Устройство управления для электромоторного транспортного средства и способ управления для электромоторного транспортного средства

Иллюстрации

Показать все

Изобретение относится к электрооборудованию транспортных средств. Устройство управления электромотором транспортного средства, содержит средства: определения рабочей величины нажатия педали акселератора; определения скорости транспортного средства; оценки скорости транспортного средства; определения или оценки компонента сопротивления; коррекции оцененных значений параметра скорости; вычисления крутящего момента с прямой и обратной связью; вычисления значений команд управления крутящим моментом электромотора и средство управления электромотором. Когда величина нажатия педали акселератора равна или меньше предварительно определенного значения и электромоторное транспортное средство находится в момент времени перед остановкой, средство вычисления значений команд управления крутящим моментом электромотора обеспечивает схождение значения команды управления крутящим моментом электромотора к 0 на основе крутящего момента с обратной связью и крутящего момента с прямой связью наряду с уменьшением скорости движения. Уменьшаются вибрации кузова. 2 н. и 10 з.п. ф-лы, 21 ил.

Реферат

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к устройству управления для электромоторного транспортного средства и к способу управления для электромоторного транспортного средства.

Уровень техники

[0002] Традиционно известно устройство управления рекуперативным тормозом для электротранспортных средств, содержащее средство задания, допускающее любое данное задание рекуперативной тормозной силы электромотора и рекуперацию электромотора посредством рекуперативной тормозной силы, заданной посредством средства задания (см. JP8-79907A).

Сущность изобретения

[0003] Тем не менее, технология в JP8-79907A имеет следующую проблему. Если рекуперативная тормозная сила, заданная посредством средства задания, является большой, вибрация в продольном направлении кузова транспортного средства может формироваться, когда электротранспортное средство замедляется посредством заданной рекуперативной тормозной силы, и скорость становится нулевой.

[0004] Цель настоящего изобретения заключается в том, чтобы предоставлять технологию, которая уменьшает формирование вибрации в продольном направлении кузова транспортного средства при остановке электромоторного транспортного средства за счет рекуперативной тормозной силы.

[0005] Устройство для управления электротранспортным средством согласно варианту осуществления заключается в том, что устройство управления для электромоторного транспортного средства использует электромотор в качестве источника приведения в движение. Устройство управления для электромоторного транспортного средства выполнено с возможностью замедляться посредством рекуперативной тормозной силы из электромотора. Устройство управления для электромоторного транспортного средства выполнено с возможностью определять рабочую величину нажатия педали акселератора, определять скорость вращения электромотора, пропорциональную скорости движения электромоторного транспортного средства, и вычислять оцененное значение скорости вращения электромотора согласно состоянию электромоторного транспортного средства. Дополнительно, устройство управления для электромоторного транспортного средства выполнено с возможностью определять или оценивать компонент сопротивления, не связанный с градиентом, из состояния транспортного средства и корректировать оцененное значение скорости вращения электромотора согласно компоненту сопротивления. Дополнительно, устройство управления для электромоторного транспортного средства выполнено с возможностью вычислять крутящий момент с обратной связью, чтобы останавливать электромоторное транспортное средство на основе скорости вращения электромотора, и вычислять крутящий момент с прямой связью, чтобы компенсировать крутящий момент с обратной связью на основе скорректированного оцененного значения скорости вращения электромотора. Устройство управления для электромоторного транспортного средства выполнено с возможностью вычислять значение команды управления крутящим моментом электромотора и управлять электромотором на основе вычисленного значения команды управления крутящим моментом электромотора. Когда рабочая величина нажатия педали акселератора равна или меньше предварительно определенного значения, и электромоторное транспортное средство находится в момент времени непосредственно перед остановкой транспортного средства, значение команды управления крутящим моментом электромотора сходится к 0 на основе крутящего момента с обратной связью и крутящего момента с прямой связью наряду с уменьшением скорости движения.

[0006] Ниже подробно описываются варианты осуществления настоящего изобретения и преимущества настоящего изобретения вместе с прилагаемыми чертежами.

Краткое описание чертежей

[0007] Фиг. 1 является блок-схемой, иллюстрирующей основную конфигурацию электротранспортного средства с устройством управления для электромоторного транспортного средства согласно первому варианту осуществления.

