемого объекта и построение аппроксимирующей поверхности, описывающей форму поверхности анализируемого объекта.

Система зеркал предназначена для обеспечения реализации наблюдения любой части поверхности анализируемого объекта с не менее, чем двух позиций наблюдения для обеспечения реализации трехмерного технического зрения на основе бинокулярного принципа реализации вычисления трехмерных координат точек поверхности. Описание второго технического решения

Графические материалы, иллюстрирующие второе заявляемое техническое решение, приведены на Фиг. 9 - Фиг. 12, где Фиг. 9 - функциональная схема блока измерения, Фиг. 10 - изображение взаиморасположения оптико-электронных датчиков и зеркал внутри блока измерения конфигурации и размеров исследуемого объекта, на Фиг. 11 -показано схематическое расположение измеряемого объекта относительно оптико-электронных датчиков, а на Фиг. 12 - схема прохождения лучей от точки поверхности объекта при формировании стереопары изображения различными способами с использованием зеркал и прямых прохождений луча от точки до оптико-электронных датчиков.

Блок измерения Блок измерения конфигурации и размеров объемного тела для измерения конфигурации и размеров объемного тела (далее по тексту - блок) состоит из: первого 401, второго 402, третьего 403, четвертого 404, пятого 405 и шестого 406 плоских зеркал, первого 201, второго 202, третьего 203 и четвертого 204 оптико-электронных датчиков, вычислительного модуля 500.

Вычислительный модуль 500 содержит контроллер оптико-электронных датчиков 501, модуль нахождения характерных точек 502, модуль вычисления трехмерных координат 503, модуль сопоставления характерных точек 504, модуль построения облака точек 505, оперативное запоминающее устройство (ОЗУ) 506, накопитель информации 508, управляющий контроллер 507, модуль ввода-вывода 509, системную шину 300. Причем вход-выход первого оптико-электронных датчика (ОЭД) подключен к первому входу-выходу контроллера ОЭД 201, вход-выход второго ОЭД 202 подключен ко второму входу-выходу контроллера ОЭД 501, вход-выход третьего ОЭД 203 подключен к третьему входу-выходу контроллера ОЭД 501, вход-выход четвертого ОЭД 204 подключен к четвертому входу-выходу контроллера ОЭД 501.

Первый, второй, третий и четвертый входы-выходы контроллера оптико-электронных датчиков 501 являются соответственно первым, вторым, третьим и четвертым входом-выходом вычислительного модуля.

Пятый вход-выход контроллера ОЭД 501 подключен к первому входу-выходу системной шины 300.

Второй вход-выход системной шины 300 соединен с входом-выходом модуля нахождения характерных точек 502.

Третий вход-выход системной шины 300 соединен с входом-выходом модуля вычисления трехмерных координат точек 504.

Четвертый вход-выход системной шины 300 соединен с входом-выходом модуля сопоставления характерных точек 504.

Пятый вход-выход системной шины 300 соединен с входом-выходом модуля построения облака точек 505.

Шестой вход-выход системной шины 300 соединен с входом-выходом ОЗУ 506.

Седьмой вход-выход системной шины 300 соединен входом-выходом управляющего контроллера 507.

Восьмой вход-выход системной шины 300 соединен входом-выходом энергонезависимого накопителя информации 508.

Девятый вход-выход системной шины 300 соединен с первым входом-выходом модуля ввода-вывода 509, второй вход-выход модуля ввода-вывода 509 является входом-выходом вычислительного модуля 500 и предназначен для обмена данными и командами с внешними устройствами.

Первый 201, второй 202, третий 203 и четвертый 204 ОЭД размешены друг относительно друга следующим образом: главные оптические оси [https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect16.pdf] первого 201, второго 202 и третьего 203 ОЭД-ов расположены в одной плоскости, а четвертый ОЭД 204 расположен так, что его главная оптическая ось перпендикулярна плоскости, в которой расположены главные оптические оси первого 201, второго 202 и третьего 203 ОЭД.

В свою очередь, первый 201 и третий 203 ОЭД ориентированы друг напротив друга и размещены на расстоянии L. Их главные оптические оси совпадают. Второй ОЭД 202 расположен так, что его главная оптическая ось перпендикулярна оптическим осям первого 201 и третьего 203 ОЭД и пересекает главные оптические оси первого 201 и третьего 203 ОЭД на равном расстоянии от первого 201 и второго 203 ОЭД.

