Способ точечной контактной сварки

Иллюстрации

Показать все

Изобретение может быть использовано при точечной сварке высокопрочных стальных листов с использованием инверторного источника питания постоянного тока. Осуществляют изменяемое управление временем подачи тока, интервалами между импульсами тока и сварочными током. Проводят два или более этапов импульсной подачи тока. Соотношение между временем подачи тока, временем отсутствия подачи тока и сварочным током представлено в виде множества следующих друг за другом импульсов тока. Первый этап импульсной подачи тока является начальным этапом подачи импульсов тока, причем минимальный сварочный ток на втором этапе импульсной подачи тока выше, чем максимальный сварочный ток на упомянутом первом этапе импульсной подачи тока. Способ обеспечивает размер ядра, соответствующий толщине листа, при подавлении возникновения внутреннего и внешнего разбрызгивания. 6 з.п. ф-лы, 10 ил., 3 табл., 3 пр.

Реферат

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к способу точечной контактной сварки, а более конкретно, к способу точечной контактной сварки, в котором используется инверторный источник питания постоянного тока.

Предшествующий уровень техники

[0002] Сборка кузовов автомобилей производится в основном путем соединения штампованных стальных листов с помощью точечной контактной сварки. При точечной контактной сварке, используемой при сборке кузовов автомобилей, необходимо обеспечивать размер ядра, соответствующий толщине листа, и подавлять возникновение сварочных брызг.

[0003] Например, диапазон, ограниченный значением тока, равным 4√t (где t – толщина листа в мм), или другим базовым размером ядра, используемым в качестве нижнего предела (который в дальнейшем упоминается как "нижний предел тока" или "4√t⋅I" (где I – сварочный ток)), и значением тока, при котором происходит разбрызгивание, в качестве верхнего предела (который в дальнейшем упоминается как "верхний предел тока" или "ток разбрызгивания"), обычно считается важным индикатором, имеющим отношение к точечной сварке стальных листов. Нижний предел тока и верхний предел тока измеряются в идеальном состоянии на тестируемом образце.

[0004] Разбрызгивание включает в себя внутреннее разбрызгивание (явление выброса капель расплавленного при сварке металла основного материала, который разбрызгивается с поверхностей наложенных друг на друга стальных листов) и внешнее разбрызгивание (явление выброса капель расплавленного при сварке металла основного материала, который разбрызгивается с контактных поверхностей стальных листов и электродов). В обоих случаях, качество поверхности снижается за счет образования сварочных брызг и прилипания их к кузову автомобиля. Кроме того, прилипание сварочных брызг к подвижным частям сварочного робототехнического устройства приводит к плохой работе оборудования. Кроме того, внешнее разбрызгивание, которое приводит к возникновению сварочных брызг на поверхности части точечной сварки в виде игольчатых форм, становится причиной повреждения жгутов проводов автомобилей и т.д., поэтому для очистки поверхности от сварочных брызг необходимо использовать шлифмашину. В связи с этим необходимо предотвратить возникновение внутреннего разбрызгивания и внешнего разбрызгивания при точечной контактной сварке и обеспечить заданный размер ядра.

[0005] В идеальном состоянии нижний предел тока оценивается на уровне тестируемого образца. Однако при существующей сборке кузова автомобиля из-за износа электродов, шунтирования имеющихся сварочных точек, зазора между штампованными деталями и других различных внешних факторов даже в случае, если сварка реального кузова автомобиля производится при значении тока, равным 4√t на уровне тестируемого образца, размер ядра будет иногда уменьшаться ниже 4√t. По этой причине на линии массового производства необходимо устанавливать значение тока 1,0 кА или более, предпочтительно 1,5 кА или более и выше, чем значение тока, равное 4√t на уровне тестируемого образца, в качестве приемлемого нижнего предельного значения тока. Поэтому, если требуется получить стабильный размер ядра, равный 4√t или более, на линии массового производства без возникновения разбрызгивания, необходимо, чтобы подходящий диапазон значений токов при оценке уровня тестируемого образца был равен 1,0 кА или более, предпочтительно 1,5 кА или более. Это связано с тем, что если заданный подходящий диапазон значений тока нельзя обеспечить на уровне тестируемого образца, необходимо устанавливать значение тока на ток, при котором происходит разбрызгивание, чтобы обеспечить стабильный размер ядра 4√t при точечной сварке на фактическом рабочем месте, где существует много внешних возмущений.

