Соль омекамтива мекарбила и способ ее получения
Иллюстрации
Показать всеИзобретение относится к моногидрату дигидрохлоридной соли омекамтива мекарбила, а также к способу его получения. Технический результат: получен моногидрат дигидрохлоридной соли омекамтива мекарбила, который имеет более желательный профиль высвобождения лекарственного средства, а также обладает улучшенной стабильностью. 3 н. и 22 з.п. ф-лы, 7 ил., 1 табл.
Реферат
Перекрестная ссылка на родственные заявки
[0001] В настоящей заявке испрашивается приоритет предварительной заявки на патент США № 61/785763, поданной 14 марта 2014 года, содержание которой полностью включено в настоящую заявку посредством ссылки.
Область техники
[0002] Предложены полиморфные формы дигидрохлорида омекамтива мекарбила, способы получения омекамтива мекарбила, включая полиморфные формы дигидрохлорида омекамтива мекарбила, композиции, содержащие полиморфные формы дигидрохлорида омекамтива мекарбила, и способы применения полиморфных форм дигидрохлоридной соли омекамтива мекарбила.
Уровень техники
[0003] Саркомер сердечной мышцы представляет собой основную функциональную единицу сокращения мышцы сердца. Саркомер сердечной мышцы представляет собой высокоупорядоченную цитоскелетную структуру, состоящую из миозина, актина и группы регуляторных белков сердечной мышцы. Открытие и разработка низкомолекулярных активаторов миозина сердечной мышцы обеспечит перспективные средства лечения острой и хронической сердечной недостаточности. Миозин сердечной мышцы представляет собой цитоскелетный движущий белок в клетке сердечной мышцы. Он непосредственно отвечает за превращение химической энергии в механическую силу, что приводит к сокращению сердечной мышцы.
[0004] Существующие положительные инотропные агенты, такие как агонисты бета-адренергического рецептора или ингибиторы активности фосфодиэстеразы, повышают концентрацию внутриклеточного кальция, увеличивая, таким образом, сократимость саркомера сердечной мышцы. Однако увеличение уровней кальция повышает скорость сокращения сердечной мышцы и сокращает систолическое время изгнания, что связано с потенциально опасными для жизни побочными эффектами. Напротив, активаторы миозина сердечной мышцы действуют по механизму, который напрямую стимулирует активность движущего белка миозина сердечной мышцы, не увеличивая внутриклеточную концентрацию кальция. Они ускоряют лимитирующую стадию ферментативного цикла миозина и сдвигают ее в сторону состояния выработки силы. Вместо увеличения скорости сердечного сокращения, этот механизм скорее увеличивает время систолического изгнания, что приводит к повышению сократимости сердечной мышцы и сердечному выбросу с потенциально более эффективной утилизацией кислорода.
[0005] В патенте США № 7507735, включенном в настоящий документ посредством ссылки, описан класс соединений, включающий омекамтива мекарбил (AMG 423, CK-1827452), имеющий структуру:
[0006] Омекамтива мекарбил является первым в своей группе прямым активатором сердечного миозина, движущего белка, который вызывает сердечное сокращение. В настоящее время его исследуют в качестве потенциального средства для лечения сердечной недостаточности во внутривенных и пероральных препаратах для создания нового спектра средств лечения пациентов как в стационарных, так и в амбулаторных условиях.
[0007] Поскольку постоянно необходимы лекарственные соединения, обладающие, например, улучшенной стабильностью, растворимостью, сроком годности и фармакологией in vivo, существует непрерывная потребность в новых или чистых солях, гидратах, сольватах и полиморфных кристаллических формах молекул существующих лекарств. Кристаллические формы омекамтива мекарбила, описанные в настоящем документе, способствуют удовлетворению этой и других потребностей.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0008] Предложена дигидрохлоридная форма омекамтива мекарбила.
[0009] Предложен также гидрат дигидрохлорида омекамтива мекарбила.
[0010] Предложена также кристаллическая форма дигидрохлоридной формы омекамтива мекарбила.
[0011] Предложена также Форма A гидрата дигидрохлорида омекамтива мекарбила.
[0012] Предложен также безводный дигидрохлорид омекамтива мекарбила.
[0013] Предложена также Форма B безводного дигидрохлорида омекамтива мекарбила.
[0014] Предложена также Форма C безводного дигидрохлорида омекамтива мекарбила.
[0015] Предложены также композиции и фармацевтические композиции, содержащие дигидрохлоридную форму омекамтива мекарбила.
[0016] Предложен также способ получения омекамтива мекарбила, включающий:
смешивание метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилата и фенил-(6-метилпиридин-3-ил)карбамата в присутствии триалкиламинного основания с получением омекамтива мекарбила.