Фиг. 2 является последовательностью операций процессов для управления током электромотора, выполняемого посредством контроллера электромотора, содержащего устройство управления для электромоторного транспортного средства по первому варианту осуществления.

Фиг. 3 является схемой, иллюстрирующей пример таблицы позиций акселератора (степеней открытия акселератора) и крутящих моментов.

Фиг. 4 является схемой, моделирующей систему трансмиссии для передачи движущей силы транспортного средства.

Фиг. 5 является схемой, моделирующей систему трансмиссии для передачи движущей силы транспортного средства.

Фиг. 6 является блок-схемой для осуществления процесса управления остановкой.

Фиг. 7 является блок-схемой, описывающей способ для вычисления оцененного значения скорости вращения электромотора посредством модуля компенсации с прямой связью (с добавлением фильтра регулирования отклика).

Фиг. 8 является схемой, описывающей способ для вычисления крутящего F/B-момента на основе скорости вращения электромотора.

Фиг. 9 является схемой, описывающей способ для вычисления крутящего F/F-момента на основе оцененного значения скорости вращения электромотора.

Фиг. 10 является схемой, описывающей способ для вычисления оцененного значения возмущающего крутящего момента.

Фиг. 11 является схемой, описывающей способ для вычисления крутящего момента при определении момента времени непосредственно перед остановкой на основе скорости вращения электромотора и оцененного значения возмущающего крутящего момента.

Фиг. 12 является схемой, описывающей способ для вычисления значения коррекции скорости вращения электромотора в устройстве управления для электромоторного транспортного средства по первому варианту осуществления.

Фиг. 13 являются схемами, иллюстрирующими примеры результатов управления посредством устройства управления для электромоторного транспортного средства по первому варианту осуществления.

Фиг. 14 являются схемами, иллюстрирующими примеры результатов управления сравнительного примера.

Фиг. 15 является последовательностью операций процессов для управления током электромотора, выполняемого посредством контроллера электромотора, содержащего устройство управления для электромоторного транспортного средства по второму варианту осуществления.

Фиг. 16 является блок-схемой процесса управления остановкой в устройстве управления для электромоторного транспортного средства по второму варианту осуществления.

Фиг. 17 является блок-схемой процесса управления демпфированием вибрации в устройстве управления для электромоторного транспортного средства по второму варианту осуществления.

Фиг. 18 является блок-схемой, выражающей подробности процесса управления демпфированием вибрации в устройстве управления для электромоторного транспортного средства по второму варианту осуществления.

Фиг. 19 является схемой, описывающей способ для вычисления оцененного значения возмущающего крутящего момента в устройстве управления для электромоторного транспортного средства по второму варианту осуществления.

Фиг. 20 является схемой, описывающей способ для вычисления значения коррекции скорости вращения электромотора в устройстве управления для электромоторного транспортного средства по второму варианту осуществления.

Фиг. 21 является схемой, описывающей способ для вычисления оцененного значения крутящего момента управления демпфированием вибрации в устройстве управления для электромоторного транспортного средства по второму варианту осуществления.

Подробное описание вариантов осуществления

[0008] Первый вариант осуществления

Фиг. 1 является блок-схемой, иллюстрирующей основную конфигурацию электротранспортного средства с устройством управления для электромоторного транспортного средства по первому варианту осуществления. Устройство управления для электромоторного транспортного средства настоящего изобретения включает в себя электромотор 4 в качестве части или всего источника приведения в движение транспортного средства и является применимым к электромоторному транспортному средству, допускающему движение посредством движущей силы электромотора. Электромоторные транспортные средства включают в себя не только электротранспортные средства, но также гибридные транспортные средства и транспортные средства на топливных элементах. В частности, устройство управления для электромоторного транспортного средства согласно настоящему варианту осуществления может применяться к транспортному средству, допускающему управление ускорением/замедлением и остановкой транспортного средства только посредством операции нажатия педали акселератора. В этом транспортном средстве, водитель нажимает педаль акселератора в ходе ускорения и уменьшает или обнуляет величину нажатия для нажатой педали акселератора в ходе замедления или в ходе остановки. Следует отметить, что транспортное средство стремится к остановленному состоянию в то время, когда водитель нажимает педаль акселератора, чтобы не допускать отката назад транспортного средства на дорогах, идущих в подъем, в некоторых случаях.