[0006] В последние годы при сборке автомобилей все чаще применяются машины для точечной контактной сварки, использующие источник питания постоянного тока инверторного типа вместо однофазного источника питания переменного тока. Источник питания постоянного тока инверторного типа позволяет использовать трансформатор меньшего размера, что является преимуществом, которое состоит в том, что можно выполнить робототехническое устройство с меньшей несущей способностью для переноса источника питания, и, следовательно, этот источник питания инверторного типа особенно часто используется на автоматизированных линиях.

[0007] Источник питания постоянного тока инверторного типа не обеспечивает включение и выключение подачи тока так, как это обычно происходит в однофазной системе переменного тока, а постоянно подает ток, поэтому эффективность выделения тепла является значительной. В связи с этим сообщается, что даже в случае оцинкованного материала тонкой листовой мягкой стали, где образование ядра является затруднительным, ядро формируется при низком токе, и подходящий диапазон значений тока больше, чем в однофазной системе переменного тока.

[0008] С другой стороны, в случае сварки высокопрочного стального листа, где легко образуется ядро сварной точки, с помощью инверторного источника питания постоянного тока, в противоположность мягкой листовой стали, ток, при котором происходит разбрызгивание, является низким. То есть иногда верхний предел тока становится ниже, и поэтому подходящий диапазон значений тока становится значительно более узким. Как показано на фиг.1, при точечной контактной сварке одностадийная система подачи тока, выполняющая подачу тока только единовременно, часто используется при точечной контактной сварке автомобилей. Однако при использовании одностадийной системы подачи тока подходящий диапазон значений тока становится более узким, поэтому была описана система подачи тока, которая расширяет подходящий диапазон значений тока.

[0009] Как показано на фиг.2, в PLT 1 раскрыт способ применения двухстадийной системы подачи тока, использующей предварительную подачу тока для улучшения сопряжения между контактными поверхностями стальных листов, и дальнейшего выполнения основной подачи тока для того, чтобы подавить возникновение разбрызгивания при точечной контактной сварке высокопрочных стальных листов.

[0010] Как показано на фиг.3, в PLT 2 раскрыт способ применения системы подачи тока, использующей предварительную подачу тока для улучшения сопряжения между контактными поверхностями стальных листов, и дальнейшего прекращения подачи тока и затем использования основной подачи тока для того, чтобы подавить возникновение сварочных брызг при точечной контактной сварке высокопрочных стальных листов.

[0011] Как показано на фиг.4 и 5, в PLT 3 рассмотрен трехстадийный процесс подачи тока. То есть он содержит первый этап образования ядра в качестве этапа предварительной подачи тока, второй этап формирования спада тока после предварительной подачи тока и увеличения площади участка точечного сварного соединения, окружающего ядро сварной точки, и третий этап подачи тока, значение которого больше, чем у предварительно поданного тока после второго этапа, и увеличения размера ядра сварной точки в качестве основного этапа подачи тока. В данном способе из-за предварительной подачи тока улучшается сопряжение между контактными поверхностями стальных листов, уменьшается ток и затем выполняется основная подача определенного тока или основная подача тока импульсной формы, в результате чего подавляется возникновение разбрызгивания при точечной контактной сварке высокопрочного стального листа. Кроме того, в PLT 3 раскрыто выполнение третьего этапа, на котором система импульсной подачи тока позволяет создать эффект увеличения диаметра зоны проводимости до большего размера и подавить возникновение разбрызгивания по сравнению с системой непрерывной подачи тока.

[0012] Как показано на фиг.6, в PLT 4 раскрыт способ использования точечной контактной сварки с периодическим изменением амплитуды тока при увеличении значения тока для подавления возникновения разбрызгивания при точечной контактной сварке высокопрочных стальных листов.

[0013] Как показано на фиг.7, в NPLT 2 раскрыт способ точечной контактной сварки для стальных листов толщиной 1,5 мм или более, который содержит подачу тока в течение 120 мс (шесть периодов на частоте 50 Гц) или более или отсутствие подачи тока в течение 40 мс (два периода на частоте 50 Гц) с повторением до трех раз или более.