[0017] Предложен также способ получения гидрата дигидрохлорида омекамтива мекарбила, включающий:
(a) гидрирование метил-4-(2-фтор-3-нитробензил)пиперазин-1-карбоксилата в присутствии катализатора гидрирования с получением метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилата;
(b) смешивание метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилата и фенил-(6-метилпиридин-3-ил)карбамата в присутствии триалкиламинного основания с получением омекамтива мекарбила в виде свободного основания; и
(c) кристаллизацию свободного основания омекамтива мекарбила в присутствии водного раствора хлористоводородной кислоты и спиртового растворителя с получением гидрата дигидрохлоридной соли омекамтива мекарбила.
ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0018] На фиг. 1 представлена динамическая сорбция паров Формы А гидратной формы дигидрохлорида омекамтива мекарбила.
[0019] На фиг. 2 представлена диаграмма порошковой рентгеновской дифракции (ПРД) Формы А.
[0020] На фиг. 3 представлена ПРД гидратной формы дигидрохлоридной соли омекамтива мекарбила в условиях различной относительной влажности.
[0021] На фиг. 4 представлена ПРД гидратной формы дигидрохлоридной соли омекамтива мекарбила при различных температурах.
[0022] На фиг. 5 представлена термограмма дифференциальной сканирующей калориметрии и термогравиметрический анализ Формы А.
[0023] На фиг. 6 представлены наложенные друг на друга диаграммы ПРД Форм А, В и С дигидрохлоридной соли омекамтива мекарбила.
[0024] На фиг. 7 представлено высвобождение лекарства при двух различных рН (2 и 6,8) из препарата свободного основания омекамтива мекарбила (сверху) и Формы А гидратной формы дигидрохлоридной соли омекамтива мекарбила (снизу).
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0025] Если не указано иное, то к терминам, содержащимся в описании и формуле изобретения, применяют следующие определения:
[0026] «Лечение» или «лечить» означает любое лечение болезни у пациента, включая: a) предупреждение заболевания, то есть предотвращение развития клинических симптомов заболевания; b) подавление заболевания; c) замедление или остановку развития клинических симптомов; и/или d) облегчение заболевания, то есть инициацию регрессии клинических симптомов. В настоящем документе предполагается, что лечение заболеваний и расстройств включает также профилактическое введение фармацевтического препарата, описанного в настоящем документе, субъекту (т.е. животному, предпочтительно млекопитающему, наиболее предпочтительно человеку), который, предположительно, нуждается в превентивном лечении, как, например, в случае хронической сердечной недостаточности.
[0027] Термин «терапевтически эффективное количество» означает количество, эффективное при введении человеку или пациенту, не являющемуся человеком, для лечения заболевания, например, терапевтически эффективное количество может быть количеством, достаточным для лечения заболевания или расстройства, восприимчивого к активации миозина. Терапевтически эффективное количество может быть определено экспериментально, например, анализом концентрации химического вещества в крови, или теоретически, т.е. путем расчета биодоступности.
[0028] «Фармацевтически приемлемые соли» включают, но не ограничиваются ими, соли с неорганическими кислотами, такие как гидрохлоратные (т.е. гидрохлоридные), фосфатные, дифосфатные, гидроброматные, сульфатные, сульфинатные, нитратные и подобные соли; а также соли с органическими кислотами, такие как малатные, малеатные, фумаратные, тартратные, сукцинатные, цитратные, ацетатные, лактатные, метансульфонатные, п-толуолсульфонатные, 2-гидроксиэтилсульфонатные, бензоатные, салицилатные, стеаратные и алканоатные, такие как ацетатные, HOOC--(CH2)n--COOH, где n равен 0-4, и подобные соли. Аналогично фармацевтически приемлемые катионы включают, но не ограничиваются ими, натрий, калий, кальций, алюминий, литий и аммоний. Специалистам в данной области техники известны различные методики синтеза, которые могут быть использованы для получения нетоксичных фармацевтически приемлемых солей присоединения.
[0029] При использовании в настоящем документе термин «полиморфы» или «полиморфные формы» относится к кристаллическим формам одной и той же молекулы. Различные полиморфные формы молекулы имеют разные физические свойства, как результат расположения или конформации молекул в кристаллической решетке. Некоторые из указанных различных физических свойств включают температуру плавления, теплоту плавления, растворимость, скорость растворения и/или колебательные спектры. Физическая форма конкретного соединения особенно важна при использовании соединения в фармацевтическом препарате, поскольку разные твердые формы соединения обуславливают различные свойства лекарственного препарата.