[0009] Контроллер 2 электромотора имеет сигналы, указывающие состояния транспортного средства, такие как скорость V транспортного средства, позиция AP акселератора, фаза α вращения электромотора 4 (электромотора трехфазного переменного тока), и токи iu, iv и iw электромотора 4, которые вводятся в контроллер 2 электромотора в форме цифровых сигналов, и формирует PWM-сигналы для управления электромотором 4 на основе входных сигналов. Контроллер 2 электромотора выполняет управление размыканием/замыканием переключающего элемента инвертора 3 посредством сформированного PWM-сигнала. Контроллер 2 электромотора имеет функции в качестве средства оценки скорости вращения электромотора, средства коррекции оцененных значений скорости вращения электромотора, средства вычисления крутящего момента с обратной связью, средства вычисления крутящего момента с прямой связью, средства вычисления значений команд управления крутящим моментом электромотора, средства управления электромотором и средства оценки возмущающего крутящего момента. Средство оценки скорости вращения электромотора вычисляет оцененное значение скорости вращения электромотора, что описывается ниже. Средство коррекции оцененных значений скорости вращения электромотора корректирует оцененное значение скорости вращения электромотора на основе величины торможения тормоза, что описывается ниже. Средство вычисления крутящего момента с обратной связью вычисляет крутящий момент с обратной связью, что описывается ниже. Средство вычисления крутящего момента с прямой связью вычисляет крутящий момент с прямой связью, что описывается ниже. Средство вычисления значений команд управления крутящим моментом электромотора вычисляет значение команды управления крутящим моментом электромотора, что описывается ниже. Средство управления электромотором управляет электромотором 4 на основе значения команды управления крутящим моментом электромотора. Средство оценки возмущающего крутящего момента оценивает возмущающий крутящий момент, что описывается ниже.

[0010] Инвертор 3 включает/отключает, например, два переключающих элемента (например, силовые полупроводниковые элементы, такие как IGBT и MOSFET) для каждой фазы, чтобы преобразовывать постоянный ток, поданный из аккумулятора 1, в переменный ток, и заставляет требуемый ток протекать в электромотор 4.

[0011] Электромотор 4 формирует движущую силу посредством переменного тока, подаваемого из инвертора 3, и передает движущую силу на правое и левое ведущие колеса 9a, 9b через редуктор 5 и ведущий вал 8. Дополнительно, при вращении согласно вращению ведущих колес 9a, 9b во время движения транспортного средства, электромотор 4 формирует рекуперативную движущую силу, в силу этого собирая кинетическую энергию транспортного средства в качестве электрической мощности. В этом случае, инвертор 3 преобразует переменный ток, сформированный во время работы в рекуперативном режиме электромотора 4, в постоянный ток и подает постоянный ток в аккумулятор 1.

[0012] Датчик 7 тока определяет трехфазные переменные токи iu, iv и iw, протекающие в электромоторе 4. Следует отметить, что поскольку сумма трехфазных переменных токов iu, iv и iw равна 0, токи двух произвольных фаз могут определяться, и ток оставшейся одной фазы может получаться посредством вычисления.

[0013] Датчик 6 вращения выступает в качестве средства определения скорости транспортного средства, чтобы определять скорость вращения электромотора в качестве параметра скорости. Датчик 6 вращения, например, представляет собой круговой датчик позиции или датчик позиции и определяет фазу α вращения электромотора 4.

[0014] Тормозной контроллер 11 задает величину B торможения тормоза согласно величине нажатия педали 10 тормоза с тем, чтобы управлять давлением тормозной жидкости согласно величине B торможения тормоза.

[0015] Датчик 12 давления жидкости определяет давление тормозной жидкости, чтобы получать величину B торможения тормоза, и выводит полученную величину B торможения тормоза в контроллер 2 электромотора. Таким образом, датчик 12 давления жидкости выступает в качестве средства для того, чтобы определять величину торможения тормоза в качестве компонента сопротивления, не связанного с градиентом.