Перечень цитируемой литературы

Патентная литература

[0014] PLT 1. Японская патентная публикация № 2010-188408A

PLT 2. Японская патентная публикация № 2003-236674A

PLT 3. Японская патентная публикация № 2010-207909A

PLT 4. Японская патентная публикация № 2006-181621A

Непатентная литература

[0015] NPLT 1. LAURENZ, et al: SchweissenSchneiden, 64-10 (2012), 654-661.

NPLT 2. ISO 18278-2 Resistance Welding-Weldability- Part 2. Alternative procedure for the assessment of sheet steels for spot welding

Сущность изобретения

Техническая задача

[0016] В последние годы в качестве стального листа для автомобилей все чаще используется высокопрочный стальной лист с целью облегчения веса кузовов автомобилей и повышения уровня безопасности при столкновении. Кроме того, все чаще применяется горячая штамповка (способ нагрева стального листа до температуры закалки для его аустенизации и затем прессования при одновременном охлаждении в форме с целью его закалки). Большинство прессованных деталей сверхвысокопрочного стального листа с пределом прочности класса 1180-2000 MПА производится с помощью горячей штамповки.

[0017] На поверхность стального листа, который используется для горячей штамповки, иногда не наносится гальваническое покрытие и иногда наносится гальваническое покрытие на основе цинка или на основе алюминия, или в других случаях она подвергается поверхностной обработке для предотвращения образования железной окалины при нагревании до высокой температуры. Следует отметить, что горячештампованный стальной лист во многих случаях не является плоским листом, а имеет определенную форму. В данном описании высокопрочный стальной лист, который подвергается горячей штамповке, будет упоминаться как "горячештампованный стальной лист", включающий в себя различные разновидности форм. Кроме того, таким же образом стальной лист с нанесенным гальваническим покрытием на основе цинка, стальной лист с гальваническим покрытием на основе алюминия или такой стальной лист с дополнительным покрытием на поверхности, который подвергается горячей штамповке, будет упоминаться как "поверхностно-обработанный горячештампованный стальной лист".

[0018] В случае сварки горячештампованных стальных листов с помощью машины для точечной контактной сварки с инверторным источником питания постоянного тока иногда происходит разбрызгивание при более низком значении тока, чем в случае использования однофазного источника питания переменного тока, в противоположность мягкому стальному листу, и возникает явление сужения подходящего диапазона значений тока. Например, в NPLT 1 сообщается, что это явление возникает при точечной контактной сварке алюминированного горячештампованного стального листа.

[0019] В частности, поверхностно-обработанный горячештампованный стальной лист становится более восприимчивым к внутреннему разбрызгиванию наряду с внешним разбрызгиванием, и в случае инверторного источника питания постоянного тока подходящий диапазон значений тока становится значительно уже. По этой причине также становится меньше размер ядра сварной точки, полученный без возникновения разбрызгивания.

[0020] Внутреннее разбрызгивание, причины которого до сих пор не выяснены, происходит следующим образом. В области точечной сварки существует часть, которая образует соединение при сжатии (часть участка точечного сварного соединения), сжимаемая электродами, вокруг расплавленного и затвердевающего ядра сварной точки, в которой уплотняется расплавленный металл. Если внутреннее давление расплавленного металла превышает внешнее давление, действующее на часть участка точечного сварного соединения, становится невозможным дальнейшее уплотнение расплавленного металла, и будет происходить внутреннее разбрызгивание. В общем, если часть, которая соединяется при сжатии, сужается, будет отсутствовать возможность сдерживания внутреннего давления, и будет легко происходить разбрызгивание. По этой причине для подавления возникновения разбрызгивания необходимо улучшать сопряжение между одним стальным листом и другим стальным листом, расширять часть, которая соединяется при сжатии, и избегать внезапного выделения тепла для того, чтобы постепенно увеличивалось ядро сварной точки.