[0030] Полиморфы молекулы могут быть получены многочисленными способами, известными в данной области техники, такими как, например, перекристаллизация из расплава, охлаждение расплава, перекристаллизация из растворителя, десольватация, быстрое испарение, быстрое охлаждение, медленное охлаждение, диффузия из паровой фазы и сублимация. Методы, характеризующие полиморф, включают порошковую рентгеновскую дифракцию (ПРД), рентгеновскую дифракцию монокристалла (РД), дифференциальную сканирующую калориметрию (ДСК), колебательную спектроскопию (например, ИК-спектроскопию и Раман-спектроскопию), твердотельный ядерный магнитный резонанс (ттЯМР), оптическую микроскопию в горячем состоянии, сканирующую электронную микроскопию (СЭМ), электронную кристаллографию и количественный анализ, анализ размера частиц (АРЧ), анализ площади поверхности, исследования растворимости и исследования растворения.
[0031] Термин «гидрат» относится к химической структуре, образованной в результате взаимодействия воды и соединения.
[0032] При использовании в настоящем документе термин «моногидрат» относится к гидрату, который содержит одну молекулу воды на одну молекулу субстрата.
[0033] При использовании в настоящем документе термин «кристаллический» относится к твердому веществу, в котором составные атомы, молекулы или ионы расположены симметрично упорядоченным, повторяющимся трехмерным образом.
[0034] Настоящее описание и формула изобретения содержат перечень элементов с применением выражения «выбран из … и …» и «представляет собой … или …» (иногда упомянуты как группы Маркуша). При использовании такого выражения в настоящей заявке, если не указано иное, оно включает эту группу в целом или любой из ее отдельных членов, или любую ее подгруппу. Данное выражение используют лишь для краткости, и оно никоим образом не означает ограничение удаления отдельных элементов или подгрупп при необходимости.
[0035] Предложена гидратная форма дигидрохлорида омекамтива мекарбила. В различных вариантах воплощения указанного аспекта гидратная форма дигидрохлорида омекамтива мекарбила является кристаллической (Форма А). Варианты воплощения гидратной формы дигидрохлорида омекамтива мекарбила могут быть описаны при помощи одного или более параметров, более подробно описанных ниже.
[0036] Гидратная форма дигидрохлорида омекамтива мекарбила имеет растворимость в воде более 40 мг/мл при рН в диапазоне приблизительно 3,5. Кроме того, Форма А является негигроскопичной. Например, при испытании динамической сорбции паров Форма А демонстрировала суммарное увеличение массы, равное приблизительно 0,55 масс.% при относительной влажности (RH) от приблизительно 40% до приблизительно 95%, и потерю массы приблизительно 2,7 масс.% при RH от приблизительно 30% до приблизительно 5%. В некоторых вариантах воплощения изобретения гидратная форма дигидрохлорида омекамтива мекарбила имеет, по существу, такой профиль динамической сорбции паров, как показан на фиг. 1, где под термином «по существу» подразумевается, что указанные характеристики ДСП могут варьироваться в пределах приблизительно ±5% RH.
[0037] Динамическая сорбция паров указывает, что данная соль теряет воду при высушивании до относительной влажности 5%, но практически полностью регидратируется при относительной влажности 15%. При относительной влажности более 15% образец является негигроскопичным, демонстрируя изменение массы лишь приблизительно 1,0% по достижении относительной влажности 95%. После испытания сорбции паров, по данным ПРД, не было обнаружено фазового перехода.
[0038] Определили, что растворимость Формы A в воде превышает 40 мг/мл (рН=3,5) при отсутствии фазового перехода в течение 24-часового испытания суспензии, по результатам ПРД. Кроме того, Форма A устойчива в условиях ускоренного испытания стабильности. Например, Форма A остается, по существу, в одной и той же физической форме в течение 6 месяцев при 40°С и 75% RH.
[0039] В различных вариантах воплощения изобретения Форма A может быть описана диаграммой порошковой рентгеновской дифракции, полученной так, как описано в Примерах, имеющей пики при приблизительно 6,6, 14,9, 20,1, 21,4 и 26,8±0,2° 2θ с применением излучения Cu Kα. Форма A, необязательно, может быть дополнительно описана диаграммой порошковой рентгеновской дифракции, имеющей дополнительные пики при приблизительно 8,4, 24,2, 26,0, 33,3±0,2° 2θ с применением излучения Cu Kα. Форма A, необязательно, может быть дополнительно описана диаграммой порошковой рентгеновской дифракции, имеющей дополнительные пики при приблизительно 6,2, 9,7, 13,2, 14,3, 15,4, 16,3, 16,9, 18,9, 19,5, 20,7, 21,8, 22,8, 23,6, 25,1, 27,3, 27,7, 28,4, 29,4, 30,2, 31,2, 31,5, 31,9, 33,9, 34,5, 34,9, 36,1, 36,8, 37,7, 38,5 и 39,7±0,2° 2θ с применением излучения Cu Kα. В разных случаях Форма A может быть описана диаграммой ПРД, имеющей пики при приблизительно 6,2, 6,6, 8,4, 9,7, 13,2, 14,3, 14,9, 15,4, 16,3, 16,9, 18,9, 19,5, 20,1, 20,7, 21,4, 21,8, 22,8, 23,6, 24,3, 25,1, 26,0, 26,8, 27,3, 27,7, 28,4, 29,4, 30,2, 31,2, 31,5, 31,9, 33,3, 33,9, 34,5, 34,9, 36,1, 36,8, 37,7, 38,5 и 39,7±0,2° 2θ с применением излучения Cu Kα. В некоторых вариантах воплощения изобретения Форма A имеет, по существу, такую диаграмму порошковой рентгеновской дифракции, как показана на фиг. 2, где под термином «по существу» подразумевается, что указанные пики могут варьироваться в пределах приблизительно ±0,2°. В области ПРД хорошо известно, что, хотя относительные интенсивности пиков в спектрах зависят от ряда факторов, таких как получение образца и геометрия прибора, положения пиков относительно нечувствительны к особенностям эксперимента.