[0016] Фрикционный тормоз 13 начинает прикладывать давление тормозной жидкости согласно величине B торможения тормоза, чтобы прижимать тормозную колодку в ротор, за счет этого формируя тормозную силу в транспортном средстве.

[0017] Фиг. 2 является блок-схемой последовательности операций способа, показывающей последовательность операций процессов для управления током электромотора, выполняемого посредством контроллера 2 электромотора.

[0018] На этапе S201, вводятся сигналы, указывающие состояния транспортного средства. Здесь, вводятся скорость V транспортного средства (км/ч), позиция AP педали акселератора (%), фаза α вращения (рад) электромотора 4, скорость Nm вращения (об/мин) электромотора 4, трехфазные переменные токи iu, iv и iw, протекающие в электромоторе 4, значение Vdc постоянного напряжения (В) между аккумулятором 1 и инвертором 3, и величина B торможения тормоза.

[0019] Скорость V транспортного средства (км/ч) получается посредством датчика скорости транспортного средства (не проиллюстрирован) или через связь из другого контроллера. Альтернативно, скорость v транспортного средства (м/с) получается посредством умножения механической угловой скорости ωm вращения на динамический радиус R шины и деления произведения на передаточное отношение главной шестерни и затем умножения на 3600/1000 для преобразования единиц измерения, за счет этого получая скорость V транспортного средства (км/ч).

[0020] Позиция AP акселератора (%) получается из позиции акселератора (не проиллюстрирована) или через связь из другого контроллера, такого как контроллер транспортного средства (не проиллюстрирован).

[0021] Фаза α вращения (рад) электромотора 4 получается из датчика 6 вращения. Скорость Nm вращения (об/мин) электромотора 4 получается посредством деления угловой скорости ω вращения (электрического угла) на номер p полюсной пары электромотора 4, чтобы получать скорость ωm вращения электромотора (рад/с), которая представляет собой механическую угловую скорость электромотора 4, и умножения полученной скорости ωm вращения электромотора на 60/(2π). Угловая скорость ωm вращения получается посредством дифференцирования фазы α вращения.

[0022] Токи iu, iv и iw(а), протекающие в электромоторе 4, получаются из датчика 7 тока.

[0023] Значение Vdc постоянного напряжения (В) получается из датчика напряжения (не проиллюстрирован), предоставленного в линии подачи электрической мощности постоянного тока между аккумулятором 1 и инвертором 3, или значения напряжения подачи электрической мощности, передаваемого из контроллера аккумулятора (не проиллюстрирован).

[0024] Величина B торможения тормоза получается из датчика 12 давления жидкости, который определяет давление тормозной жидкости. Может использоваться например, значение датчика хода (не проиллюстрирован), который определяет рабочую величину нажатия педали тормоза водителем. Альтернативно, значение команды торможения может получаться из контроллера транспортного средства (не проиллюстрирован) и другого контроллера через связь, чтобы задавать значение команды торможения в качестве величины B торможения тормоза. Следует отметить, что когда величина B торможения тормоза задается из значения датчика или значения команды управления, скорость отклика от момента, когда величина B торможения тормоза вводится в транспортное средство, до момента, когда тормозная сила фактически действует на транспортное средство, учитывается.

[0025] На этапе S202, задается значение Tm1* первого целевого крутящего момента. В частности, значение Tm1* первого целевого крутящего момента задается на основе позиции AP акселератора и скорости ωm вращения электромотора, вводимых на этапе S201, посредством обращения к таблице позиций акселератора и крутящих моментов, проиллюстрированной на фиг. 3. Как описано выше, устройство управления для электромоторного транспортного средства согласно варианту осуществления может применяться к транспортному средству, допускающему управление ускорением/замедлением и остановкой транспортного средства только посредством операции нажатия педали акселератора. Чтобы обеспечивать, по меньшей мере, остановку транспортного средства посредством полного закрытия педали акселератора, в таблице позиций акселератора и крутящих моментов, проиллюстрированной на фиг. 3, крутящий момент электромотора задается таким образом, что величина рекуперации электромотора с позицией акселератора 0 (полностью закрытой) увеличивается. Таким образом, когда скорость вращения электромотора является положительной, и, по меньшей мере, позиция акселератора равна 0 (полностью закрытая), отрицательный крутящий момент электромотора задается таким образом, чтобы осуществлять работу посредством рекуперативной тормозной силы. Следует отметить, что таблица позиций акселератора и крутящих моментов не ограничена таблицей, проиллюстрированной на фиг. 3.