Второй ОЭД 202 расположен на заданном расстоянии от первого 201 и третьего 203 ОЭД (таким образом, первый, второй и третий ОЭД расположены в вершинах равностороннего прямоугольного треугольника).

Первый 201 и третий 203 ОЭД - расположены в точке пересечения катетов и гипотенузы, а второй ОЭД 202 - в точке пересечения двух катетов.

Четвертый ОЭД 204 расположен так, что его главная оптическая ось проходит через точку пересечения главных оптических осей первого 201, второго 202 и третьего 203 ОЭД. Четвертый ОЭД 204 расположен на высоте Н относительно плоскости главных оптических осей первого 201, второго 202 и третьего 203 ОЭД-ов.

Первое 401, второе 402, третье 403, четвертое 404 зеркала размещены перпендикулярно плоскости, содержащей главные оптические оси первого 201, второго 202 и третьего 203 ОЭД таким образом, что первое 401 и второе 402 зеркала перпендикулярны друг другу, и размещены, соответственно, между первым 201 и вторым 202 ОЭД и между вторым 202 ОЭД и третьим 203 ОЭД.

Девятый вход-выход системной шины 300 соединен с первым входом-выходом модуля ввода-вывода 509, второй вход-выход модуля ввода-вывода 509 является входом-выходом вычислительного модуля 500 и предназначен для обмена данными и командами с внешними устройствами.

Первый 201, второй 202, третий 203 и четвертый 204 ОЭД размешены друг относительно друга следующим образом - главные оптические оси [https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect16.pdf] первого 201, второго 202 и третьего 203 ОЭД расположены в одной плоскости, а четвертый ОЭД 204 расположен так, что его главная оптическая ось перпендикулярна плоскости, в которой расположены главные оптические оси первого 201, второго 202 и третьего 203 ОЭД.

В свою очередь первый 201 и третий 203 ОЭД ориентированы друг напротив друга и размещены на расстоянии L. Их главные оптические оси совпадают. Второй ОЭД 202 расположен так, что его главная оптическая ось перпендикулярна оптическим осям первого 201 и третьего 203 ОЭД и пересекает главные оптические оси первого 201 и третьего 203 ОЭД на равном расстоянии от первого 201 и второго 203 ОЭД.

Второй ОЭД 202 расположен на заданном расстоянии от первого 201 и третьего 203 ОЭД (таким образом, первый, второй и третий ОЭД расположены в вершинах равностороннего прямоугольного треугольника).

Первый и третий ОЭД расположены в точках пересечения катетов и гипотенузы, а второй ОЭД 202 - в точке пересечения двух катетов.

Четвертый ОЭД 204 расположен так, что его главная оптическая ось проходит через точку пересечения главных оптических осей первого 201, второго 202 и третьего 203 ОЭД, при этом четвертый ОЭД 204 расположен на высоте Н относительно плоскости главных оптических осей первого 201, второго 202 и третьего 203 ОЭД.

Первое 401, второе 402, третье 403, четвертое 404 зеркала размещены перпендикулярно плоскости, содержащей главные оптические оси первого 201, второго 202 и третьего 203 ОЭД таким образом, что первое 401 и второе 402 зеркала перпендикулярны друг другу, и размещены, соответственно, между первым 201 и вторым 202 ОЭД и между вторым 202 ОЭД и третьим 203 ОЭД.

В свою очередь четвертое зеркало 404 перпендикулярно второму зеркалу 402, при этом второе зеркало 402 и четвертое зеркало 404 расположены с разных сторон относительно третьего ОЭД 203.

Третье зеркало 403 перпендикулярно первому зеркалу 401, при этом третье зеркало 403 и первое зеркало 401 расположены с разных сторон относительно первого ОЭД 201.

Пятое 405 зеркало размещено в плоскости, ориентированной под углом 45 градусов к плоскости, в которой размещены оптические оси первого 201, второго 202 и третьего 203 ОЭД, и расположено между третьим 203 и четвертым 204 ОЭД.

Шестое 406 зеркало размещено в плоскости, ориентированной под углом 45 градусов к плоскости, в которой размещены оптические оси первого 201, второго 202 и третьего 203 ОЭД и расположено между первым 201 и четвертым 204 ОЭД.

Рассмотрим работу блока на примере измерения формы и конфигурации поверхности головы человека.

Человек, обмер головы которого производится заявляемым блоком измерения, размещает свою голову примерно в центре предлагаемого устройства примерно на равном расстоянии от всех четырех - первого 201, второго 202, третьего 203 и четвертого 204 ОЭД. К поверхности головы неболь