[0040] Полиморфы омекамтива мекарбила Формы B и Формы C представляют собой метастабильные безводные дигидрохлоридные формы и они могут быть получены в различных условиях гидратации, указанных на фиг. 3, 4 и 6. Характеристические значения 2-тета Формы B включают 6,8, 8,8, 14,7, 17,7 и 22,3±0,2° 2θ с применением излучения Cu Kα и могут дополнительно включать пики при 9,6, 13,5, 19,2, 26,2±0,2° 2θ с применением излучения Cu Kα. Форма B может быть описана пиками диаграммы ПРД при 6,2, 6,8, 8,8, 9,6, 13,5, 14,4, 14,7, 15,4, 16,3, 17,0, 17,7, 18,3, 19,2, 19,9, 20,5, 20,8, 21,8, 22,3, 22,7, 23,0, 24,8, 25,1, 25,5, 26,2, 26,4, 26,8, 27,5, 28,5, 30,2, 30,6, 31,1, 31,5, 32,1, 32,7, 34,1, 34,4, 35,5, 35,9, 38,1, 38,9±0,2° 2θ с применением излучения Cu Kα. Характеристические значения 2-тета Формы C включают 6,7, 14,8, 17,4, 20,6 и 26,2±0,2° 2θ с применением излучения Cu Kα и могут дополнительно включать пики при 8,7, 22,0, 27,1 и 27,7±0,2° 2θ с применением излучения Cu Kα. Форма C может быть описана пиками диаграммы ПРД при 6,2, 6,7, 8,7, 9,6, 13,5, 14,5, 14,8, 15,4, 16,4, 17,1, 17,4, 18,4, 19,3, 19,5, 19,9, 20,6, 20,8, 21,8, 22,0, 22,5, 22,8, 24,3, 24,7, 25,1, 25,6, 26,2, 26,5, 27,1, 27,3, 27,7, 28,5, 30,0, 30,5, 31,0, 31,5, 32,2, 32,8, 34,1, 35,2, 36,0, 36,9 и 38,8±0,2° 2θ с применением излучения Cu Kα. В некоторых вариантах воплощения изобретения Формы B и C имеют, по существу, такую диаграмму порошковой рентгеновской дифракции, как показана на фиг. 6, где под термином «по существу» подразумевается, что указанные пики могут варьироваться в пределах приблизительно ±0,2°.
[0041] В различных вариантах воплощения изобретения Форма A может быть описана диаграммой рентгеновской дифракции монокристалла (РД), полученной так, как описано в разделе «Примеры», где Форма A имеет триклинную пространственную группу P-1 и параметры элементарной ячейки приблизительно a = 5,9979(4) Ǻ, b = 13,4375(9) Ǻ, c = 14,4250(9) Ǻ, α = 97,617(4)°, β = 93,285(4)° и γ = 94,585(5)°. Форма A, необязательно, может быть дополнительно описана параметрами РД, представленными ниже в таблице.
Длина волны | 1,54178 Å |
Кристаллическая система | Триклинная |
Пространственная группа | P-1 |
Размеры элементарной ячейки | a = 5,9979(4) Åα = 97,617(4)°b = 13,4375(9) Åβ = 93,285(4)°c = 14,4250(9) Åγ = 94,585(5)° |
Объем | 1145,93(13) Å3 |
Z | 2 |
Плотность (расчетная) | 1,427 мг/м3 |
Коэффициент поглощения | 2,945 мм-1 |
[0042] Для Формы A получили термограммы ДСК. Кривая ДСК показывает эндотермический переход, который, по-видимому, обусловлен плавлением/разложением при температуре приблизительно 235°С. Таким образом, в некоторых вариантах воплощения изобретения Форма A может быть описана термограммой ДСК, имеющей эндотерму разложения с началом в диапазоне от приблизительно 230°С до приблизительно 240°С при нагревании Формы A в открытом алюминиевом тигле. Например, в тех вариантах воплощения, в которых Форму A нагревают от приблизительно 25°С со скоростью приблизительно 10°С/мин, Форма A может быть описана термограммой ДСК, имеющей эндотерму разложения с началом при приблизительно 235°С, как показано на фиг. 5.