[0021] Поверхностно-обработанный горячештампованный стальной лист имеет оксидную пленку, которая в основном состоит из металла, полученного в ходе нанесения гальванического покрытия на поверхность стального листа (например, цинка, если наносится гальваническое покрытие на основе цинка, и алюминия, если наносится гальваническое покрытие на основе алюминия), или оксидной пленки, полученной в ходе поверхностной обработки. Поэтому по сравнению с необработанным стальным листом положение, где протекает ток на поверхности стального листа, становится локальным, и повышенная плотность тока склонна вызывать быстрое выделение тепла. С другой стороны, в процессе горячей штамповки продолжается сплавление гальванического покрытия и стали, и температура плавления сплава, образованного на поверхности стального листа, также вырастает до высокой температуры, близкой к температуре плавления железа. По этой причине по сравнению со стальным листом, выполненным с гальванической пленкой перед нагреванием, контактные части стальных листов размягчаются, поэтому подавляется увеличение пути прохождения тока. В частности, инверторная система постоянного тока имеет более высокую эффективность выделения тепла по сравнению с однофазной системой переменного тока из-за непрерывной подачи тока, поэтому чрезвычайно быстро происходит образование ядра сварной точки на начальной стадии подачи тока. По этой причине считается, что рост части, которая соединяется при сжатии, вокруг ядра сварной точки, не может поддерживаться на одном уровне, и расплавленный металл не может больше уплотняться, поэтому происходит внутреннее разбрызгивание.

[0022] Кроме того, причина возникновения внешнего разбрызгивания является аналогичной. Из-за воздействия оксидной пленки и т.д. сопротивление становится выше на контактных частях стали и электродов, и становится больше количество выделяемого тепла. В дополнение к этому, инверторная система постоянного тока представляет собой систему непрерывной подачи тока. В такой однофазной системе переменного тока отсутствует время отсутствия подачи тока, поэтому становится трудным получение эффективного охлаждения с помощью медного электрода. Поэтому считается, что ядро сварной точки легко растет в направлении толщины листа, расплавленная часть достигает снизу наружный слой стального листа, и происходит наружное разбрызгивание.

[0023] Способ, описанный в PLT 1, представляет собой способ точечной контактной сварки высокопрочного стального листа. При использовании поверхностно-обработанного горячештампованного стального листа значение тока, которое может не вызывать разбрызгивания при начальной первой подаче тока, является низким, но эффект подавления разбрызгивания за счет расширения пути прохождения тока и снижения плотности тока является недостаточным. По этой причине в случае увеличения тока во второй половине подачи тока наблюдались случаи, где происходило внутреннее разбрызгивание и внешнее разбрызгивание. Этого недостаточно для обеспечения подходящего диапазона значений тока.

[0024] Способ, описанный в PLT 2, так же как и в PLT 1, имеет более низкое значении тока, которое не может быть задано при начальной первой подаче тока, не вызывая разбрызгивания на поверхностно-обработанном горячештампованном стальном листе. По сравнению с PLT 1 увеличивается верхний предел тока, но в случае увеличения тока на второй стадии наблюдаются случаи возникновения внутреннего разбрызгивания. Однако данного способа недостаточно для обеспечения подходящего диапазона значений тока.

[0025] В способе PLT 3 показаны только примеры сварочной машины для точечной сварки, работающей на однофазном переменном токе. Случай использования сварочной машины для точечной сварки на основе инвертора постоянного тока не подтвержден. Кроме того, в примерах рассмотрен случай высокопрочной стали с пределом прочности 980 МПа, но не рассмотрен случай поверхностно-обработанного горячештампованного материала, восприимчивого к разбрызгиванию. Авторы изобретения использовали машину для точечной сварки на основе инвертора постоянного тока для исследования эффекта предшествующего уровня техники PLT 3 для поверхностно-обработанного горячештампованного стального листа. В результате, не был получен подходящий диапазон значений тока, где размер ядра сварной точки становится равным 4√t, при этом разбрызгивание возникает при токе, равном 1,5 кА или более. Эффект был по-прежнему недостаточным. Это нельзя было непосредственно применить к контактной сварке сопротивлением поверхностно-обработанного горячештампованного стального листа, восприимчивого к возникновению разбрызгивания на поверхности. Кроме того, это особенно относится к контактной сварке сопротивлением с использованием инверторного источника питания постоянного тока, когда плотность тока становится выше по сравнению с однофазной системой источника питания переменного тока.

[0026] Система подачи тока, описанная в PLT 4, имеет эффект расширения подходящего диапазона значений тока для стальных материалов с пределом прочности вплоть до класса 980 МПа, но в более высокопрочном поверхностно-обработанном горячештампованном стальном листе внутреннее разбрызгивание и внешнее разбрызгивание легко возникают во время второго или третьего изменения тока в сторону возрастания тока. Эта картина подачи тока не подходит для сварки горячештампованных материалов.