[0026] На этапе S203, выполняется процесс управления остановкой. В частности, определяется то, находится или нет электромоторное транспортное средство в момент времени непосредственно перед остановкой транспортного средства. Значение Tm1* первого целевого крутящего момента, вычисленное на этапе S202, задается в качестве значения Tm* команды управления крутящим моментом электромотора до того, как электромоторное транспортное средство находится в момент времени непосредственно перед остановкой транспортного средства, и значение Tm2* второго целевого крутящего момента, которое сходится к значению Td команды управления возмущающим крутящим моментом с уменьшением скорости вращения электромотора, задается в качестве значения Tm* команды управления крутящим моментом электромотора после того, как электромоторное транспортное средство находится в момент времени непосредственно перед остановкой транспортного средства. Это значение Tm2* второго целевого крутящего момента является положительным крутящим моментом на дороге, идущей в подъем, отрицательным крутящим моментом на дороге, идущей под спуск, и почти нулевым на ровной дороге. Таким образом, состояние остановки транспортного средства может поддерживаться независимо от градиента поверхности дороги, как описано ниже. Ниже описываются подробности процесса управления остановкой.

[0027] На этапе S204, целевое значение id* тока d-оси и целевое значение iq* тока q-оси получаются на основе значения Tm* целевого крутящего момента электромотора, вычисленного на этапе S203, скорости ωm вращения электромотора и значения Vdc постоянного напряжения. Например, таблица, получающая взаимосвязь целевого значения тока d-оси и целевого значения тока q-оси со значением команды управления крутящим моментом, скоростью вращения электромотора и значением постоянного напряжения, подготавливается заранее, и целевое значение id* тока d-оси и целевое значение iq* тока q-оси получаются посредством обращения к этой таблице.

[0028] На этапе S205, управление по току выполняется таким образом, чтобы сопоставлять ток id d-оси и ток iq d-оси с целевым значением id* тока d-оси и целевым значением iq* тока q-оси, полученными на этапе S204, соответственно. С этой целью, ток id d-оси и ток iq d-оси сначала получаются на основе значений iu, iv и iw трехфазного переменного тока и фазы α вращения электромотора 4, вводимых на этапе S201. Затем, значения vd и vq команд управления напряжением d-оси и q-оси вычисляются из отклонений между значениями id*, iq* команд управления током d-оси и q-оси и токами id и iq d-оси и q-оси. Следует отметить, что напряжение помехозащищенности, необходимое для того, чтобы уравновешивать напряжение помех между ортогональными осями координат d-q, может суммироваться с вычисленными значениями vd и vq команд управления напряжением d-оси и q-оси.

[0029] Затем, из значений d-оси и q-оси vd и vq команд управления напряжением и фазы α вращения электромотора 4 и из значений vu, vv и vw команд управления трехфазным переменным напряжением и значения Vdc напряжения по току, получаются PWM-сигналы tu (%), tv (%) и tw (%). Посредством размыкания и замыкания переключающих элементов инвертора 3 посредством PWM-сигналов tu, tv и tw, полученных таким способом, электромотор 4 может приводиться в действие с требуемым крутящим моментом, инструктированным посредством значения Tm* команды управления крутящим моментом.

[0030] Здесь, до того, как описывается процесс управления остановкой, выполняемый на этапе S203, характеристика Gp(s) передачи из крутящего момента Tm электромотора в скорость ωm вращения электромотора описывается в устройстве управления для электромоторного транспортного средства согласно настоящему варианту осуществления.

[0031] Фиг. 4 и фиг. 5 являются схемами, моделирующими систему трансмиссии для передачи движущей силы транспортного средства, и соответствующие параметры на схемах являются такими, как описано ниже.