[0043] Форма A также может быть описана при помощи термогравиметрического анализа (ТГА). Так, Форма А может быть описана по потере массы в диапазоне от приблизительно 2% до приблизительно 5% с температурой начала в диапазоне от приблизительно 100°С до приблизительно 150°С. Например, Форма А может быть описана по потере приблизительно 3% массы до 150°С. В некоторых вариантах воплощения Форма А имеет, по существу, такие результаты термогравиметрического анализа, как показаны на фиг. 5, где под термином «по существу» подразумевается, что указанные характеристики ТГА могут варьироваться в пределах приблизительно ±5°С. При помощи анализа Карла Фишера (KF) определили, что указанная потеря массы относится к воде. Анализ KF показал, что содержание воды в Форме А может составлять приблизительно 3,7, что соответствует моногидрату.
[0044] Форма А может быть описана при помощи РПД при различных температурах и РПД при различной относительной влажности. Данные РПД при различных температурах представлены на фиг. 4. Указанные данные демонстрируют, что при нагревании гидрата Формы А до температуры выше точки десольватации, показанной на кривой ТГА (приблизительно 75°С), материал превращается в новую дегидратированную фазу, Форму B. При последующем охлаждении материала до условий окружающей среды Форма В повторно сорбирует воду из атмосферы и превращается обратно в гидрат Формы А. Данные РПД при различной относительной влажности представлены на фиг. 3. Указанные данные демонстрируют, что при воздействии на гидрат Формы А относительной влажности 5% материал превращается в новую дегидратированную фазу, Форму С. При воздействии на материал относительной влажности 15% и более Форма С повторно сорбирует воду из окружающей среды и превращается обратно в гидрат Формы А. Полученные данные согласуются с экспериментом сорбции паров. Наложенные друг на друга данные для Формы В и Формы С представлены на фиг. 6. Стрелками отмечены существенные отраженные сигналы двух порошковых диаграмм, указывающие на индивидуальность двух фаз.
[0045] Предложены также композиции, содержащие гидратную форму дигидрохлорида омекамтива мекарбила. В некоторых вариантах воплощения изобретения композиции содержат по меньшей мере приблизительно 50, приблизительно 60, приблизительно 70, приблизительно 80, приблизительно 90, приблизительно 95, приблизительно 96, приблизительно 97, приблизительно 98 или приблизительно 99% по массе гидратной формы дигидрохлорида омекамтива мекарбила. В некоторых вариантах воплощения изобретения композиции содержат по меньшей мере приблизительно 50, приблизительно 60, приблизительно 70, приблизительно 80, приблизительно 90, приблизительно 95, приблизительно 96, приблизительно 97, приблизительно 98 или приблизительно 99% по массе Формы A гидратной формы дигидрохлорида омекамтива мекарбила. В некоторых вариантах воплощения изобретения композиции содержат смесь двух или более Форм A, B и C.
[0046] Предложены также фармацевтические препараты, содержащие гидратную форму дигидрохлорида омекамтива мекарбила и по меньшей мере одно фармацевтически приемлемое вспомогательное вещество. В некоторых вариантах воплощения изобретения препараты содержат по меньшей мере приблизительно 50, приблизительно 60, приблизительно 70, приблизительно 80, приблизительно 90, приблизительно 95, приблизительно 96, приблизительно 97, приблизительно 98 или приблизительно 99% по массе гидратной формы дигидрохлорида омекамтива мекарбила. В некоторых вариантах воплощения изобретения препараты содержат по меньшей мере приблизительно 50, приблизительно 60, приблизительно 70, приблизительно 80, приблизительно 90, приблизительно 95, приблизительно 96, приблизительно 97, приблизительно 98 или приблизительно 99% по массе Формы A гидратной формы дигидрохлорида омекамтива мекарбила. В некоторых вариантах воплощения изобретения препараты содержат смесь двух или более Форм A, B и C.
[0047] Предложен также способ применения указанных фармацевтических препаратов для лечения сердечной недостаточности, включая, но не ограничиваясь ими: острую (или декомпенсированную) застойную сердечную недостаточность и хроническую застойную сердечную недостаточность; в частности, заболевания, связанные с систолической сердечной дисфункцией.
[0048] Предложен также синтез омекамтива мекарбила, включающий: смешивание метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилата и фенил-(6-метилпиридин-3-ил)карбамата в присутствии триалкиламинного основания с получением омекамтива мекарбила.