[0027] При использовании системы подачи тока, раскрытой в NPLT 2, даже в том случае, когда подача тока является самой короткой, то есть 6 периодов (120 мс). В поверхностно-обработанном горячештампованном стальном листе внутреннее разбрызгивание происходит со временем подачи тока короче, чем шесть периодов, поэтому с помощью этой системы подачи тока нельзя повысить верхний предел тока. Поэтому в случае сокращения времени подачи тока при импульсной подаче тока верхний предел тока будет повышаться, но снижение эффективности выделения тепла будет вызывать повышение нижнего предела тока, и вследствие этого подходящий диапазон значений тока не сможет расширяться. Поэтому данный способ также не подходит.

[0028] Задача настоящего изобретения состоит в том, чтобы применить инверторный источник питания постоянного тока для точечной контактной сварки внахлестку поверхностно-обработанных горячештампованных стальных листов и горячештампованных стальных листов. То есть задача настоящего изобретения состоит в том, чтобы выполнить способ точечной контактной сварки с использованием системы инверторного источника питания постоянного тока, который может подавить возникновение внешнего разбрызгивания и внутреннего разбрызгивания и может обеспечить широкий подходящий диапазон значений тока.

Решение технической задачи

[0029] Авторы изобретения использовали источник питания постоянного тока инверторного типа для точечной сварки, провели исследования с использованием поверхностно-обработанных горячештампованных стальных листов класса 1500 МПа и, таким образом, получили следующие результаты.

[0030] (a) Авторы изобретения обнаружили, что за счет использования системы импульсной подачи тока, возникает эффект повторного охлаждения и нагревания, поэтому за счет использования системы импульсной подачи тока для инверторной системы постоянного тока можно ослабить повышение температуры из-за высокого тепловыделения. То есть авторы изобретения обнаружили, что за счет управления временем подачи тока и временем отсутствия подачи тока при импульсной подаче тока можно управлять повышением температуры во время сварки и управлять скоростью роста ядра сварной точки. В связи с этим, можно подавить внезапный рост ядра сварной точки.

[0031] (b) Наряду с этим авторы изобретения обнаружили, что ростом участка точечного сварного соединения можно также управлять с помощью силы сжатия, создаваемой электродами, и управлением током при импульсной подаче тока. То есть на этапе импульсной подачи тока можно заставить контактные поверхности колебаться за счет теплового расширения и сжатия, поэтому, хотя этот эффект проявляется особенно заметно в поверхностно-обработанных горячештампованных материалах, оксидный слой с высокой температурой плавления сильно повреждается, и на контактной поверхности раздела между электродами и стальными листами и между одним стальным листом и другим стальным листом (область, где фактически протекает ток) может образоваться множество точек проводимости, и можно подавить повышение плотности тока на контактной поверхности раздела и подавить быстрый рост ядра сварной точки. Благодаря этим действиям можно подавить возникновение внутреннего разбрызгивания и внешнего разбрызгивания, улучшая тем самым сопряжение в течение короткого периода времени.

[0032] (c) Авторы изобретения обнаружили, что за счет подходящего управления скоростью роста ядра сварной точки и скоростью роста участка точечного сварного соединения можно устранить возникновение разбрызгивания и увеличить размер ядра сварной точки. То есть авторы изобретения обнаружили, что можно подавить снижение верхнего предела тока и обеспечить подходящий диапазон значений тока.

[0033] (d) Из-за различной толщины, прочности (предела прочности при растяжении), формы и других факторов наложенных друг на друга стальных листов изменяется оптимальная картина проводимости. При сварке с помощью инверторной системы постоянного тока возникает необходимость в соблюдении различных условий. По этой причине авторы изобретения обнаружили, что управляя временем подачи тока, величиной подаваемого тока, интервалами между импульсами и т.д. для каждого импульса, можно просто и быстро устанавливать условия сварки и можно выполнить хорошо точечную контактную сварку.