Jm - инерция электромотора

Jw - инерция ведущих колес

M - вес транспортного средства

KD - крутильная жесткость приводной системы

Kt - коэффициент, связывающий трение между шинами и поверхностью дороги

N - полное передаточное отношение

r - чрезмерный радиус шин

ωm - угловая скорость электромотора

Tm - значение Tm* целевого крутящего момента

TD - крутящий момент ведущих колес

F - сила, прикладываемая к транспортному средству

V - скорость транспортного средства

ωw - угловая скорость ведущих колес

Следующие уравнения движения могут извлекаться из фиг. 4 и фиг. 5. Следует отметить, что звездочка (*), присоединяемая в правом верхнем углу ссылочного обозначения в следующих уравнениях (1)-(3), указывает дифференциал времен.

[0032] уравнение 1

[0033] уравнение 2

[0034] уравнение 3

[0035] уравнение 4

[0036] уравнение 5

Характеристика Gp(s) передачи из значения Tm целевого крутящего момента в скорость ωm вращения электромотора для электромотора 4, полученная на основе уравнений движения (1)-(5), выражается посредством следующего уравнения (6).

[0037] уравнение 6

Здесь, каждый параметр в уравнении (6) выражается посредством следующих уравнений (7).

[0038] уравнение 7

Посредством исследований, полюса и нулевая точка передаточной функции, показанной в уравнении (6), могут быть аппроксимированы в передаточную функцию следующего уравнения (8), и один полюс и одна нулевая точка указывают значения, чрезвычайно близкие друг к другу. Это является эквивалентным тому, что α и β следующего уравнения (8) указывают значения, чрезвычайно близкие друг к другу.

[0039] уравнение 8

Соответственно, посредством выполнения отмены нулей и полюсов (аппроксимации для α=β) в уравнении (8), Gp(s) составляет характеристику передачи (второй порядок)/(третий порядок), как показано в следующем уравнении (9).

[0040] уравнение 9

Для уменьшения рабочей величины, упрощение характеристики Gp x (s) передачи позволяет получать следующее уравнение (10).

[0041] уравнение 10

Далее описывается характеристика Gp(s) передачи из величины B торможения тормоза в скорость ωm вращения электромотора.

[0042] Величина B торможения тормоза представляет собой тормозную силу, прикладываемую к транспортному средству. Уравнение движения, выражаемое посредством следующего уравнения (11), может извлекаться из фиг. 4 и фиг. 5.

[0043] уравнение 11

Следует отметить, что величина B торможения тормоза в уравнении (11) является следующей.

ωw>0: B>0

ωw=0: B=0

ωw<0: B<0

Чтобы получать характеристику Gb(s) передачи из величины B торможения тормоза в скорость ωm вращения электромотора на основе уравнений движения, указываемых посредством уравнений (1), (3), (4), (5) и (11), характеристика Gb(s) передачи выражается посредством следующего уравнения (12).

[0044] уравнение 12

Следует отметить, что параметры в уравнении (12) выражаются посредством следующего уравнения (13).

[0045] уравнение 13

После этого описываются подробности процесса управления остановкой, выполняемого на этапе S203 по фиг. 2. Фиг. 6 является блок-схемой для осуществления процесса управления остановкой.

[0046] Модуль 501 компенсации с прямой связью (в дальнейшем называемый "модулем F/F-компенсации") вычисляет оцененное значение скорости вращения электромотора на основе полученной величины B торможения тормоза. Далее описывается подробности модуля 501 F/F-компенсации со ссылкой на фиг. 7 и фиг. 12.

[0047] Фиг. 7 является схемой, описывающей способ для вычисления оцененного значения скорости вращения электромотора согласно состоянию электромоторного транспортного средства. Модуль 601 оценки тормозного крутящего момента вычисляет значение коррекции скорости вращения электромотора, чтобы корректировать оцененное значение скорости вращения электромотора на основе величины B торможения тормоза. Фиг. 12 иллюстрирует подробности модуля 601 оценки тормозного крутящего момента.