[0049] В некоторых вариантах воплощения изобретения массовое отношение гидрохлорида фенил-(6-метилпиридин-3-ил)карбамата (т.е. исходного вещества SM-2 или фенилкарбамата) к метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилату (т.е. исходному веществу SM-1 или пиперазину-нитро) составляет от приблизительно 1,1 до 1,5. В некоторых вариантах воплощения массовое отношение гидрохлорида фенил-(6-метилпиридин-3-ил)карбамата к метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилату составляет приблизительно 1,2.
[0050] В некоторых вариантах воплощения изобретения смешивание выполняют в присутствии апротонного растворителя. В некоторых вариантах воплощения растворитель представляет собой ТГФ.
[0051] В некоторых вариантах воплощения изобретения триалкиламинное основание представляет собой триэтиламин, диизопропилэтиламин или их комбинацию. В некоторых вариантах воплощения изобретения триалкиламинное основание содержит диизопропилэтиламин.
[0052] В некоторых вариантах воплощения изобретения используют избыток триалкиламинного основания. В некоторых вариантах воплощения используют от приблизительно 1,1 до 1,5 эквивалента триалкиламинного основания. В некоторых вариантах воплощения изобретения используют приблизительно 1,3 эквивалента триалкиламинного основания.
[0053] В некоторых вариантах воплощения изобретения смешивание выполняют при 65°С.
[0054] В некоторых вариантах воплощения изобретения указанный способ дополнительно включает кристаллизацию омекамтива мекарбила в присутствии водного раствора хлористоводородной кислоты и спиртового растворителя с получением гидрата дигидрохлорида омекамтива мекарбила.
[0055] В некоторых вариантах воплощения изобретения спиртовой растворитель содержит изопропиловый спирт.
[0056] В некоторых вариантах воплощения изобретения водный раствор хлористоводородной кислоты содержит 6 н. HCl.
[0057] В некоторых вариантах воплощения изобретения указанный способ дополнительно включает смешивание гидрата дигидрохлорида омекамтива мекарбила с по меньшей мере фармацевтически приемлемым вспомогательным веществом с получением фармацевтического препарата.
[0058] В некоторых вариантах воплощения изобретения фармацевтический препарат содержит гидрат дигидрохлорида омекамтива мекарбила; слой набухающего вещества; и покрытие из полупроницаемой мембраны, имеющее по меньшей мере одно впускное отверстие. Общие свойства лекарственного слоя и слоя набухающего вещества представлены в публикации патента США 2011/0182947, включенной в настоящий документ посредством ссылки.
[0059] В некоторых вариантах воплощения изобретения фармацевтический препарат представляет собой таблетку из матрицы с модифицированным высвобождением, содержащую гидрат дигидрохлорида омекамтива мекарбила; агент для регулирования высвобождения; агент для изменения рН; наполнитель и смазывающее вещество.
[0060] В некоторых вариантах воплощения изобретения метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилат получают способом, включающим: гидрирование метил-4-(2-фтор-3-нитробензил)пиперазин-1-карбоксилата в присутствии катализатора гидрирования с получением метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилата.
[0061] В некоторых вариантах воплощения изобретения катализатор гидрирования содержит палладий. В некоторых вариантах воплощения изобретения катализатор гидрирования представляет собой палладий на углероде.
[0062] Предложен также способ получения гидрата дигидрохлорида омекамтива мекарбила, включающий кристаллизацию омекамтива мекарбила в присутствии водного раствора хлористоводородной кислоты и спиртового растворителя с получением гидрата дигидрохлорида омекамтива мекарбила.
[0063] В некоторых вариантах воплощения изобретения спиртовой растворитель содержит изопропиловый спирт.
[0064] Предложен также способ получения гидрата дигидрохлорида омекамтива мекарбила, включающий:
(a) гидрирование метил-4-(2-фтор-3-нитробензил)пиперазин-1-карбоксилата в присутствии катализатора гидрирования с получением метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилата;
(б) смешивание метил-4-(3-амино-2-фторбензил)пиперазин-1-карбоксилата и фенил-(6-метилпиридин-3-ил)карбамата в присутствии триалкиламинного основания с получением омекамтива мекарбила в виде свободного основания; и
(в) кристаллизацию свободного основания омекамтива мекарбила в присутствии водного раствора хлористоводородной кислоты и спиртового растворителя с получением гидрата дигидрохлоридной соли омекамтива мекарбила.
[0065] Указанный синтез обеспечивает высокий общий выход (более 70%). Кроме того, дигидрохлоридная соль, которая образуется в результате указанных стадий, при кристаллизации может быть получена в виде длинных стержней, имеющих улучшенные объемные свойства, время фильтрации, составляющее несколько минут (в отличие от нескольких дней для формы свободного основания), и высокую растворимость (более 40 мг/мл при рН 3,8). В разных случаях полученная соль представляет собой гидрат дигидрохлорида Формы A.