[0034] (e) Например, авторы изобретения обнаружили, что при точечной сварке поверхностно-обработанных горячештампованных стальных листов одинаковой толщины, двухстадийную импульсную подачу тока можно выполнить следующим образом. То есть, если первый этап импульсной подачи тока с повторением подачи тока и отсутствием подачи тока выполняется с целью улучшения сопряжения контактных поверхностей стальных листов и расширения пути прохождения тока, и затем выполняется второй этап импульсной подачи тока с повторением подачи тока и отсутствием подачи тока с более высоким током, чем на первом этапе импульсной подачи тока, с целью увеличения размера ядра сварной точки, можно подавить возникновение внутреннего разбрызгивания и внешнего разбрызгивания при выполнении точечной контактной сварки в широком, стабильном подходящем диапазоне значений тока. Поэтому на первом этапе импульсной подачи тока предполагается, что растет участок точечного сварного соединения и одновременно образуется ядро сварной точки. Кроме того, считается возможным производить основную подачу тока на втором этапе импульсной подачи тока и осуществлять рост большого, ядра сварной точки, чтобы получить заданный размер ядра сварной точки.

[0035] Настоящее изобретение было выполнено на основании этого открытия и имеет по своей сущности следующие способы точечной контактной сварки:

[0036] (1) Способ точечной контактной сварки для сварки нескольких наложенных стальных листов, включающих в себя высокопрочный стальной лист, причем способ точечной контактной сварки и система подачи тока осуществляют импульсную подачу тока с использованием сварочного инверторного источника питания постоянного тока, и, в множестве импульсов тока, образующих импульсную подачу тока в виде соответствующих импульсов тока, осуществляется изменяемое управление временем подачи тока, интервалами между импульсами тока, которые определяются как время отсутствия подачи тока, и сварочными токами, подаваемыми с помощью импульсов тока.

(2) Способ точечной контактной сварки по п.(1), который имеет один или более этапов импульсной подачи тока из группы импульсов тока, с помощью которой соотношение между временем подачи тока и временем отсутствия подачи тока и сварочным током можно единообразно представить в виде многочисленных, следующих друг за другом импульсов тока.

(3) Способ точечной контактной сварки по п.(2), который имеет множество этапов импульсной подачи тока и где, на начальном этапе подачи импульсов тока первого этапа импульсной подачи тока и последующем второго этапа импульсной подачи тока, минимальный сварочный ток на втором этапе импульсной подачи тока выше, чем максимальный сварочный ток на первом этапе импульсной подачи тока.

(4) Способ точечной контактной сварки по п.(3), в котором на первом этапе импульсной подачи тока имеется два или более импульсов тока, причем время подачи импульсов тока равно соответственно 5-60 мс, и время отсутствия подачи тока равно 5-60 мс, на втором этапе импульсной подачи тока имеется три или более импульсов тока, причем время подачи импульсов тока равно соответственно 5-60 мс, и время отсутствия подачи тока равно 5-60 мс, и время отсутствия подачи тока между первым этапом импульсной подачи тока и вторым этапом импульсной подачи тока равно 5-120 мс.

(5) Способ точечной контактной сварки по п.(3) или п.(4), в котором сварочный ток на первом этапе импульсной подачи тока 5,0-14,0 кА, в то время как сварочный ток на втором этапе импульсной подачи тока равен 5,0-16,0 кА.

(6) Способ точечной контактной сварки по любому из пп.(3)-(5), в котором минимальный сварочный ток на втором этапе импульсной подачи тока равен 0,5 кА или гораздо выше, чем максимальный сварочный ток на первом этапе импульсной подачи тока.

(7) Способ точечной контактной сварки по любому из пп.(3)-(6), в котором сварочный ток на первом этапе импульсной подачи тока имеет постоянное значение, и сварочный ток на втором этапе импульсной подачи тока имеет постоянное значение.

(8) Способ точечной контактной сварки по любому из пп.(1)-(7), в котором на поверхность высокопрочного стального листа нанесено пленочное покрытие на основе цинка или пленочное покрытие на основе алюминия.

(9) Способ точечной контактной сварки по любому из пп.(1)-(8), в котором высокопрочный стальной лист представляет собой горячештампованный стальной лист.