[0048] Фиг. 12 является схемой, описывающей способ для вычисления значения коррекции скорости вращения электромотора согласно величине B торможения тормоза. Блок 1201 управления выполняет процесс относительно характеристики Gb(s) передачи, выражаемой посредством вышеописанного уравнения (12), для величины B торможения тормоза, чтобы вычислять значение коррекции скорости вращения электромотора. Тормозная сила посредством тормоза действует в таком направлении, что вращение электромотора обеспечивает схождение к 0 об/мин как при движении вперед, так и при движении назад. Соответственно, значение коррекции скорости вращения электромотора вычисляется таким образом, что вращение электромотора действует в направлении схождения к 0 об/мин согласно знаку продольной скорости транспортного средства. Знак значения коррекции скорости вращения электромотора в варианте осуществления является отрицательным во время движения вперед транспортного средства и положительным во время движения назад транспортного средства. Значение коррекции скорости вращения электромотора выводится в сумматор 602, проиллюстрированный на фиг. 7.

[0049] Снова ссылаясь на фиг. 7, пояснение продолжается. Сумматор 602 суммирует значение коррекции скорости вращения электромотора, вычисленное посредством модуля 601 оценки тормозного крутящего момента, с оцененным значением скорости вращения электромотора, чтобы корректировать оцененное значение скорости вращения электромотора. Сумматор 602 выводит скорректированное оцененное значение скорости вращения электромотора в блок 603 управления.

[0050] Модуль 603 оценки крутящего момента электромотора умножает скорректированное оцененное значение скорости вращения электромотора, выводимое из сумматора 602, на предварительно определенное усиление Kvref (в дальнейшем называемое "полным усилением") (Kvref<0), чтобы вычислять оцененное значение крутящего момента электромотора. Полное усиление Kvref является предварительно определенным значением, чтобы плавно останавливать электромоторное транспортное средство в то время, когда увеличение тормозного расстояния уменьшается, и, например, надлежащим образом задается посредством экспериментальных данных или аналогичных данных.

[0051] Модуль 604 оценки скорости вращения электромотора преобразует оцененное значение крутящего момента электромотора в оцененное значение скорости вращения электромотора на основе модели Gp(s) транспортного средства, указываемой посредством уравнения (6). Этот вариант осуществления использует простую модель Gp x x (s) транспортного средства, указываемую посредством уравнения (10), вместо модели Gp(s) транспортного средства.

[0052] Модуль 604 оценки скорости вращения электромотора вводит оцененное значение крутящего момента электромотора, вычисленное посредством модуля 603 оценки крутящего момента электромотора, в простую модель Gp x x (s) транспортного средства, чтобы вычислять оцененное значение скорости вращения электромотора на основе простой модели Gp x x (s) транспортного средства. Модуль 604 оценки скорости вращения электромотора выводит оцененное значение скорости вращения электромотора на основе простой модели Gp x x (s) транспортного средства в сумматор 602 и фильтр 605 нижних частот.

[0053] В случае если модуль 508 сравнения крутящих моментов, который описывается ниже, определяет то, что электромоторное транспортное средство находится в момент времени непосредственно перед остановкой транспортного средства, и в случае, если величина B торможения тормоза сбрасывается, модуль 604 оценки скорости вращения электромотора инициализирует простую модель Gp x x (s) транспортного средства на основе текущей скорости ωm вращения электромотора. Например, простая модель Gp x x (s) транспортного средства состоит из констант a1 x и b0 x, которые уникально определяются посредством расчетного значения транспортного средства и модуля интегрирования. Когда модуль 604 оценки скорости вращения электромотора определяет то, что электромоторное транспортное средство находится в момент времени непосредственно перед остановкой транспортного средства, задание начального значения вышеописанного модуля интегрирования равным скорости ωm вращения электромотора инициализирует простую модель Gp x x (s) транспортного средства. В ходе торможения тормоза, вследствие изменения коэффициента (μ) трения тормозной колодки или аналогичной причины, ошибка возникает в значении команды управления и значении датчика; и тормозной силе, фактически действующей на транспортное средство. Соответственно, вышеописанная инициализация компенсирует ошибку, возникающую в ходе торможения тормоза.

[0054] Фильтр 605 нижних частот представляет собой фильтр нижних частот с характеристикой Hc(s) передачи, выполненной с возможностью дополнять простую модель Gp x x (s) транспортного средства. Здесь, процесс фильтрации характеристики Hc(s) передачи выполняется для оцененного значения скорости вращения электромотора, вычисленного посредством модуля 604 оценки скорости вращения электромотора для регулирования отклика. Характеристика Hc(s) передачи задается, например, на основе данных для моделирования или экспериментальных данных. В частности, если полное усиление Kvref меньше 0, постоянная времени характеристики Hc(s) передачи регулируется таким образом, что сходимость скорости ωm вращения электромотора и сходимость оцененного значения скорости вращения электромотора, вводимого в устройство 503 задания крутящего F/F-момента, являются эквивалентными.