ПРИМЕРЫ
Общие способы
[0066] Реагенты и растворители использовали в таком виде, в котором они были приобретены из коммерческих источников. Спектры 1H ЯМР записывали на 400 МГц спектрометре. Химические сдвиги записаны в м.д. от тетраметилсилана с резонансом растворителя в качестве внутреннего стандарта (CDCl3, ДМСО-d6). Данные записаны следующим образом: химический сдвиг, мультиплетность (с = синглет, д = дублет, т = триплет, к = квартет, ш = широкий, м = мультиплет), константы связывания (Гц) и интеграция. Спектры 13C ЯМР записывали на 100 МГц спектрометре с полным отщеплением протонов. Химические сдвиги записаны в м.д. от тетраметилсилана с растворителем в качестве внутреннего стандарта (CDCl3, ДМСО-d6). Все количества растворителей записаны относительно исходного 2-фтор-3-нитротолуола.
[0067] Данные порошковой рентгеновской дифракции получили при помощи автоматического порошкового рентгеновского дифрактометра Phillips (X’Pert), оснащенного щелью фиксированного размера. Использовали излучение Cu Kα (1,541837 Å), а напряжение и сила тока составили 45 кВ и 40 мА, соответственно. Данные записывали при комнатной температуре от 3,000 до 40,009 градусов 2-тета; величина шага составила 0,008 градусов; время счета составило 15,240 секунд. Образцы массой 5-40 мг помещали на держатель образца и вращали предметный столик со временем одного оборота 2,000 секунды.
[0068] Термические свойства бис-HCl соли омекамтива мекарбила исследовали при помощи дифференциального сканирующего калориметра модели DSC Q 1000 или DSC Q 100, TA Instruments , и термогравиметрического анализатора Q 500, TA Instruments. Анализ данных выполняли при помощи программного обеспечения Universal Analysis 2000, TA Instruments. Для дифференциальной сканирующей калориметрии и термогравиметрического анализа во всех диапазонах температур использовали скорость нагревания 10°С/мин. Для анализа ДСК образцы массой в диапазоне <1-5 мг помещали в опрессованные, герметичные или открытые алюминиевые тигли.
[0069] Данные водного баланса получали при помощи симметричного паросорбционного анализатора VTI SGA 100. В цикле адсорбции относительную влажность изменяли с приращениями, составляющими 5%, в диапазоне от относительной влажности 5% до 95%, а в цикле десорбции в диапазоне от относительной влажности 95% до 5%. Критерий равновесия установили при изменении массы 0,01% в течение 1 минуты с максимальным временем уравновешивания 180 минут. Использовали приблизительно 1-15 мг образца.
[0070] Для рентгеновского кристаллографического анализа использовали бесцветную пластинку из C20H28Cl2FN5O4 с приблизительными размерами 0,03 мм × 0,12 мм × 0,50 мм. Данные об интенсивности рентгеновского излучения измеряли при 100(2) K на дифрактометре Bruker Kappa APEX II, оснащенном графитовым монохроматором и остро сфокусированной запаянной трубкой, излучающей CuKα (λ=1,54178Å), работающем при мощности 1,2 кВт (40 кВ, 30 мА). Детектор установили на расстоянии 5,0 см от кристалла.
[0071] Получили в целом 7824 кадра при ширине развертки 0,5° в ω и ϕ и времени воздействия 90 с/кадр. Общее время получения данных составило 260 часов. Кадры интегрировали при помощи пакета программного обеспечения Bruker SAINT, используя узкокадровый алгоритм интегрирования. В результате интегрирования данных с применением триклинной ячейки получили в целом 12349 отражений до максимального угла θ 69,57° (разрешение 0,83 Å), из которых 4046 были независимыми (избыточность 3,06, полнота = 93,6%, Rint = 5,13%, Rsig = 5,18%) и 3351 (82,8%) были больше >2сигма(I) σ (F2). Окончательные постоянные параметры ячейки, a=5,9979(4) Å, b=13,4375(9) Å, c=14,4250(9) Å, α=97,617(4)°, β=93,285(4)°, γ=94,585(5)°, объем=1145,95(13) Å3, основаны на улучшении XYZ-центроидов 4790 отражений свыше 20 σ(I) с 6,196°<2θ<138,239°. Анализ данных показал незначительное разложение в ходе сбора данных. Данные скорректировали по абсорбционному эффекту, используя метод многократного сканирования (SADABS). Отношение минимального к максимальному кажущемуся пропусканию составило 0,350. Рассчитанные коэффициенты минимального и максимального пропускания (на основании размера кристалла) составили 0,3206 и 0,9168.