Преимущественные эффекты изобретения

[0037] Согласно настоящему изобретению при точечной контактной сварке высокопрочных наложенных друг на друга стальных листов даже в том случае, если используется инверторный источник питания постоянного тока, можно подавить возникновение внешнего разбрызгивания и внутреннего разбрызгивания при увеличении размера ядра сварной точки при точечной контактной сварке. Поэтому, используя способ точечной контактной сварки согласно настоящему изобретению, даже используя стальные листы, чрезвычайно восприимчивые к разбрызгиванию, такие как поверхностно-обработанные горячештампованные стальные листы, становится возможной эффективная и стабильная точечная контактная сварка.

Краткое описание чертежей

[0038] Фиг.1 – пояснительный вид, схематично показывающий систему одностадийной подачи тока, выполняющую подачу тока только единовременно.

Фиг.2 – пояснительный вид, схематично показывающий систему подачи тока в PLT 1.

Фиг.3 – пояснительный вид, схематично показывающий систему подачи тока в PLT 2.

Фиг.4 – пояснительный вид, схематично показывающий систему подачи тока в PLT 3.

Фиг.5 – пояснительный вид, схематично показывающий систему подачи тока в PLT 3.

Фиг.6 – пояснительный вид, схематично показывающий систему подачи тока в PLT 4.

Фиг.7 – пояснительный вид, схематично показывающий систему подачи тока в NPLT 2.

Фиг.8А – пояснительный вид импульсов тока при импульсной подаче тока.

Фиг.8B - пояснительный вид, схематично показывающий зависимость сварочного тока от времени согласно настоящему изобретению и показывающий случай, где импульсы тока изменяются произвольным образом.

Фиг.8C - пояснительный вид, схематично показывающий зависимость сварочного тока от времени согласно настоящему изобретению и показывающий случай, где импульсы тока изменяются по линейному закону.

Фиг.8D - пояснительный вид, схематично показывающий зависимость сварочного тока от времени согласно настоящему изобретению и показывающий случай, где импульсы тока изменяются по квадратичному закону.

Фиг.8E - пояснительный вид, схематично показывающий зависимость сварочного тока от времени согласно одному аспекту настоящего изобретения.

Фиг.9 - пояснительный вид, схематично показывающий систему подачи тока на первом этапе импульсной подачи тока настоящего изобретения.

Фиг.10 - пояснительный вид, схематично показывающий систему подачи тока на втором этапе импульсной подачи тока настоящего изобретения.

Подробное описание изобретения

[0039]Варианты осуществления настоящего изобретения будут описаны ниже со ссылкой на пример точечной контактной сварки, широко используемой при сборке кузовов автомобилей.

[0040] Комбинация листов, охваченных настоящим изобретением, состоит из двух или более наложенных стальных листов, по меньшей мере один из которых представляет собой высокопрочный стальной лист класса 590 МПа или более. При нормальной сборке кузовов автомобилей сварка двух или трех наложенных друг на друга стальных листов осуществляется с помощью точечной контактной сварки.

[0041] В частности, высокопрочный стальной лист не ограничивается конкретным типом. Например, изобретение можно применить к дисперсионно-упрочненному стальному листу, стальному листу DP (двухфазному), стальному листу TRIP (с пластичностью, наведенной превращением), горячештампованному стальному листу или другому высокопрочному стальному листу с пределом прочности 590 МПа или более. Способ точечной контактной сварки согласно настоящему изобретению проявляет свой эффект в случае, когда он выполняется по отношению к комбинациям листов, включающих в себя высокопрочный стальной лист с пределом прочности 980 МПа или более. Чтобы получить действие и эффект настоящего изобретения в большей степени, способ предпочтительно применим к комбинации листов, включающих в себя высокопрочный стальной лист с пределом прочности 1200 МПа или более, более предпочтительно применим к комбинации листов, включающих в себя высокопрочный стальной лист с пределом прочности 1500 МПа или более.

[0042] Кроме того, высокопрочный стальной лист может быть холоднокатаным стальным листом или может быть горячекатаным стальным листом. Кроме того, наличие или отсутствие гальванического покрытия не является проблемой. Стальной лист с гальваническим покрытием является приемлемым, хотя также возможен стальной лист без гальванического покрытия. Кроме того, в случае стального листа с гальваническим покрытием, тип гальванического покрытия также не имеет особых ограничений.