[0055] Таким образом, процесс фильтрации нижних частот выполняется для оцененного значения скорости вращения электромотора, вводимого в устройство 503 задания крутящего F/F-момента. Это корректирует расхождение характеристики отклика в ассоциации с использованием простой модели Gp x x (s) транспортного средства.

[0056] Снова ссылаясь на фиг. 6, пояснение продолжается. Устройство 502 задания крутящего момента с обратной связью (в дальнейшем называемое "устройством задания крутящего F/B-момента"), проиллюстрированное на фиг. 6, вычисляет крутящий F/B-момент на основе определенной скорости ωm вращения электромотора. Далее описываются подробности со ссылкой на фиг. 8.

[0057] Фиг. 8 является схемой, описывающей способ для вычисления крутящего F/B-момента на основе скорости ωm вращения электромотора. Устройство 502 задания крутящего F/B-момента включает в себя умножитель 701, чтобы преобразовывать скорость ωm вращения электромотора в крутящий F/B-момент.

[0058] Умножитель 701 включает в себя умножитель 710 полных усилений и умножитель 720 коэффициентов распределения. Умножитель 701 умножает скорость ωm вращения электромотора на F/B-усиление K1 (Kvref x β), которое определяется, чтобы распределять рекуперативную тормозную силу посредством электромотора 4, чтобы вычислять крутящий F/B-момент. F/B-усиление K1 задается в направлении ослабления рекуперативной тормозной силы по сравнению с полным усилением Kvref. Таким образом, F/B-усиление K1 задается равным значению, меньшему 0 и большему полного усиления Kvref.

[0059] Умножитель 710 полных усилений умножает скорость ωm вращения электромотора на полное усиление Kvref, чтобы вычислять полный крутящий F/B-момент.

[0060] Умножитель 720 коэффициентов распределения умножает полный крутящий F/B-момент на коэффициент β распределения, чтобы вычислять крутящий F/B-момент. Следует отметить, что коэффициент β распределения является значением, большим 0 и меньшим 1. Коэффициент β распределения задается, например, на основе данных для моделирования или экспериментальных данных.

[0061] Таким образом, умножитель 701 использует значение, полученное посредством умножения полного усиления Kvref на коэффициент β распределения, в качестве F/B-усиления K1, обеспечивая небольшой крутящий F/B-момент, с тем чтобы уменьшать рекуперативную тормозную силу. Скорость ωm вращения электромотора умножается на F/B-усиление K1, чтобы вычислять крутящий F/B-момент; в силу этого крутящий F/B-момент задается в качестве крутящего момента, из которого большая рекуперативная тормозная сила получается при большей скорости ωm вращения электромотора.

[0062] Далее описывается конфигурация устройства 503 задания крутящего F/F-момента, проиллюстрированного на фиг. 6.

[0063] Устройство 503 задания крутящего F/F-момента вычисляет крутящий F/F-момент на основе оцененного значения скорости вращения электромотора, вычисленного посредством модуля 501 F/F-компенсации. Крутящий F/F-момент дополняет недостаточную рекуперативную тормозную силу посредством крутящего F/B-момента непосредственно перед остановкой транспортного средства.

[0064] Фиг. 9 является схемой, описывающей способ для вычисления крутящего F/F-момента на основе оцененного значения скорости вращения электромотора. Устройство 503 задания крутящего F/F-момента включает в себя умножитель 801, чтобы преобразовывать оцененное значение скорости вращения электромотора в крутящий F/F-момент.

[0065] Умножитель 801 умножает оцененное значение скорости вращения электромотора на F/F-усиление K2, заданное согласно F/B-усилению K1, чтобы вычислять крутящий F/F-момент. Умножитель 801 включает в себя умножитель 810 полных усилений и умножитель 820 коэффициентов распределения.

[0066] Умножит