[0072] Структуру определили и уточнили при помощи пакета программного обеспечения Bruker SHELXTL (версии 6.1), используя для формульной единицы C20H28Cl2FN5O4 пространственную группу P-1 с Z=2. Окончательное уточнение по методу наименьших квадратов с анизотропной полной матрицей на F2 с 320 переменными сошлось при R1=6,43% для наблюдаемых данных и wR2=19,18% для всех данных. Критерий согласия составил 1,067. Наибольший пик на окончательной карте электронной плотности составил 1,084 e-/Å3, а наибольшая дырка составила -0,527 e-/Å3 со среднеквадратическим отклонением 0,101 e-/Å3. На основании окончательной модели рассчитанная плотность составила 1,427 г/см3 и F(000) 516 e-.
[0073] В данной структуре были найдены и уточнены два положения, которые могут быть частично заняты водой. Занятость водой независимо уточнили до 53% и 41% для общего содержания воды 0,94 эквивалента воды на молекулу омекамтива мекарбила. Это согласуется с другими измерениями содержания воды в данной форме указанного соединения. Атомы водорода одной из сольватирующих молекул воды, имеющей занятость 41%, были обнаружены на карте разности электронной плотности и были уточнены как имеющие длину связи 1,01 Å. Были обнаружены и оставлены для изотропного уточнения атомы водорода у N3, C4 и N4. Все остальные атомы водорода поместили в идеализированные положения и уточнили в режиме Riding mode.
[0074] Данные порошковой рентгеновской дифракции (ПРД) получили на дифрактометре PANalytical X’Pert PRO (PANalytical, Алмело, Нидерланды), оснащенном многополосным детектором, работающим в реальном времени (RTMS). Использовали излучение CuKα (1,54 Å), а напряжение и силу тока установили на 45 кВ и 40 мА соответственно. Данные получали при комнатной температуре от 5 до 45 градусов 2-тета с величиной каждого шага 0,0334 градуса. Образцы поместили в держатель образца с низким фоном и установили на предметный столик, который вращали со временем одного оборота 2 секунды.
[0075] Альтернативно данные ПРД получили на дифрактометре PANalytical X’Pert PRO (PANalytical, Алмело, Нидерланды), оснащенном многополосным детектором RTMS. Использовали излучение CuKα(1,54 Å), а напряжение и силу тока установили на 45 кВ и 40 мА соответственно. Данные получали при комнатной температуре от 5 до 40 градусов 2-тета с величиной каждого шага 0,0334 градуса. Образцы поместили в держатель образца с низким фоном и установили на предметный столик, который вращали со временем одного оборота 2 секунды.
[0076] Альтернативно данные ПРД получили на дифрактометре PANalytical X’Pert PRO (PANalytical, Алмело, Нидерланды), оснащенном многополосным детектором RTMS. Использовали излучение CuKα(1,54 Å), а напряжение и силу тока установили на 45 кВ и 40 мА соответственно. Данные получали при комнатной температуре от 5 до 40 градусов 2-тета с величиной каждого шага 0,0167 градуса. Образцы поместили в держатель образца с низким фоном и установили на предметный столик, который вращали со временем одного оборота 2 секунды.
[0077] Альтернативно данные ПРД получили на дифрактометре PANalytical X’Pert Pro (PANalytical, Алмело, Нидерланды), оснащенном многополосным детектором RTMS. Использовали излучение CuKα(1,54 Å), а напряжение и силу тока установили на 45 кВ и 40 мА соответственно. Данные получали при комнатной температуре от 3 до 40 градусов 2-тета с величиной шага 0,008 градуса. Образцы поместили в держатель образца с низким фоном и установили на предметный столик со временем одного оборота 2 секунды.
[0078] Альтернативно данные ПРД получили на рентгенодифракционной системе Bruker D8 Discover (Bruker, Биллерика, штат Массачусетс), оснащенной xyz предметным столиком с электроприводом и детектором площади GADDS. Использовали излучение CuKα(1,54 Å), а напряжение и силу тока установили на 45 кВ и 40 мА соответственно. Твердые образцы картировали на плоской стеклянной пластинке и для каждого образца сканировали площадь 1 мм2 в режиме генерации 3 минуты от 5 до 48 градусов 2-тета.
[0079] Данные дифференциальной сканирующей калориметрии (ДСК) получили в стандартном режиме ДСК (DSC Q200, TA Instruments, Нью-Касл, штат Делавэр). Использовали скорость нагревания 10°С/мин в температурном диапазоне от 40°С до 300°С. Анализ выполняли под азотом, а образцы помещали в стандартные, герметично закрытые алюминиевые тигли. В качестве калибровочного стандарта использовали индий.
[0080] Альтернативно данные ДСК получили в режиме ДСК с модуляцией по температуре (DSC Q200, TA Instruments, Нью-Касл, штат Делавэр). После уравновешивания образца при 20°С в течение пяти минут использовали скорость нагревания 3°С/мин с модуля