[0043] Как объяснено выше, настоящее изобретение является эффективным для различных высокопрочных стальных листов, но эффект настоящего изобретения особенно проявляется для поверхностно-обработанного горячештампованного стального листа с узким подходящим диапазоном значений тока. На поверхности поверхностно-обработанного горячештампованного стального листа образуется слой твердого раствора в ходе реакции легирования между гальванической пленкой на основе цинка (чистого Zn, Zn-Fe, Zn-Ni, Zn-Al, Zn-Mg, Zn-Mg-Al и т.д.) или на основе алюминия (Al-Si и т.д.) и сталью основного материала. Кроме того, эти поверхности формируются с оксидным слоем, который в основном состоит из цинка или алюминия. Кроме того, иногда поверхность пленки, которая в основном состоит из интерметаллических соединений железа и алюминия, формируется с пленкой, которая в основном состоит оксида цинка, для повышения коррозионной стойкости. Как объяснено выше, поверхностно-обработанный горячештампованный стальной лист включает в себя такие оксиды на своей поверхности, поэтому предполагается, что легко возникают внутреннее разбрызгивание и внешнее разбрызгивание. В случае системы одностадийной подачи тока, использующей инверторный источник питания постоянного тока, подходящий диапазон значений тока составляет часто менее чем 1 кА.

[0044] В частности, толщина высокопрочного стального листа не ограничивается. В общем, толщина стального листа, использованного в автомобильных деталях или кузовах автомобиле, составляет 0,6-3,2 мм. Точечная контактная сварка согласно настоящему изобретению имеет достаточный эффект в этом диапазоне.

[0045] Сварочная машина, используемая в настоящем изобретении, представляет собой машину для точечной контактной сварки на основе инверторной системы постоянного тока. Машины для точечной контактной сварки включают в себя однофазную систему переменного тока и инверторную систему постоянного тока. При сварке комбинации листов, включающих в себя горячештампованный стальной лист или другой высокопрочный стальной лист, разбрызгивание возникает сильнее в однофазной системе переменного тока даже при высоком значении тока по сравнению с инверторной системой постоянного тока. С другой стороны, при использовании инверторной системы постоянного тока, наряду с тем, что проявляется высокая эффективность выделения тепла, внутреннее разбрызгивание и внешнее разбрызгивание происходят гораздо легче при низком значении тока. По этой причине инверторная система постоянного тока имеет более узкий подходящий диапазон значений тока. В реальной ситуации применимость является низкой в случае сварки комбинаций листов, включающих в себя горячештампованный стальной лист или другой высокопрочный стальной лист. Способ точечной контактной сварки согласно настоящему изобретению основывается на решении проблемы точечной сварки с помощью источника питания постоянного тока инверторного типа.

[0046] Механизм сжатия при точечной контактной сварке можно реализовать с помощью серводвигателя или сжатия с помощью воздуха. Кроме того, можно использовать форму сварочного пистолета стационарного типа, C-типа или X-типа. Сила сжатия во время сварки не ограничивается особым образом. Во время точечной контактной сварки сила сжатия может быть постоянной, или сила сжатия может изменяться на различных этапах. Сила сжатия составляет предпочтительно 200-600 кгс.

[0047] Электроды при точечной контактной сварке также не ограничиваются особым образом. Можно отметить электроды DR-типа с диаметром наконечника 6-8 мм. В качестве наиболее показательного примера можно рассмотреть электроды DR-типа с диаметром наконечника 6 мм и с радиусом наконечника R40 мм. Для материала электрода можно использовать хромированную медь или медные электроды с диспергированным алюминием, но с точки зрения предотвращения плавления и внешнего разбрызгивания предпочтительной является медь с диспергированным алюминием.

[0048] Для системы подачи тока, используемой в настоящем изобретении, применяется система импульсной подачи тока. "Подача импульсов тока" означает подачу импульснообразного постоянного тока при сжатии одного местоположения при точечной контактной сварке и состоит из одного или более импульсов тока. В настоящем изобретении используется инверторный источник питания постоянного тока, поэтому импульс тока (который ниже также упоминается просто как "импульс") имеет прямоугольную или трапециевидную форму импульса.

[0049] На фиг.8А показана типичная форма импульса с прямоугольной формой импульса. По абсциссе отложено время и по ординате отложен подаваемый сварочный ток. Ток Ia, соответствующий высоте прямоугольника, представляет собой подаваемый сварочный ток. Дли